Skip to main content

Computer Simulations of Cancellous Bone Remodeling

  • Chapter
The Skeleton

Abstract

The bone remodeling process is essential for the maintenance of our skeleton. It enables adaptation of the bone mass and architecture to changes in external loads (1,2), and it prevents accumulation of damage (3,4). Damage accumulation is prevented by a frequent turnover of the bone tissue by the bone remodeling process: old tissue is replaced by new tissue. Bone remodeling is performed by two types of cells: osteoclasts, which are multinucleated bone resorbing cells, and osteoblasts, which are bone-forming cells. Osteoclasts resorb packets of bone tissue, and osteoblasts replace the resorbed tissue with new mineralized bone tissue (see Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frost, H. M. (1987) Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219, 1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Wolff, J. (1892) Das gesetz der transformation der knochen (translated as ‘the law of bone remodeling’ by P. Maquet and R. Furlong), 1986, Springer-Verlag, Berlin. Hirchwild.

    Google Scholar 

  3. Burr, D. B. (1993) Remodeling and the repair of fatigue damage. Calcif. Tissue Int. 53(Suppl 1) , S75–S80; discussion S80–S81.

    Article  PubMed  Google Scholar 

  4. Mori, S. and Burr, D. B. (1993) Increased intracortical remodeling following fatigue damage. Bone 14, 103–109.

    Article  PubMed  CAS  Google Scholar 

  5. Klein-Nulend, J., et al. (2002) Donor age and mechanosensitivity of human bone cells. Osteoporos. Int. 13, 137–146.

    Article  PubMed  CAS  Google Scholar 

  6. Ding, M., et al. (2002) Age-related variations in the microstructure of human tibial cancellous bone. J. Orthop. Res. 20, 615–621.

    Article  PubMed  Google Scholar 

  7. Biewener, A. A. (1993) Safety factors in bone strength. Calcif Tissue Int. 53(Suppl 1) , S68–S74.

    Article  PubMed  Google Scholar 

  8. Bentolila, V., et al. (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281.

    Article  PubMed  CAS  Google Scholar 

  9. Burr, D. B., et al. (1985) Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200.

    Article  PubMed  CAS  Google Scholar 

  10. Burr, D. B. (2002) Targeted and nontargeted remodeling. Bone 30, 2–4.

    Article  PubMed  CAS  Google Scholar 

  11. Martin, R. B. (2002) Is all cortical bone remodeling initiated by microdamage? Bone 30, 8–13.

    Article  PubMed  CAS  Google Scholar 

  12. Parfitt, A. M. (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30,5–7.

    Article  PubMed  CAS  Google Scholar 

  13. Parfitt, A. M. (1984) The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif. Tissue Int. 36(Suppl 1) , S37–S45.

    Article  PubMed  Google Scholar 

  14. Parfitt, A. M. (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36(Suppl 1) , S123–S128.

    Article  PubMed  Google Scholar 

  15. Mosekilde, L. (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10, 13–35.

    Article  PubMed  CAS  Google Scholar 

  16. Hildebrand, T. and Ruegsegger, P. (1997) A new method for the model-independent assessment of thickness in threedimensional images. J. Microscopy 185, 67–75.

    Article  Google Scholar 

  17. Odgaard, A. (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328.

    Article  PubMed  CAS  Google Scholar 

  18. Odgaard, A. and Gundersen, H. J. (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182.

    Article  PubMed  CAS  Google Scholar 

  19. Kabel, J., et al. (1999) Connectivity and the elastic properties of cancellous bone. Bone 24, 115–120.

    Article  PubMed  CAS  Google Scholar 

  20. Eriksen, E. F., Melsen, F., and Mosekilde, L. (1984) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorotion in 20 normal individuals. Metab. Bone Dis. Relat. Res. 5. 235–242.

    Article  PubMed  CAS  Google Scholar 

  21. Jayasinghe, J. A., Jones, S. J., and Boyde, A. (1993) Scanning electron microscopy of human lumbar vertebral trabecular bone surfaces. Virchows. Arch. A Pathol. Anat. Histopathol. 422, 25–34.

    Article  PubMed  CAS  Google Scholar 

  22. Kimmel, D. B. (1985) A computer simulation of the mature skeleton. Bone 6, 369–372.

    Article  PubMed  CAS  Google Scholar 

  23. Reeve, J. (1986) A stochastic analysis of iliac trabecular bone dynamics. Clin. Orthop. 213, 264–278.

    PubMed  Google Scholar 

  24. Silva, M. J. and Gibson, L. J. (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of agerelated changes in microstructure. Bone 21, 191–199.

    Article  PubMed  CAS  Google Scholar 

  25. Gunaratne, G. H., et al. (2002) Model for bone strength and osteoporotic fractures. Phys. Rev. Leu. 88, 68–101.

    Article  Google Scholar 

  26. Muller, R. and Ruegsegger, P. (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J. Biomech. 29, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  27. Tayyar, S., et al. (1999) Computer simulation of trabecular remodeling using a simplified structural model. Bone 25, 733–739.

    Article  PubMed  CAS  Google Scholar 

  28. van der Linden, J. C., Verhaar, J. A., and Weinans, H. (2001) A three-dimensional simulation of age-related remodeling in trabecular bone. J. Bone Miner. Res. 16, 688–696.

    Article  Google Scholar 

  29. Han, Z. H., et al. (1997) Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J. Bone Miner. Res. 12, 498–508.

    Article  PubMed  CAS  Google Scholar 

  30. Grote, H. J., et al. (1995) Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 16, 301–308.

    Article  PubMed  CAS  Google Scholar 

  31. Majumdar, S., et al. (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J. Bone Miner. Res. 12, 111–118.

    Article  PubMed  CAS  Google Scholar 

  32. Mosekilde, L. (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone 10, 425–432.

    Article  PubMed  CAS  Google Scholar 

  33. van der Linden, J. C., et al. (2001) Mechanical consequences of bone loss in cancellous bone. J. Bone Miner. Res. 16, 457–465.

    Article  PubMed  Google Scholar 

  34. Frost, H. M. (1985), The pathomechanics of osteoporoses. Clin. Orthop. 200, 198–225.

    PubMed  Google Scholar 

  35. Parfitt, A. M. (1983) The physiological and clinical significance of bone histomorphometric data, in Bone Histomorphometry: Techniques and Interpretation. CRC Press: Boca Raton, FL, pp. 143–223.

    Google Scholar 

  36. Roux, W. (1881) Der Kampf der Theile im Organismu. Leipzig, Engelmann.

    Google Scholar 

  37. Odgaard, A., et al. (1997) Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30, 487–495.

    Article  PubMed  CAS  Google Scholar 

  38. Kinney, J. H. and Ladd, A. J. (1998) The relationship between threedimensional connectivity and the elastic properties of trahecular bone. J. Bone Miner. Res. 13. 839–845.

    Article  PubMed  CAS  Google Scholar 

  39. Van Rietbergen, B., et al. (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J. Biomech. 29. 1653–1657.

    PubMed  Google Scholar 

  40. Thomsen, J. S., Ebbesen, E. N., and Mosekilde, L. (2002) Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31, 136–142.

    Article  PubMed  CAS  Google Scholar 

  41. Huiskes, R., et al. (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706.

    Article  PubMed  CAS  Google Scholar 

  42. Holick, M. F. (1998) Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 22, 105S–111S.

    Article  PubMed  CAS  Google Scholar 

  43. Layne, J. E. and Nelson, M. E. (1999) The effects of progressive resistance training on bone density: a review. Med. Sci. Sports Exerc. 31, 25–30.

    Article  PubMed  CAS  Google Scholar 

  44. Mullender, M., et al. (1998) Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture. Bone 22, 125–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Linden, J.C., Weinans, H., Verhaar, J.A.N. (2004). Computer Simulations of Cancellous Bone Remodeling. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics