Skip to main content

Regulation of Chondrocyte Differentiation

  • Chapter
  • 216 Accesses

Abstract

During the last decade, great progress has been made toward a better understanding of skeletal development, cartilage, and bone formation. In particular, many mechanisms underlying a variety of cellular and molecular processes that regulate growth and differentiation of chondrocytes, osteoblasts, and osteoclasts have been elucidated. This chapter will review some of the molecular and genetic pathways known to regulate cartilage development. Skeletal formation occurs through both endochondral and intramembraneous ossification. Flat bones and craniofacial bones are formed through intramembraneous ossification that relies on osteoblast differentiation directly from mesenchymal stem cells. The axial and appendicular skeleton form through endochondral ossification, which requires the formation of a cartilage intermediate that forms a template for osteoid deposition and bone formation. During endochondral bone formation, mesenchymal stem cells differentiate into both chondrocytes and osteoblasts. During development of the long bone, growth plates localize to either end of the skeletal element and the region of cartilage is surrounded by a perichondrium that is composed of undifferentiated mesenchymal cells. In the growth plates, chondrocytes undergo several stages of differentiation. One of the important transitions is from proliferation to hypertrophy, an event that precedes mineralization of the cartilage matrix (Fig. 1). Chondrocyte hypertrophy is characterized by profound physical and biochemical changes, including a 5- to 10fold increase in volume and expression of alkaline phosphatase, type X collagen, and MMP-1 3 (1,2). Type X collagen is a short-chain collagen found only in the hypertrophic zone of the growth plate. Although its exact function remains unclear, mutations in the colX gene have been found to cause Schmid metaphyseal chondrodysplasia (3), and transgenic mice with disruption in the colX gene exhibit a mild alteration of the growth plate architecture (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckwalter, J. A., Mower, D., Ungar, R., Schaeffer, J., and Ginsberg, B. (1986) Morphometric analysis of chondrocyte hypertrophy. J. Bone Joint. Surg. Am. 68, 243–255.

    PubMed  CAS  Google Scholar 

  2. Linsenmayer, T. F., Chen, Q. A., Gibney, E., Gordon, M. K., Marchant, J. K., Mayne, R., et al. (1991) Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development 111, 191–196.

    PubMed  CAS  Google Scholar 

  3. Warman, M. L., Abbott, M., Apte, S. S., Hefferon, T., McIntosh, I., Cohn, D. H., et al. (1993) A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat. Genet. 5, 79–82.

    Article  PubMed  CAS  Google Scholar 

  4. Gress, C. and Jacenko, O. (2000) Growth plate compressions and altered hematopoiesis in collagen X null mice. J. Cell. Biol. 149, 983–993.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson, H. C., Hsu, H. H., Morris, D. C., Fedde, K. N., and Whyte, M. P. (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am. J. Pathol. 15, 1555–1561.

    Google Scholar 

  6. Erlebacher, A., Filvaroff, E. H., Gitelman, S. E., and Derynck, R. (1995) Toward a molecular understanding of skeletal development. Cell 80, 371–378.

    Article  PubMed  CAS  Google Scholar 

  7. Baron, R. E. (1996) Anatomy and ultrastructure of the bone, in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. (Favus, M. J., ed.), Lippencott-Raven, New York, pp. 3–10.

    Google Scholar 

  8. Ingham, P. W. (1998) Transducing hedgehog: the story so far. EMBO J. 17, 3505–3511.

    Article  PubMed  CAS  Google Scholar 

  9. Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., and Tabin, C. J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622.

    Article  PubMed  CAS  Google Scholar 

  10. St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocvtes and is essential for bone formation. Genes Dev. 13, 2072–2086.

    Article  PubMed  CAS  Google Scholar 

  11. Weir, E. C., Philbrick, W. M., Amling, M., Neff, L. A., Baron, R., and Broadus, A. E. (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. USA 93, 10240–10245.

    Article  PubMed  CAS  Google Scholar 

  12. Schipani, E., Lanske, B., Hunzelman, J., Luz, A., Kovacs, C. S., Lee, K., et al. (1997) Targeted expression of con-stitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. USA 94, 13689–13694.

    Article  PubMed  CAS  Google Scholar 

  13. Karaplis, A. C., Luz, A., Glowacki, J., Bronson, R. T., Tybulewicz, V. L., Kronenberg, H. M., et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289.

    Article  PubMed  CAS  Google Scholar 

  14. Lanske, B., Karaplis, A. C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth (see comments). Science 273, 663–666.

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez, J., Sohn, P., Zeng, X., Doetschman, T., Robbins, D. J., and Serra, R. (2002) TGFβ2 mediates the effects of Hedgehog on hypertrophic differentiation and PTHrP expression. Development 129, 1913–1924.

    PubMed  CAS  Google Scholar 

  16. Long, F. and Linsenmayer, T. F. (1998) Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 125, 1067–1073.

    PubMed  CAS  Google Scholar 

  17. Serra, R., Karaplis, A., and Sohn, P. (1999) Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J. Cell Biol. 145, 783–794.

    Article  PubMed  CAS  Google Scholar 

  18. Pateder, D. B., Rosier, R. N., Schwarz, E. M., Reynolds, P. R., Puzas, J. E., D’Souza, M., et al. (2000) PTHrP expression in chondrocytes, regulation by TGF-beta, and interactions between epiphyseal and growth plate chondrocytes. Exp. Cell Res. 256, 555–562.

    Article  PubMed  CAS  Google Scholar 

  19. Pateder, D., Ferguson, C., Ionescu, A., Schwarz, E., Rosier, R., Puzas, J., et al. (2001) PTHrP expression in chick sternal chondrocytes is regulated by TGF-beta through Smad-mediated signaling. J. Cell. Physiol. 188, 343–351.

    Article  PubMed  CAS  Google Scholar 

  20. Serra, R., Johnson, M., Filvaroff, E., LaBorde, J., Sheehan, D., Derynck, R., et al. (1997) Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 139, 541–552.

    Article  PubMed  CAS  Google Scholar 

  21. Iwasaki, M., Le, A., and Helms, J. A. (1997) Expression of Indian Hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech. Dev. 69, 197–202.

    Article  PubMed  CAS  Google Scholar 

  22. O’Keefe, R. J., Schwarz, E. M., Ionescu, A. M., Zuscik, M. J., Zhang, X., Puzas, J. E., et al. (2003) TGF-β3 and chondrocyte differentiation. Mol. Biol. Orthopaed. Section VI, pp. 289–301, edited by C. H. Evans and R. N. Rosier.

    Google Scholar 

  23. D’Angelo, M., Billings, P. C., Pacifici, M., Leboy, P. S., and Kirsch, T. (2001) Authentic matrix vesicles contain active metalloproteases (MMP) A role for matriz vesicle-associated MMP-13 in activation of transforming growth factor beta. J. Biol. Chem. 276, 11347–11353.

    Article  PubMed  Google Scholar 

  24. Bonewald, L. F., Oreffo, R. O., Lee, C. H., Park-Snyder, S., Twardzik, D., and Mundy, G. R. (1997) Effects of retinol on activation of latent transforming growth factor beta by isolated chondrocytes. Endocrinology 138, 657–666.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, X., Chen, L., Xu, X., Li, C., Huang, C., and Deng, C. (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35–46.

    Article  PubMed  CAS  Google Scholar 

  26. Zou, H., Wieser, R., Massague, J., and Niswander, L. (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11, 2191–2203.

    Article  PubMed  CAS  Google Scholar 

  27. Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., et al. (1998) Bone morphogenetic signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol. 140, 409–418.

    Article  PubMed  CAS  Google Scholar 

  28. Lyons, K., Hogan, B., and Robertson, E. (1995) Colocalization of BMP7 and BMP2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–73.

    Article  PubMed  CAS  Google Scholar 

  29. Asahina, I., Sampath, T. K., and Hauschka, P. V. (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic. and/or adiDocvtic differentiation of clonal murine target cells. Exp. Cell Res. 222, 38–47.

    Article  PubMed  CAS  Google Scholar 

  30. Duprez, D. M., Coltey, M., Amthor, H., Brickell, P. M., and Tickle, C. (1996) Bone morphogenetic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures. Dev. Biol. 174, 448–452.

    Article  PubMed  CAS  Google Scholar 

  31. Pathi, S., Rutenberg, J., Johnson, R., and Vortkamp, A. (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev. Biol. 209, 239–253.

    Article  PubMed  CAS  Google Scholar 

  32. Grimsrud, C. D., Romano, P. R., D’Souza, M., Puzas, J. E., Reynolds, P. R., Rosier, R. N., and O’Keefe, R. J. (1999) BMP-6 is an autocrine stimulator of chondrocyte differentiation. J. Bone Miner. Res. 14, 475–482.

    Article  PubMed  CAS  Google Scholar 

  33. Luca, F. D., Barnes, K. M., Uyeda, J. A., De-Levi, S., Abad, V., Palese, T., et al. (2001) Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142, 430–436.

    Article  PubMed  Google Scholar 

  34. Zhang, D., Schwarz, E. M., Puzas, J. E., Zuscik, M. J., Rosier, R. N., and O’Keefe, R. J. (2003) ALK2 functions as a BMP type I receptor and induces Indian Hedgehog in chondrocytes during skeletal development. J. Bone Miner. Res. 18, 1593–1604.

    Article  PubMed  CAS  Google Scholar 

  35. Ionescu, A. M., Schwarz, E. M., Vinson, C., Puzas, J. E., Rosier, R., Reynolds, P. R et al. (2001) PTHrP modulates chondrocyte differentiation through AP-1 and CREB signaling. J. Biol. Chem. 276, 11639–11647.

    Article  PubMed  CAS  Google Scholar 

  36. Ionescu, A. M., Schwarz, E. M., Zuscik, M. J., Drissi, H., Puzas, J. E., Rosier, R. N., et al. (2003) ATF-2 cooperates with Smad3 to mediate TGF-β3 effects on chondrocvte maturation. Exp. Cell Res. 288, 198–207.

    Article  PubMed  CAS  Google Scholar 

  37. Beier, F., Lee, R. J., Taylor, A. C., Pestell, R. G., and LuValle, P. (1999) Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc. Natl. Acad. Sci. USA 96, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  38. Beier, F., Taylor, A., and LuValle, P. (2000) Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J. Biol. Chem. 275, 12948–12953.

    Article  PubMed  CAS  Google Scholar 

  39. Zuscik, M. J., Puzas, J. E., Rosier, R. N., Gunter, K. K., and Gunter, T. E. (1994) Cyclic-AMP-dependent protein kinase activity is not required by parathyroid hormone to stimulate phosphoinositide signaling in chondrocytes but is required to transduce the hormone’s proliferative effect. Arch. Biochem. Biophys. 315, 352–361.

    Article  PubMed  CAS  Google Scholar 

  40. Zuscik, M. J., Gunter, T. E., Rosier, R. N., Gunter, K. K., and Puzas, J. E. (1994) Activation of phosphoinositide metabolism by parathyroid hormone in growth plate chondrocytes. Cell Calcium 16, 112–122.

    Article  PubMed  CAS  Google Scholar 

  41. Abou-Samra, A. B., Juppner, H., Force, T., Freeman, M. W., Kong, X. F., Schipani, E., et al. (1992) Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 89, 2732–2736.

    Article  PubMed  CAS  Google Scholar 

  42. Montminy, M. (1997) Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822.

    Article  PubMed  CAS  Google Scholar 

  43. Cesare, D. D., and Sassone-Corsi, P. (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biol. 64, 343–369.

    Article  PubMed  Google Scholar 

  44. Rudolph, D., Tafuri, A., Gass, P., Hammerling, G. J., Arnold, B., and Schutz, G. (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl. Acad. Sci. USA 95, 4481–4486.

    Article  PubMed  CAS  Google Scholar 

  45. Ahn, S., Olive, M., Aggarwal, S., Krylov, D., Ginty, D. D., and Vinson, C. (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell Biol. 18, 967–977.

    PubMed  CAS  Google Scholar 

  46. Long, F., Schipani, E., Asahara, H., Kronenberg, H., and Montminy, M. (2001) The CREB family of activators is required for endochondral bone development. Development 128, 541–550.

    PubMed  CAS  Google Scholar 

  47. Amizuka, N., Warshawsky, H., Henderson, J. E., Goltzman, D., and Karaplis, A. C. (1994) Parathyroid hormonerelated peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J. Cell Biol. 126, 1611–1623.

    Article  PubMed  CAS  Google Scholar 

  48. Chung, U., Wei, W., Schipani, E., Hunzelman, J., Weinstein, L., and Kronenberg, H. (2000) In vivo function of stimulatory G protein (Gs) in the growth plate. J. Bone Miner. Res. 15, 5175.

    Google Scholar 

  49. Wrana, J., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X., and Massague, J. (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  50. Mulder, K. (2000) Role of Ras and Mapks in TGFbeta signaling. Cytokine & Growth Factor Rev. 11, 23–35.

    Article  CAS  Google Scholar 

  51. Ferguson, C., Schwarz, E., Reynolds, P., Puzas, J., Rosier, R., and O’Keefe, R. (2000) Smad2 and 3 mediate transforming growth factor-betal -induced inhibition of chondrocyte maturation. Endocrinology 141, 4728–4735.

    Article  PubMed  CAS  Google Scholar 

  52. Xing, J., Ginty, D., and Greenberg, M. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J., Lin, S., and Han, J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J. Biol. Chem. 271, 17920–17926.

    Article  PubMed  CAS  Google Scholar 

  54. Derijard, B., Hibi, M., Wu, I., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. (1994) JNK1: a protein kinase stimulated by UV light and HaRas that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  55. Keeton, M. R., Curriden, S. A., Zonneveld, A. J. V., and Loskutoff, D. J. (1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23048–23052.

    PubMed  CAS  Google Scholar 

  56. Campbell, C. E., Flenniken, A. M., Skup, D., and Williams, B. R. G. (1991) Identification of a serum- and phorbol ester-responsive element in the murine tissue inhibitor of metalloproteinase gene. J. Biol. Chem. 266, 7199–7206.

    PubMed  CAS  Google Scholar 

  57. Kim, S. J., Angel, P., Lafyatis, R., Hattori, K., Kim, K. Y., Sporn, M. B., et al. (1990) Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol. Cellular Biol. 10, 1492–1497.

    CAS  Google Scholar 

  58. Angel, P., Hattori, K., Smeal, T., and Karin, M. (1991) The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875–885.

    Article  Google Scholar 

  59. Chung, K. Y., Agarwal, A., Uitto, J., and Mauviel, A. (1996) An AP-1 binding sequence is essential for regulation of the human a2(I) collagen (COL1A2) promoter activity by transforming growth factor-β3. J. Biol. Chem. 271, 3272–3278.

    Article  PubMed  CAS  Google Scholar 

  60. Pesce, C., Nogues, G., Alonso, C., Baralle, F., and Kornblihtt, A. (1999) Interaction between the (-170) CRE and the (-150) CCAAT box is necessary for efficient activation of the fibronectin gene promoter by cAMP and ATF-2. FEBS Lett. 457, 445–451.

    Article  PubMed  CAS  Google Scholar 

  61. Reimold, A. M., Grusby, M. J., Kosaras, B., Fries, J. W., Mori, R., Maniwa, S., et al. (1996) Chondrodysplasia and neuroloeical abnormalities in ATF-2-deficient mice. Nature 379, 262–265.

    Article  PubMed  CAS  Google Scholar 

  62. Maekawa, T., Bernier, F., Sato, M., Nomura, S., Singh, M., Inoue, Y., et al. (1999) Mouse ATF-2 null mutants display features of a severe type of Meconium Aspiration Syndrome. J. Biol. Chem. 274, 17813–17819.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang, D., Ferguson, C. M., O’Keefe, R. J., Puzas, J. E., Rosier, R. N., and Reynolds, P. R. (2002) A role for the BMP antagonist chordin in endochondral ossification. J. Bone Miner. Res. 17, 293–300.

    Article  PubMed  CAS  Google Scholar 

  64. Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–626.

    Article  PubMed  CAS  Google Scholar 

  65. Lebrun, J. J., Takabe, K., Chen, Y., and Vale, W. (1999) Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol. Endocrinol. 13, 15–23.

    Article  PubMed  CAS  Google Scholar 

  66. Hata, A., Lagna, G., Massague, J., and Hemmati-Brivanlou, A. (1998) Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dey. 12, 186–197.

    Article  CAS  Google Scholar 

  67. Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., et al. (2000) Smad6 is a Smad1/5induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 6075–6079.

    Article  PubMed  CAS  Google Scholar 

  68. Li, X., Ionescu, A. M., Schwarz, E. M., Zhang, X., Drissi, H., Puzas, J. E., et al. (2003) Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. J. Orthopaed. Res. 21, 908–913.

    Article  CAS  Google Scholar 

  69. Zhu, H., Havsak, P., Abdollah, S., Wrana, J. L., and Thomsen, G. H. (1999) A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693.

    Article  PubMed  CAS  Google Scholar 

  70. Ionescu, A. M., Drissi, A. M., Schwarz, E. M., Kato, M., Puzas, J. E., McCance, D. J., Rosier, R. N., Zuscik, M. J., and O’Keefe, R. J. (2003) CREB cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter. J. Cell. Physiol., in press.

    Google Scholar 

  71. Yakymovych, I., Ten Dijke, P., Heldin, C. H., and Souchelnytskyi, S. (2001) Regulation of Smad signaling by protein kinase C. FASEB J. 15, 553–555.

    PubMed  CAS  Google Scholar 

  72. Kretzschmar, M., Doody, J., and Massague, J. (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad 1 . Nature 389, 618–622.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ionescu, A.M., Drissi, M.H., O’Keefe, R.J. (2004). Regulation of Chondrocyte Differentiation. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics