Skip to main content

Molecular Biology and Biosynthesis of Collagens

  • Chapter
The Skeleton

Abstract

The collagens are a heterogeneous family of extracellular matrix proteins that have a major role in maintaining the structural integrity of various tissues and organs, although they also have many other important biological functions. Collagens are the most abundant proteins in the human body, with approx 30% of protein mass consisting of collagen. Tissues that are especially rich in collagens are bone, skin, tendon, cartilage, ligaments, and vascular walls. The extracellular matrix in bone and tendon consists of up to 90% of collagen and that of skin approx 50%. The collagen superfamily now includes at least 27 collagen types and more than 15 additional proteins that have collagen-like domains. Most collagens form polymeric assemblies, and the superfamily can be divided into several classes based on their supramolecular structures or other features. Biosynthesis of collagens is a complex process that requires eight specific post-translational enzymes. Collagens have an important role in the healing of wounds and fractures and, thus, inhibition of collagen synthesis will delay healing. However, excessive collagen formation can lead to fibrosis, thus impairing the normal functioning of the affected organ. The essential function of collagens is illustrated by the wide variety of disease phenotypes caused by mutations in their genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Myllyharju, J. and Kivirikko, K. I. (2001) Collagens and collagen-related diseases. Ann. Med. 33, 7–21.

    Article  PubMed  CAS  Google Scholar 

  2. Koch, M., Foley, J. E., Hahn, R., Zhou, P., Burgeson, R. E., Gerecke, D. R., and Gordon, M. K. (2001) α1(XX) collagen, a new member of the collagen subfamily, fibril-associated collagens with interrupted triple helices. J. Biol. Chem. 276, 23120–23126.

    Article  PubMed  CAS  Google Scholar 

  3. Fitzgerald, J. and Bateman, J. F. (2001) A new FACIT of the collagen family: COL21A1. FEBS Lett. 505, 275–280.

    Article  PubMed  CAS  Google Scholar 

  4. Banyard, J., Bao, L., and Zetter, B. R. (2003) Type XXIII collagen, a new transmembrane collagen identified in metastatic tumor cells. J. Biol. Chem. 278, 20989–20994.

    Article  PubMed  CAS  Google Scholar 

  5. Koch, M., Laub, F., Zhou, P., Hahn, R. A., Tanaka, S., Burgeson, R. E., et al. (2003) Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J. Biol. Chem. 278, 43236–43244.

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto, T., Wakabayashi, T., Watanabe, A., Kowa, H., Hosoda, R., Nakamura, A., et al. (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J. 21, 1524–1534.

    Article  PubMed  CAS  Google Scholar 

  7. Sato, K., Yomogida, K., Wada, T., Yorihuzi, T., Nishimune, Y., Hosokawa, N., et al. (2002) Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. J. Biol. Chem. 277, 37678–37684.

    Article  PubMed  CAS  Google Scholar 

  8. Pace, J. M., Corrado, M., Missero, C., and Byers, P. H. (2003) Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol. 22, 3–14.

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins, C. L. and Raines, R. T. (2002) Insights on the conformational stability of collagen. Nat. Prod. Rep. 19, 49–59.

    Article  PubMed  CAS  Google Scholar 

  10. Knott, L. and Bailey, A. J. (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function and clinical relevance. Bone 22, 181–187.

    Article  PubMed  CAS  Google Scholar 

  11. Birk, D. E. (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32, 223–237.

    Article  PubMed  CAS  Google Scholar 

  12. Blaschke, U. K., Eikenberry, E. F., Hulmes, D. J., Galla, H. J., and Bruckner, P. (2000) Collagen XI nucleates selfassembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 275, 10370–10378.

    Article  PubMed  CAS  Google Scholar 

  13. McLaughlin, S. H. and Bulleid, N. J. (1998) Molecular recognition in procollagen chain assembly. Matrix Biol. 16, 369–377.

    Article  PubMed  CAS  Google Scholar 

  14. Lamandé, S. R. and Bateman, J. F. (1999) Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin. Cell Dey. Biol. 10, 455–464.

    Article  Google Scholar 

  15. Bonfanti, L., Mironov, A. A. Jr., Martinez-Menárguez, J. A., Martella, O., Fusella, A., Baldassarre, M., Buccione, R., et al. (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae. Cell 95, 993–1023.

    Article  PubMed  CAS  Google Scholar 

  16. Prockop, D. J., Sieron, A. L., and Li, S.-W. (1998) Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 16, 399–408.

    Article  PubMed  CAS  Google Scholar 

  17. Snellman, A., Tu, H., Väisänen, T., Kvist, A.-P., Huhtala, P., and Pihlajaniemi, T. (2000) A short sequence in the N-terminal region is required for the trimerization of type XIII collagen and is conserved in other collagenous transmembrane proteins. EMBO J. 19, 1–10.

    Article  Google Scholar 

  18. Areida, S. K., Reinhardt, D. P., Müller, P. K., Fietzek, P. P., Köwitz, J., Marinkovich, M. P., et al. (2001) Properties of the collagen type XVII ectodomain. Evidence for N- to C-terminal triple helix folding. J. Biol. Chem. 276, 1594–1601.

    Article  PubMed  CAS  Google Scholar 

  19. Kivirikko, K. I. and Pihlajaniemi, T. (1998) Hydroxylation of proline and lysine residues in collagens and other animal and plant proteins. Adv. Enzymol. Rel. Areas Mol. Biol. 72, 325–399.

    CAS  Google Scholar 

  20. Kivirikko, K. I. and Myllyharju, J. (1998) Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol. 16, 357–368.

    Article  PubMed  CAS  Google Scholar 

  21. Myllyharju, J. (2002) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 22, 15–24.

    Article  Google Scholar 

  22. Csiszar, K. (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol. 70, 1–32.

    Article  PubMed  CAS  Google Scholar 

  23. Kukkola, L., Hieta, R., Kivirikko, K. I., and Myllyharju, J. (2003) Identification and characterization of a third human, rat and mouse collagen prolyl 4-hydroxylase isoenzyme. J. Biol. Chem. 278, 47685–47693.

    Article  PubMed  CAS  Google Scholar 

  24. Van Den Diepstraten, C., Papay, K., Bolender, Z., Brown, A., and Pickering, J. G. (2003) Cloning of a novel prolyl 4hydroxylase subunit expressed in the fibrous cap of human atherosclerotic plaque. Circulation 108, 508–511.

    Article  Google Scholar 

  25. Annunen, P., Autio-Harmainen, H., and Kivirikko, K. I. (1998) The novel type II prolyl 4-hydroxylase is the main enzyme form in chondrocytes and capillary endothelial cells, whereas the type I enzyme predominates in most cells. J. Biol. Chem. 273, 5989–5992.

    Article  PubMed  CAS  Google Scholar 

  26. Nissi, R., Autio-Harmainen, H., Marttila, P., Sormunen, R., and Kivirikko, K. I. (2001) Prolyl 4-hydroxylase isoenzymes I and II have different expression patterns in several human tissues. J. Histochem. Cytochem. 49, 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  27. Valtavaara, M., Papponen, H., Pirttilä, A.-M., Hiltunen, K., Helander, H., and Myllylä, R. (1997) Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J. Biol. Chem. 272, 6831–6834.

    Article  PubMed  CAS  Google Scholar 

  28. Passoja, K., Rautavuoma, K., Ala-Kokko, L., Kosonen, T., and Kivirikko, K. I. (1998) Cloning and characterization of a third human lysyl hydroxylase isoform. Proc. Natl. Acad. Sci. USA 95, 10482–10486.

    Article  PubMed  CAS  Google Scholar 

  29. Valtavaara, M., Szpirer, C., Szpirer, J., and Myllylä, R. (1998) Primary structure, tissue distribution, and chromosomal localization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3). J. Biol. Chem. 273, 12881–12886.

    Article  PubMed  CAS  Google Scholar 

  30. Bank, R. A., Robins, S. P., Wijmenga, C., Breslau-Siderius, L. J., Bardoel, A. F. J., Van der Sluijs, H. A., et al. (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bonespecific telopeptide lysyl hydroxylase on chromosome 17. Proc. Natl. Acad. Sci. USA 96, 1054–1058.

    Article  PubMed  CAS  Google Scholar 

  31. dolige, A., Vandenberghe, I., Thiry, M., Lambert, C. A., Van Beeumen, J., Li, S.-W., et al. (2002) Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 277, 5756–5766.

    Article  Google Scholar 

  32. Mäki, J. M., Tikkanen, H., and Kivirikko, K. I. (2001) Cloning and characterization of a fifth human lysyl oxidase isoenzyme: the third member of the lysyl oxidase-related subfamily with four scavenger receptor cysteine-rich domains. Matrix Biol. 20, 493–496.

    Article  PubMed  Google Scholar 

  33. Ito, H., Akiyama, H., Iguchi, H., Iyama, K., Miyamoto, M., Ohsawa, K., and Nakamura, T. (2001) Molecular cloning and biological activity of a novel lvsvl oxidase-related gene expressed in cartilage. J. Biol. Chem. 276, 24023–24029.

    Article  PubMed  CAS  Google Scholar 

  34. Asuncion, L., Fogelgren, B., Fong, K. S., Fong, S. F., Kim, Y., and Csiszar, K. (2001) A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matrix Biol. 20, 487–491.

    Article  PubMed  CAS  Google Scholar 

  35. Li, S.-W., Arita, M., Fertala, A., Bao, Y., Kopen, G. C., Lângsjö, T. K., et al. (2001) Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem. J. 355, 271–278.

    Article  PubMed  CAS  Google Scholar 

  36. Mäki, J. M., Räsänen, J., Tikkanen, H., Sormunen, R., Mäkikallio, K., Kivirikko, K. I., and Soininen, R. (2002) Inactivation of the lysyl oxidase gene leads to aortic aneurysms, cardiovascular dysfunction and perinatal death in mice. Circulation 106, 2503–2509.

    Article  PubMed  Google Scholar 

  37. Heikkinen, J., Risteli, M., Wang, C., Latvala, J., Rossi, M., Valtavaara, M., and Myllylä, R. (2000) Lysyl hydroxylase 3 is a multifunctional protein possessing collagen glucosyltransferase activity. J. Biol. Chem. 275, 36158–36163.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, C., Risteli, M., Heikkinen, J., Hussa, A.-K., Uitto, L., and Myllylä, R. (2002) Identification of amino acids important for the catalytic activity of the collagen glucosyltransferase associated with the multifunctional lysyl hvdroxvlase 3 (LH3). .J. Biol. Chem. 277. 18568–18573.

    Article  PubMed  CAS  Google Scholar 

  39. Rautavuoma, K., Takaluoma, K., Passoja, K., Pirskanen, A., Kvist, A.-P., Kivirikko, K. I., et al. (2002) Characterization of three fragments that constitute the monomers of the human lysyl hydroxylase isoenzymes 1–3. The 30-kDa Nterminal fragment is not required for lysyl hydroxylase activity. J. Biol. Chem. 277, 23084–23091.

    Article  PubMed  CAS  Google Scholar 

  40. Notbohm, H., Nokelainen, M., Myllyharju, J., Fietzek, P. P., Müller, P. K., and Kivirikko, K. I. (1999) Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J. Biol. Chem. 274, 8988–8992.

    Article  PubMed  CAS  Google Scholar 

  41. Bottomley, M. J., Batten, M. R., Lumb, R. A., and Bulleid, N. J. (2001) Quality control in the endoplasmic reticulum: PDI mediates the ER retention of unassembled procollagen C-propeptides. Curr. Biol. 11, 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  42. Nagata, K. (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol. 16, 379–386.

    Article  PubMed  CAS  Google Scholar 

  43. Hendershot, L. M. and Bulleid, N. J. (2000) Protein-specific chaperones: the role of hsp47 begins to gel. Curr. Biol. 10, R912–R915.

    Article  PubMed  CAS  Google Scholar 

  44. Nagai, N., Hosokawa, M., Itohara, S., Adachi, E., Matsushita, T., Hosokawa, N., and Nagata, K. (2000) Embryonic lethality of molccular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150, 1499–1505.

    Article  PubMed  CAS  Google Scholar 

  45. Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J. Biol. Chem. 277, 6178–6182.

    Article  PubMed  CAS  Google Scholar 

  46. Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) Sequence-specific recognition of collagen triple helices by the collagen-specific molecular chaperone HSP47. J. Biol. Chem. 277, 35007–35012.

    Article  PubMed  CAS  Google Scholar 

  47. Kuivaniemi, H., Tromp, G., and Prockop, D. J. (1997) Mutations in fibrillar collagens (types I, II, III and XI), fibrilassociated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9, 300–315.

    Article  PubMed  CAS  Google Scholar 

  48. Biswas, S., Munier, F. L., Yardley, J., Hart-Holden, N., Perveen, R., Cousin, P., et al. (2001) Missense mutations in COL8A2, the gene encoding the α2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum. Mol. Genet. 10, 2415–2423.

    Article  PubMed  CAS  Google Scholar 

  49. Krawczak, M. and Cooper, D. N. (1997) The human gene mutation database. Trends Genet. 13, 121–122.

    Article  PubMed  CAS  Google Scholar 

  50. Dalgleish, R. (1997) The human type I collagen mutation database. Nucleic Acids Res. 25, 181–187.

    Article  PubMed  CAS  Google Scholar 

  51. Forlino, A. and Marini, J. C. (2000) Osteogenesis imperfecta: prospects for molecular therapeutics. Mol. Genet. Metab. 71, 225–232.

    Article  PubMed  CAS  Google Scholar 

  52. Olsen, B. R., Reginato, A. M., and Wang, W. (2000) Bone development. Annu. Rev. Cell Dey. Biol. 16, 191–220.

    Article  CAS  Google Scholar 

  53. Aszódi, A., Bateman, J. F., Gustafsson, E., Booth-Handford, R., and Fässler, R. (2000) Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Struct. Funct. 25, 73–84.

    Article  PubMed  Google Scholar 

  54. Gustafsson, E. and Fässler, R. (2000) Insights into extracellular matrix functions from mutant mouse models. Exp. Cell Res. 261, 52–68.

    Article  PubMed  CAS  Google Scholar 

  55. McLean, W. and Olsen, B. R. (2001) Mouse models of abnormal skeletal development and homeostasis. Trends Genet. 10, S38–543.

    Article  Google Scholar 

  56. Helminen, H. J., Säämänen, A.-M., Salminen, H., and Hyttinen, M. M. (2002) Transgenic mouse models for studying the role of cartilage macromolecules in osteoarthritis. Rheumatology 41, 848–856.

    Article  PubMed  CAS  Google Scholar 

  57. Cremer, M. A., Rosloniec, E. F., and Kang, A. H. (1998) The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J. Mol. Med. 76, 275–288.

    Article  PubMed  CAS  Google Scholar 

  58. Muragaki, Y., Mariman, E. C. M., van Beersum, S. E. C., Perälä, M., van Mourik, J. B. A., Warman, M. L., et al. (1996) A mutation in the gene encoding the oc2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat. Genet. 12, 103–105.

    Article  PubMed  CAS  Google Scholar 

  59. Holden, P., Canty, E. G., Mortier, G. R., Zabel, B., Spranger, J., Carr, A., et al. (1999) Identification of novel proa2(IX) collagen gene mutations in two families with distinctive oligo-epiphyseal forms of multiple epiphyseal dysplasia. Am. J. Hum. Genet. 65, 31–38.

    Article  PubMed  CAS  Google Scholar 

  60. Paassilta, P., Lohiniva, J., Annunen, S., Bonaventure, J., Le Merrer, M., Pai, L., et al. (1999) COL9A3: a third locus for multiple epiphyseal dysplasia. Am. J. Hum. Genet. 64, 1036–1044.

    Article  PubMed  CAS  Google Scholar 

  61. Bönnemann, C. G., Cox, G. F., Shapiro, F., Wu, J. J., Feener, C. A., Thompson, T. G., et al. (2000) A mutation in the (3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc. Natl. Acad. Sci. USA 97, 1212–1217.

    Article  PubMed  Google Scholar 

  62. Lohiniva, J., Paassilta, P., Seppänen, U., Vierimaa, O., Kivirikko, S., and Ala-Kokko, L. (2000) Splicing mutations in the COL3 domain of collagen IX cause multiple epiphyseal dysplasia. Am. J. Med. Genet. 90, 216–222.

    Article  PubMed  CAS  Google Scholar 

  63. Spayde, E. C., Joshi, A. P., Wilcox, W. R., Briggs, M., Cohn, D. H., and Olsen, B. R. (2000) Exon skipping mutation in the COL9A2 gene in a family with multiple epiphyseal dysplasia. Matrix Biol. 19, 121–128.

    Article  PubMed  CAS  Google Scholar 

  64. Czarny-Ratajczak, M., Lohiniva, J., Rogala, P., Kozlowski, K., Perälä, M., Carter, L., et al. (2001) A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am. J. Hum. Genet. 69, 969–980.

    Article  PubMed  CAS  Google Scholar 

  65. Briggs, M. D. and Chapman, K. L. (2002) Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 19, 465–478.

    Article  PubMed  CAS  Google Scholar 

  66. Mustafa, Z., Chapman, K., Irven, C., Carr, A. J., Clipsham, K., Chitnavis, J., et al. (2000) Linkage analysis of candidate genes as susceptibility loci for osteoarthritis suggestive linkage of COL9A1 to female hip osteoarthritis. Rheumatology 39, 299–306.

    Article  PubMed  CAS  Google Scholar 

  67. Loughlin, J., Mustafa, Z., Dowling, B., Southam, L., Marcelline, L., Räinä, S. S., et al. (2002) Finer linkage mapping of a primary hip osteoarthritis susceptibility locus on chromosome 6. Eur. J. Hum. Genet. 10, 562–568.

    Article  PubMed  CAS  Google Scholar 

  68. Annunen, S., Paassilta, P., Lohiniva, J., Perälä, M., Pihlajamaa, T., Karppinen, J., et al. (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285, 409–412.

    Article  PubMed  CAS  Google Scholar 

  69. Paassilta, P., Lohiniva, J., Göring, H. H. H., Perälä, M., Räinä, S. S., Karppinen, J., et al. (2001) Identification of a novel common genetic risk factor for lumbar disc disease. JAMA 285, 1843–1849.

    Article  PubMed  CAS  Google Scholar 

  70. Ala-Kokko, L. (2002) Genetic risk factors for lumbar disc disease. Ann. Med. 34, 42–47.

    Article  PubMed  CAS  Google Scholar 

  71. Vikkula, M., Mariman, E. C. M., Lui, V. C. H., Zhidkova, N. I., Tiller, G. E., Goldring, M. B., et al. (1995) Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80, 431–437.

    Article  PubMed  CAS  Google Scholar 

  72. Richards, A. J., Yates, J. R. W., Williams, R., Payne, S. J., Pope, F. M., Scott, J. D., and Snead, M. P. (1996) A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in a1(XI) collagen. Hum. Mol. Genet. 5, 1339–1343.

    Article  PubMed  CAS  Google Scholar 

  73. Sirko-Osadsa, D. A., Murray, M. A., Scott, J. A., Lavery, M. A., Warman, M. L., and Robin, N. H. (1998) Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the (2(XI) chain of type XI collagen. J. Pediatr. 132, 368–371.

    Article  PubMed  CAS  Google Scholar 

  74. Griffith, A. J., Sprunger, L. K., Sirko-Osadsa, D. A., Tiller, G. E., Meisler, M. H., and Warman, M. L. (1998) Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am. J. Hum. Genet. 62, 816–823.

    Article  PubMed  CAS  Google Scholar 

  75. Annunen, S., Körkkö, J., Czarny, M., Warman, M. L., Brunner, H. G., Kääriäinen, H., et al. (1999) Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/ Stickler nhenotvnes. Am. J. Hum. Genet. 65. 974–983.

    Article  PubMed  CAS  Google Scholar 

  76. Pihlajamaa, T., Prockop, D. J., Faber, J., Winterpacht, A., Zabel, B., Giedion, A., Wiesbauer, P., Spranger, J., and AlaKokko, L. (1998) Heterozygous glycine substitution in the COL11A2 gene in the original patient with the Weissenbacher-Zweymüüller syndrome demonstrates its identity with heterozygous OSMED (nonocular Stickler syndrome). Am. J. Med. Genet. 80, 115–120.

    Article  PubMed  CAS  Google Scholar 

  77. Melkoniemi, M., Brunner, H. G., Manouvrier, S., Hennekam, R., Superti-Furga, A., Kääriäinen, H., et al. (2000) Autosomal recessive disorder otospondylomegaepiphyseal dysplasia is associated with loss-of-function mutations in the COL11A2 gene. Am. J. Hum. Genet. 66, 368–377.

    Article  PubMed  CAS  Google Scholar 

  78. Chan, D. and Jacenko, O. (1998) Phenotypic and biochemical consequences of collagen X mutations in mice and humans. Matrix Biol. 17, 169–184.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myllyharju, J. (2004). Molecular Biology and Biosynthesis of Collagens. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics