Skip to main content

Management of Infection With Naturally Amphotericin B-Resistant Fungi

  • Chapter
Management of Multiple Drug-Resistant Infections

Part of the book series: Infectious Disease ((ID))

  • 133 Accesses

Abstract

There has been a progressive increase in the incidence of invasive fungal infections over the last two decades (1). Most occur in severely immunocompromised patients, such as those with hematological malignancy or undergoing stem cell transplantation. While candidal infections predominate, mortality rates from this infection have progressively decreased. Conversely, infections caused by molds are associated with high mortality and have continued to increase disproportionately. Many centers report that the largest increase is seen with emerging fungi, including Aspergillus terreus, Aspergillus flavus, Fusarium spp, and Scedosporium spp (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992–1993: results of population-based laboratory active surveillance. Clin Infect Dis 1998; 27: 1138–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Marr KA, Carter RA, Crippa F, et al. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 2002; 34: 909–917.

    Article  PubMed  Google Scholar 

  3. White TC, Man KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402.

    PubMed  CAS  Google Scholar 

  4. Vanden Bossche H, Marichal P, Odds FC. Molecular mechanisms of drug resistance in fungi. Trends Microbiol 1994; 2: 393–400.

    Article  Google Scholar 

  5. Broughton MC, Bard M, Lees ND. Polyene resistance in ergosterol producing strains of Candida albicans. Mycoses 1991; 34: 75–83.

    Google Scholar 

  6. JosephHorne T, Loeffler RST, Hollomon DW, et al. Amphotericin B resistant isolates of Cryptococcus neoformans without alteration in sterol biosynthesis. J Med Vet Mycol 1996; 34: 223–225.

    Article  CAS  Google Scholar 

  7. Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol 1999; 43: 1017–1025.

    PubMed  CAS  Google Scholar 

  8. Younsi M, Ramanandraibe E, Bonaly R, et al. Amphotericin B resistance and membrane fluidity in Kluyveromyces lactis strains. Antimicrob Agents Chemother 2000; 44: 1911 1916.

    Google Scholar 

  9. Kontoiannis D. Why prior fluconazole use is associated with an increased risk of invasive mold infections in immunosuppressed hosts; an alternative hypothesis. Clin Infect Dis 2002; 34: 1281–1283.

    Article  Google Scholar 

  10. McClenny NB, Fei HH, Baron EJ, et al. Change in colony morphology of Candida lusitaniae in association with development of amphotericin B resistance. Antimicrob Agents Chemother 2002; 46: 1325–1328.

    Article  PubMed  CAS  Google Scholar 

  11. National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-Forming Filamentous Fungi; Proposed Standard. Wayne, PA: National Committee for Clinical Laboratory Standards, 1998. NCCLS document M38-P.

    Google Scholar 

  12. National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard. Wayne, PA: National Committee for Clinical Laboratory Standards, 1998. NCCLS document M27-A.

    Google Scholar 

  13. Johnson EM, Oakley KL, Radford SA, et al. Lack of correlation of in vitro amphotericin B susceptibility testing with outcome in a murine model of Aspergillus infection. J Antimicrob Chemother 2000; 45: 85–93.

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen MH, Clancy CJ, Yu VL, et al. Do in vitro susceptibility data predict the microbio-logic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis 1998; 177: 425–430.

    Article  PubMed  CAS  Google Scholar 

  15. Szekely A, Johnson EM, Warnock DW. Comparison of E-test and broth microdilution methods for antifungal drug susceptibility testing of molds. J Clin Microbiol 1999; 37: 1480–1483.

    PubMed  CAS  Google Scholar 

  16. Peyron F, Favel A, Michel-Nguyen A, et al. Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest. J Clin Microbiol 2001; 39: 339–342.

    Article  PubMed  CAS  Google Scholar 

  17. Pfaller MA, Messer SA, Bolmstrom A. Evaluation of Etest for determining in vitro susceptibility of yeast isolates to amphotericin B. Diagn Microbiol Infect Dis 1998; 32: 223–227.

    Article  PubMed  CAS  Google Scholar 

  18. Lozano-Chiu M, Lancaster MV, Rex JH. Evaluation of a colorimetric method for detecting amphotericin B-resistant Candida isolates. Diagn Microbiol Infect Dis 1998; 31: 417–424.

    Article  PubMed  CAS  Google Scholar 

  19. Arendrup M, Lundgren B, Jensen IM, et al. Comparison of Etest and a tablet diffusion test with the NCCLS broth microdilution method for fluconazole and amphotericin B susceptibility testing of Candida isolates. J Antimicrob Chemother 2001; 47; 521–526.

    Article  PubMed  CAS  Google Scholar 

  20. Favel A, Peyron F, De Meo M, et al. Amphotericin B susceptibility testing of Candida lusitaniae isolates by flow cytofluorometry: comparison with the Etest and the NCCLS broth macrodilution method. J Antimicrob Chemother 1999; 43: 227–232.

    Article  PubMed  CAS  Google Scholar 

  21. VanEldere J, Joosten L, Verhaeghe A, et al. Fluconazole and amphotericin B antifungal susceptibility testing by National Committee for Clinical Laboratory Standards broth macrodilution method compared with E-test and semiautomated broth microdilution test. J Clin Microbiol 1996; 34: 842–847.

    CAS  Google Scholar 

  22. Clancy CJ, Nguyen MH. Correlation between in vitro susceptibility determined by Etest and response to therapy with amphotericin B: results from a multicenter prospective study of candidemia. Antimicrob Agents Chemother 1999; 43: 1289–1290.

    PubMed  CAS  Google Scholar 

  23. Lass-Florl C, Kofler G, Kropshofer G, et al. In-vitro testing of susceptibility to amphotericin B is a reliable predictor of clinical outcome in invasive aspergillosis. J Antimicrob Chemother 1998; 42: 497–502.

    Article  PubMed  CAS  Google Scholar 

  24. Edwards JE Jr, Bodey GP, Bowden RA, International conference for the development of a consensus on the management and prevention of severe candidal infections. Clin Infect Dis 1997; 25:43–59.

    Google Scholar 

  25. Nagata MP, Gentry CA, Hampton EM. Is there a therapeutic or pharmakinetic rationale for amphotericin B dosing in systemic Candida infection? Ann Pharmacother 1996; 30: 811–818.

    PubMed  CAS  Google Scholar 

  26. Espinel-Ingroff A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. J Clin Microbiol 2001; 39: 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  27. Espinel-Ingroff A. In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 2001; 39: 954–958.

    Article  PubMed  CAS  Google Scholar 

  28. Pfaller MA, Messer SA, Hollis RJ, et al. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2002; 46: 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  29. Arikan S, Lozano-Chiu M, Paetznic V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol 1999; 37:3946–3951.

    PubMed  CAS  Google Scholar 

  30. Salkin IF, McGinnis MR, Dykstra MJ,Scedosporium inflatum, an emerging pathogen. J Clin Microbiol 1988; 26: 498–503.

    PubMed  CAS  Google Scholar 

  31. Gillum PS, Gurswamy A, Taira JW. Localized cutaneous infection by Scedosporium prolificans (inflatum). Int J Dermatol 1997; 36: 297–299.

    Article  PubMed  CAS  Google Scholar 

  32. Berenguer JJ, Rodriguez-Tudela L, Richard C, Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Scedosporium prolificans Spanish Study Group. Medicine (Baltimore) 1997; 76:256–265.

    Google Scholar 

  33. Idigoras P, Perez-Trallero E, Pineiro L, et al. Disseminated infection and colonization by Scedosporium prolificans: a review of 18 cases, 1990–1999. Clin Infect Dis 2001; 32: e158 - e165.

    Article  PubMed  CAS  Google Scholar 

  34. Maertens J, Lagrou K, Deweerdt H, Disseminated infection by Scedosporium prolificans: an emerging fatality amongst haematology patients. Case report and review. Ann Haematol 2000; 79:340–344.

    Google Scholar 

  35. Pickles RW, Pacey DE, Muir DB, Herrell WH. Experience with infection by Scedosporium prolificans including apparent cure with fluconazole therapy. J Infect 1996; 33:193–197.

    Article  Google Scholar 

  36. Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suarez JV, et al. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 1999; 43: 149–151.

    Article  PubMed  CAS  Google Scholar 

  37. Del Poeta M, Schell WA, Perfect JR. In vitro antifungal activity of pneumocandin L743,872 against a variety of clinically important molds. Antimicrob Agents Chemother 1997; 41: 1835–1836.

    PubMed  Google Scholar 

  38. Radford SA, Johnson EM, Warnock DW. In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. Antimicrob Agents Chemother 1997; 41: 841–843.

    PubMed  CAS  Google Scholar 

  39. Meletiadis J, Mouton JW, Rodríguez-Tudela JL, In vitro interaction of terbinafine with itraconazole against clinical isolates of Scedosporium prolificans. Antimicrob Agents Chemother 2000; 44: 470–472.

    Article  PubMed  CAS  Google Scholar 

  40. Bouza E, Munoz P, Vega L, et al. Clinical resolution of Scedosporium prolificans fungemia associated with reversal of neutropenia following administration of granulocyte colony-stimulating factor. Clin Infect Dis 1996; 23: 192–193.

    Article  PubMed  CAS  Google Scholar 

  41. Kiraz N, Gulbas Z, Akgun Y, Uzun O. Lymphadenitis caused by Scedosporium apiospermum in an immunocompetent patient. Clin Infect Dis 2001; 32: e59 - e61.

    Article  PubMed  CAS  Google Scholar 

  42. O’Bryan TA, Browne FA, Schonder JF. Scedosporium apiospermum (Pseudallescheria boydii) endocarditis. J Infect 2002; 44: 189–192.

    Article  PubMed  Google Scholar 

  43. Mellinghoff IK, Winston DJ, Mukwaya G, Schiller GJ. Treatment of Scedosporium apiospermum brain abscesses with posaconazole. Clin Infect Dis 2002; 15; 34: 1648–1650.

    Article  Google Scholar 

  44. Rollot F, Blanche P, Richaud-Thiriez B, et al. Pneumonia due to Scedosporium apiospermum in a patient with HIV infection. Scand J Infect Dis 2000; 32: 439.

    Article  PubMed  CAS  Google Scholar 

  45. Nomdedeu J, Brunet S, Martino R, et al. Successful treatment of pneumonia due to Scedosporium apiospermum with itraconazole: case report. Clin Infect Dis 1993; 16: 73 1733.

    Google Scholar 

  46. Raj R, Frost AE. Scedosporium apiospermum fungemia in a lung transplant recipient. Chest 2002; 121: 1714–1716.

    Article  PubMed  Google Scholar 

  47. Hachimi-Idrissi SM, Willemsen B, Desprechins APseudallescheria boydii and brain abscesses. Pediatr Infect Dis J 1990; 9: 737–741.

    Article  PubMed  CAS  Google Scholar 

  48. Meletiadis J, Meis JF, Mouton JW, et al. In vitro activities of new and conventional anti-fungal agents against clinical Scedosporium isolates. Antimicrob Agents Chemother 2002; 46: 62–68.

    Article  PubMed  CAS  Google Scholar 

  49. Nesky MA, McDougal EC, Peacock JE Jr. Pseudallescheria boydii brain abscess successfully treated with voriconazole and surgical drainage: case report and literature review of central nervous system pseudallescheriasis. Clin Infect Dis 2000; 31: 673–677.

    Article  PubMed  CAS  Google Scholar 

  50. Munoz P, Marin M, Tornero P, et al. Successful outcome of Scedosporium apiospermum disseminated infection treated with voriconazole in a patient receiving corticosteroid therapy. Clin Infect Dis 2000; 31: 1499–1501.

    Article  PubMed  CAS  Google Scholar 

  51. Carrillo AJ, Guarro J. In vitro activities of four novel triazoles against Scedosporium spp. Antimicrob Agents Chemother 2001; 45: 2151–2153.

    Article  PubMed  CAS  Google Scholar 

  52. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev 1994; 7: 479–504.

    PubMed  CAS  Google Scholar 

  53. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: 10 years’ experience at a cancer center and implications for management. Blood 1997; 90: 999–1008.

    PubMed  CAS  Google Scholar 

  54. Hue FX, Huerre M, Rouffault MA, de Bievre C. Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol 1999; 37: 2434–2438.

    PubMed  CAS  Google Scholar 

  55. Espinel-Ingroff A. In vitro activity of the new triazole voriconazole (UK-109,496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens. J Clin Microbiol 1998; 36: 198–202.

    PubMed  CAS  Google Scholar 

  56. Johnson EM, Szekely A, Warnock DW. In-vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 1998; 42: 741–745.

    Article  PubMed  CAS  Google Scholar 

  57. Reis A, Sundmacher R, Tintelnot K, Agostini H, Jensen HE, Althaus C. Successful treatment of ocular invasive mould infection (fusariosis) with the new antifungal agent voriconazole. Br J Ophthalmol 2000; 84: 932–933.

    Article  PubMed  CAS  Google Scholar 

  58. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. In vitro susceptibility testing methods for caspofungin against Aspergillus and Fusarium isolates. Antimicrob Agents Chemother 2001; 45: 327–330.

    Article  PubMed  CAS  Google Scholar 

  59. Rotowa NA, Shadomy HJ, Shadomy S. In vitro activities of polyene and imidazole anti-fungal agents against unusual opportunistic fungal pathogens. Mycoses 1990; 33: 203–211.

    PubMed  CAS  Google Scholar 

  60. Reuben A, Anaissie E, Nelson PE, Hashem R, Legrand C, Ho DH, Bodey GP. Antifungal susceptibility of 44 clinical isolates of Fusarium species determined by using a broth microdilution method. Antimicrob Agents Chemother 1989; 33: 1647–1649.

    Article  PubMed  CAS  Google Scholar 

  61. Sampathkumar P, Paya CV. Fusarium infection after solid-organ transplantation. Clin Infect Dis 2001; 32: 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  62. Walsh TJ, Hiemenz JW, Seibel N, et al. Amphotericin lipid complex in patients with invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 1998; 26: 1383–1396.

    Article  PubMed  CAS  Google Scholar 

  63. Cofrancesco E, Boschetti C, Viviani MA, et al. Efficacy of liposomal amphotericin B (AmBisome) in the eradication of Fusarium infection in a leukaemic patient. Haematologica 1992; 77: 280–283.

    PubMed  CAS  Google Scholar 

  64. Spielberger, RT, Falleroni MJ, Coene AJ, Larson RA. Concomitant amphotericin B therapy, granulocyte transfusions, and GM-CSF administration for disseminated infection with Fusarium in a granulocytopenic patient. Clin Infect Dis 1993; 16: 528–530.

    Article  PubMed  CAS  Google Scholar 

  65. Groll AH, Walsh TJ. Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect 2001; 7 (suppl. 2): 8–24.

    Article  PubMed  CAS  Google Scholar 

  66. Denning DW. Aspergillus species. In: Mandel GL, Bennett JE, Dolin R (eds.). Principles and Practice of Infectious Diseases. 5th ed. Philadelphia: Churchill Livingston, 2000, pp. 2674–2685.

    Google Scholar 

  67. Singh N. Trends in the epidemiology of opportunistic fungal infections: predisposing factors and the impact of antimicrobial use practices. Clin Infect Dis 2001; 33: 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  68. Manuel RJ, Kibbler CC. The epidemiology and prevention of invasive aspergillosis. J Hosp Infect 1998; 39: 95–109.

    Article  PubMed  CAS  Google Scholar 

  69. Iwen PC, Rupp ME, Hinrichs SH. Invasive mold sinusitis: 17 cases in immunocompromised patients and review of the literature. Clin Infect Dis 1997; 24: 1178–1184.

    Article  PubMed  CAS  Google Scholar 

  70. Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781–805.

    Article  PubMed  CAS  Google Scholar 

  71. Ascioglu S, Rex JH, de Pauw B, et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 2002; 34: 7–14.

    Article  PubMed  CAS  Google Scholar 

  72. Klont RR, Meis JF, Verweij PE. Critical assessment of issues in the diagnosis of invasive aspergillosis. Clin Microbiol Infect 2001; 7 (suppl. 2): 32–37.

    Article  PubMed  Google Scholar 

  73. Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother 2002; 49 (suppl. S1): 31–36.

    Article  PubMed  CAS  Google Scholar 

  74. Moosa MY, Alangaden GJ, Manavathu E, Chandrasekar PH. Resistance to amphotericin B does not emerge during treatment for invasive aspergillosis. J Antimicrob Chemother 2002; 49: 209–213.

    Article  PubMed  CAS  Google Scholar 

  75. Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother 2002; 49 (suppl. S1): 7–10.

    Article  PubMed  CAS  Google Scholar 

  76. Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol 1999; 37: 2343–2345.

    PubMed  CAS  Google Scholar 

  77. Dannaoui E, Borel E, Persat F, Piens MA, Picot S. Amphotericin B resistance of Aspergillus terreus in a murine model of disseminated aspergillosis. J Med Microbiol 2000; 49: 601–606.

    PubMed  CAS  Google Scholar 

  78. Iwen PC, Rupp ME, Langnas AN, Reed EC, Hinrichs SH. Invasive pulmonary aspergillosis due to Aspergillus terreus: 12-year experience and review of the literature. Clin Infect Dis 1998; 26: 1092–1097.

    Article  PubMed  CAS  Google Scholar 

  79. Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347: 408–415.

    Article  PubMed  CAS  Google Scholar 

  80. Espinel-Ingroff A. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 1998; 36: 2950–2956.

    PubMed  CAS  Google Scholar 

  81. Koss T, Bagheri B, Zeana C, Romagnoli MF, Grossman ME. Amphotericin B-resistant Aspergillus flavus infection successfully treated with caspofungin, a novel antifungal agent. J Am Acad Dermatol 2002; 46: 945–947.

    Article  PubMed  Google Scholar 

  82. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp. Antimicrob Agents Chemother 2002; 46: 245–247.

    Article  PubMed  CAS  Google Scholar 

  83. Stevens DA, Kan VL, Judson MA, et al. Practice guidelines for diseases caused by Aspergillus. Infectious Diseases Society of America. Clin Infect Dis 2000; 30: 696–709.

    Article  PubMed  CAS  Google Scholar 

  84. Denning DW. Therapeutic outcome in invasive aspergillosis. Clin Infect Dis 1996; 23: 608–615.

    Article  PubMed  CAS  Google Scholar 

  85. Aisner J, Wiernik PH, Schimpff SC. Treatment of invasive aspergillosis: relation of early diagnosis and treatment to response. Ann Intern Med 1977; 86: 539–543.

    PubMed  CAS  Google Scholar 

  86. Sugar AM. Mucormycosis. Clin Infect Dis 1992; 14 (suppl. 1): s126 - s129.

    Article  PubMed  Google Scholar 

  87. Morrison VA, McGlave PB. Mucormycosis in the BMT population. Bone Marrow Transplant 1993; 11: 383–388.

    PubMed  CAS  Google Scholar 

  88. Kontoyiannis DP, Wessel VC, Bodey GP, Rolston KVI. Zygomycosis in the 1990s in a tertiary-care cancer center. Clin Infect Dis 2000; 30: 851–856.

    Article  PubMed  CAS  Google Scholar 

  89. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13: 236–301.

    Article  PubMed  CAS  Google Scholar 

  90. Tedder M, Spratt JA, Anstadt MP, Hedge SS, Tedder SD, Lowe JE. Pulmonary mucormycosis: results of medical and surgical therapy. Ann Thorac Surg 1994; 57: 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  91. Hagensee ME, Bauwens JE, Kjos B, Bowden RA. Brain abscess following marrow transplantation: experience at the Fred Hutchinson Cancer Research Center, 1984–1992. Clin Infect Dis 1984; 19: 402–408.

    Article  Google Scholar 

  92. Migrino RQ, Hall GS, Longworth DL. Deep tissue infections caused by Scopulariopsis brevicaulis: report of a case of prosthetic valve endocarditis and review. Clin Infect Dis 1995; 21: 672–674.

    Article  PubMed  CAS  Google Scholar 

  93. Aguilar C, Pujol I, Guarro J. In vitro antifungal susceptibilities of Scopulariopsis isolates. Antimicrob Agents Chemother 1999; 43: 1520–1522.

    PubMed  CAS  Google Scholar 

  94. Sellier P, Monsuez JJ, Lacroix C, et al. Recurrent subcutaneous infection due to Scopulariopsis brevicaulis in a liver transplant recipient. Clin Infect Dis 2000; 30: 820–833.

    Article  PubMed  CAS  Google Scholar 

  95. Gueho EM, Smith T, de Hoog GS, et al. Contributions to a revision of the genus Trichosporon. Antonie Van Leeuwenhoek 1992; 61: 289–316.

    Article  PubMed  CAS  Google Scholar 

  96. Lussier N, Laverdiere M, Delorme J, Weiss K, Dandavino R. Trichosporon beigelii funguria in renal transplant recipients. Clin Infect Dis 2000; 31: 1299–1301.

    Article  PubMed  CAS  Google Scholar 

  97. Ebright JR, Fairfax MR, Vazquez JA. Trichosporon asahii, a non-candida yeast that caused fatal septic shock in a patient without cancer or neutropenia. Clin Infect Dis 2001; 33: e28 - e30.

    Article  PubMed  CAS  Google Scholar 

  98. Yoss BS, Sautter RL, Brenker HJ. Trichosporon beigelii, a new neonatal pathogen. Am J Perinatol 1997; 14: 113–117.

    Article  PubMed  CAS  Google Scholar 

  99. Finkelstein R, Singer P, Lefler E. Catheter-related fungemia caused by Trichosporon beigelii in non-neutropenic patients. Am J Med 1989; 86: 133.

    Article  PubMed  CAS  Google Scholar 

  100. Martinez-Lacasa J, Mana J, et al. Long-term survival of a patient with prosthetic valve endocarditis due to Trichosporon beigelii. Eur J Clin Microbiol Infect Dis 1991; 10: 756–758.

    Article  PubMed  CAS  Google Scholar 

  101. Keay S, Denning DW, Stevens DA. Endocarditis due to Trichosporon beigelii: in vitro susceptibility of isolates and review. Rev Infect Dis 1991; 13: 383–386.

    Article  PubMed  CAS  Google Scholar 

  102. Walsh TJ, Melcher GP, Rinaldi MG,Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 1990; 28: 1616–1622.

    PubMed  CAS  Google Scholar 

  103. Kremery V, Krupova I, Denning DW. Invasive yeast infections other than Candida spp in acute leukaemia. J Hosp Infect 1999; 41: 181–194.

    Article  Google Scholar 

  104. Nahass GT, Rosenberg SP, Leonardi CL, Pennys NS. Disseminated infection with Trichospororon beigelii. Report of a case and review of the cutaneous and histologic manifestations. Arch Dermatol 1993; 129: 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  105. Meyer MH, Letscher-Bru V, Waller J, et al. Chronic disseminated Trichosporon asahii infection in a leukemic child. Clin Infect Dis 2002; 35: e22 - e25.

    Article  PubMed  CAS  Google Scholar 

  106. McManus EJ, Jones JM. Detection of Trichosporon beigelii antigen cross-reactive with Cryptococcus neoformans capsular polysaccharide in serum from a patient with disseminated Trichosporon infection. J Clin Microbiol 1985; 21: 681–685.

    PubMed  CAS  Google Scholar 

  107. Tawara S, Ikeda F, Maki K, et al. In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother 2000; 44: 57–62.

    Article  PubMed  CAS  Google Scholar 

  108. McGinnis MR, Pasarell L, Sutton DA, et al. In vitro evaluation of voriconazole against some clinically important fungi. Antimicrob Agents Chemother 1997; 41: 1832–1834.

    PubMed  CAS  Google Scholar 

  109. Goodman D, Pamer E, Jakubowski A, Morris C, Sepkowitz K. Breakthrough trichosporonosis in a bone marrow transplant recipient receiving caspofungin acetate. Clin Infect Dis 2002; 35: e35 - e36.

    Article  PubMed  Google Scholar 

  110. Erer B, Galimberti M, Lucarelli G,Trichosporon beigelii: a life-threatening pathogen in immunocompromised hosts. Bone Marrow Transplant 2000; 25: 745–749.

    Article  PubMed  CAS  Google Scholar 

  111. Walsh TJ, Lee JW, Melcher GP, et al. Experimental disseminated trichosporonosis in persistently granulocytopenic rabbits: implications for pathogenesis, diagnosis and treatment of an emerging pathogen. J Infect Dis 1992; 166: 121–133.

    Article  PubMed  CAS  Google Scholar 

  112. Anaissie E, Gokoslan A, Hachem R, Rubin R. Azole therapy for trichosporoniasis: clinical evaluation of eight patients, experimental therapy for murine infection, and review. Clin Infect Dis 1992; 15: 781–787.

    Article  PubMed  CAS  Google Scholar 

  113. Pfaller MA, Diekema DJ, Jones RN, et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 2001; 39: 3254–3259.

    Article  PubMed  CAS  Google Scholar 

  114. Hazen KC. New and emerging yeast pathogens. Clin Microbiol Rev 1995; 8: 462–478.

    PubMed  CAS  Google Scholar 

  115. Dick JD, Rosengard BR, Merz WG, et al. Fatal disseminated candidiasis due to amphotericin-B-resistant Candida guilliermondii. Ann Intern Med 1985, 102: 67–68.

    PubMed  CAS  Google Scholar 

  116. Pappagianis D, Collins MS, Hector R, Remington J. Development of resistance to amphotericin B in Candida lusitaniae infecting a human. Antimicrob Agents Chemother 1979; 16: 123–126.

    Article  PubMed  CAS  Google Scholar 

  117. Barchiesi F, Tortorano AM, Di Francesco LF, et al. In-vitro activity of five antifungal agents against uncommon clinical isolates of Candida spp. J Antimicrob Chemother 1999; 43: 295–299.

    Article  PubMed  CAS  Google Scholar 

  118. Favel A, Michel-Nguyen A, Chastin C, et al. In-vitro susceptibility pattern of Candida lusitaniae and evaluation of the Etest method. J Antimicrob Chemother 1997; 39: 591–596.

    Article  PubMed  CAS  Google Scholar 

  119. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Clin Infect Dis 2000; 30: 662–678.

    Article  PubMed  CAS  Google Scholar 

  120. Wasan KM, Lopez-Berenstein G. Characteristics of lipid-based formulations that influence their biological behaviour in the plasma of patients. Clin Infect Dis 1996; 23: 1126–1138.

    Article  PubMed  CAS  Google Scholar 

  121. Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicity. Clin Infect Dis 1998; 27: 603–618.

    Article  PubMed  CAS  Google Scholar 

  122. Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents 2001; 17: 161–169.

    Article  PubMed  CAS  Google Scholar 

  123. Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 2001; 2: 686–693.

    Article  Google Scholar 

  124. Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 1999; 29: 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  125. Denning DW. Echinocandins and candins-a new antifungal class with a novel mode of action. J Antimicrob Chemother 1997; 40: 611–614.

    Article  PubMed  CAS  Google Scholar 

  126. Sabo JA, Abdel-Rahman SM. Voriconazole: a new triazole antifungal. Ann Pharmacother 2000; 34: 1032–1043.

    Article  PubMed  CAS  Google Scholar 

  127. Bennett JE, Dismukes WE, Duma RJ, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 1979; 301: 126–131.

    Article  PubMed  CAS  Google Scholar 

  128. Larsen RA, Leal MA, Chan LS. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS. A randomized trial. Ann Intern Med 1990; 113: 183–187.

    PubMed  CAS  Google Scholar 

  129. Abele-Horn M, Kopp A, Sternberg U, et al. A randomized study comparing fluconazole with amphotericin B/5-flucytosine for the treatment of systemic Candida infections in intensive care patients. Infection 1996; 24: 426–432.

    Article  PubMed  CAS  Google Scholar 

  130. Denning DW, Stevens DA. Antifungal and surgical treatment of invasive aspergillosis: review of 2,121 published cases. Rev Infect Dis 1990; 12: 1147–1201.

    Article  PubMed  CAS  Google Scholar 

  131. Lewis RE, Kontoyiannis DP. Rationale for combination antifungal therapy. Pharmacotherapy 2001; 21: 149s - 164s.

    Article  PubMed  CAS  Google Scholar 

  132. Lewis RE, Lund BC, Klepser ME, Ernst EJ, Pfaller MA. Assessment of antifungal activities of fluconazole and amphotericin administered alone and in combination against a C. albicans using a dynamic in vitro mycotic infection model. Antimicrob Agents Chemother 1998; 42: 1382–1386.

    PubMed  CAS  Google Scholar 

  133. Scheven M, Schwegler F. Antagonistic interactions between azoles and AmB with yeasts depend on azole lipophilia for special test conditions in vitro. Antimicrob Agents Chemother 1995; 39: 1779–1783.

    Article  PubMed  CAS  Google Scholar 

  134. Sanati H, Ramos CF, Bayer AS, Ghannoum MA. Combination therapy with amphotericin B and fluconazole against invasive candidiasis in neutropenic-mouse and infectiveendocarditis rabbit models. Antimicrob Agents Chemother 1997; 41: 1345–1348.

    PubMed  CAS  Google Scholar 

  135. Le Monte, Washum KE, Smedema ML, Schnizlein-Bick C, Kohler SM, Wheat LJ. Amphotericin B combined with itraconazole or fluconazole for treatment of histoplasmosis. J Infect Dis 2000; 182: 545–550.

    Article  Google Scholar 

  136. Ghannoum MA, Elewski B. Successful treatment of fluconazole-resistant oropharyngeal candidiasis by a combination of fluconazole and terbinafine. Clin Diag Lab Immunol 1999; 6: 921–923.

    CAS  Google Scholar 

  137. Balfour JA, Faulds D. Terbinafine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in superficial mycoses. Drugs 1992; 43: 259–284.

    Article  PubMed  CAS  Google Scholar 

  138. Jessup CJ, Ryder NS, Ghannoum MA. An evaluation of the in vitro activity of terbinafine. Med Mycol 2000; 38: 155–159.

    PubMed  CAS  Google Scholar 

  139. Hay R. Therapeutic potential of terbinafine in subcutaneous and systemic mycoses. Br J Dermatol 1999; 141 (suppl. 56): 36–40.

    Article  PubMed  Google Scholar 

  140. Romani L. Host immune reactivity and antifungal chemotherapy: the power of being together. J Chemother 2001; 13: 347–353.

    PubMed  CAS  Google Scholar 

  141. Mencaci A, Cenci E, Bacci A, Bistoni, Romani FL. Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. J Infect Dis 2000; 181: 686–694.

    Article  Google Scholar 

  142. Gallin JI, Malech HL, Weening RS, et al. The International Chronic Granulomatous Disease Cooperative Study Group (1991). A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 1991; 324: 509–516.

    Article  Google Scholar 

  143. Van der Meer JWM, Vogels MTE, Netea MG, Kullberg BJ. Proinflammatory cytokines and treatment of disease. Ann N Y Acad Sci 1998; 856: 243–251.

    Article  PubMed  Google Scholar 

  144. Poynton CH, Barnes RA, Rees J. Interferon gamma in the treatment of deep-seated fungal infection in acute leukemia. Clin Infect Dis 1998; 26: 239–240.

    Article  PubMed  CAS  Google Scholar 

  145. Stevens DA, Walsh TJ, Bistoni F, et al. Cytokines and mycoses. Med Mycol 1998; (suppl. 36 ): 174–182.

    Google Scholar 

  146. Natarajan U, Randhawa N, Brummer E, Effect of granulocyte-macrophage colony-stimulating factor on candidacidal activity of neutrophils, monocytes or monocyte-derived macrophages and synergy with fluconazole. J Med Microbiol 1998; 47: 359–363.

    Article  PubMed  CAS  Google Scholar 

  147. Hartung T, Docke W-D, Gantner F, et al. Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood 1995; 85: 2482 2489.

    Google Scholar 

  148. Volpi I, Perruccio K, Tosti A, et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001; 97: 2514–2521.

    Article  PubMed  CAS  Google Scholar 

  149. Cenci E, Mencacci A, Del Sero G, Bistoni F, Romani L. Induction of protective Thl responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J Infect Dis 1997; 176: 217–226.

    Article  PubMed  CAS  Google Scholar 

  150. Hubel K, Dale DC, Liles WC. Granulocyte transfusion therapy: update on potential clinical applications. Curr Opin Hematol 2001; 8: 161–164.

    Article  PubMed  CAS  Google Scholar 

  151. Wong K, Waters CM, Walesby RK. Surgical management of invasive pulmonary aspergillosis in immunocompromised patients. Eur J Cardiothorac Surg 1992; 6: 138–143.

    Article  PubMed  CAS  Google Scholar 

  152. Young VK, Maghur HA, Luke DA, et al. Operation for cavitating invasive pulmonary aspergillosis in immunocompromised patients. Ann Thorac Surg 1992; 53: 621–624.

    Article  PubMed  CAS  Google Scholar 

  153. Robinson LA, Reed EC, Galbraith TA, et al. Pulmonary resection for invasive aspergillus infections in immunocompromised patients. J Thoracic Cardiovasc Surg 1995; 109: 1182–1197.

    Article  CAS  Google Scholar 

  154. Caillot D, Casasnovas O, Bernard A, et al. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J Clin Oncol 1997; 15: 139–147.

    PubMed  CAS  Google Scholar 

  155. Salerno CT, Ouyang DW, Pederson TS, et al. Surgical therapy for pulmonary aspergillosis in immunocompromised patients. Ann Thorac Surg 1998; 65: 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  156. Mencaci A, Cenci E, Bacci A, Bistoni F, Romani L. Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. J Infect Dis 2001; 181; 686–694.

    Article  Google Scholar 

  157. Rex JH, Pfaller MA Has antifungal susceptibility testing come of age? Clin Infect Dis 2002; 35: 982–989.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tan, T.Y., Barnes, R.A. (2004). Management of Infection With Naturally Amphotericin B-Resistant Fungi. In: Gillespie, S.H. (eds) Management of Multiple Drug-Resistant Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-738-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-738-3_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-438-8

  • Online ISBN: 978-1-59259-738-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics