Skip to main content

Perichondrial and Periosteal Regulation of Endochondral Growth

  • Chapter
The Skeleton

Abstract

Limb development requires the precise spatial and temporal regulation of the growth of skeletal elements (1). All long bones originate as cartilage rudiments that are surrounded by a fibrous connective tissue, the perichondrium. Longitudinal growth of these cartilaginous templates occurs by endochondral ossification. During this process, chondrocytes undergo rapid proliferation and then enter a maturation phase, where they cease proliferation and increase their synthesis and deposition of extracellular matrix. Subsequently they undergo hypertrophy and then synthesize and secrete a specialized extracellular matrix component, type X collagen (2–4). After progressing through the hypertrophic zone, the cells either undergo cell death or further differentiate into osteoblast-like cells (5,6). This removal of chondrocytes, concomitant with the invasion of blood vessels, leads to the formation of the marrow cavity. Where the bony shaft has formed, the perichondrium (PC) differentiates into the periosteum (PO), whose cells provide the osteoblasts for appositional bone growth (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmid, T. M. and Linsenmayer, T. F. (1985) Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev. Biol. 107, 373–381.

    Article  PubMed  CAS  Google Scholar 

  2. Long, F. X. and Linsenmayer, T. F. (1998) Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 125, 1067–1073.

    PubMed  CAS  Google Scholar 

  3. Chen, Q., Gibney, E., Leach, R. M., and Linsenmayer, T. F. (1993) Chicken tibial dyschondroplasia: a limb mutant with two growth plates and possible defects in cartilage crosslinking. Dev. Dvn. 196, 54–61.

    Article  CAS  Google Scholar 

  4. Howlett, C. R. (1979) The fine structure of the proximal growth plate of the avian tibia. J. Anat. 128, 377–399.

    PubMed  CAS  Google Scholar 

  5. Nurminskaya, M., Magee, C., Nurminsky, D., and Linsenmayer, T. F. (1998) Plasma transglutaminase in hypertrophic chondrocytes: Expression and cell-specific intracellular activation produce cell death and externalization. J. Cell Biol. 142, 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  6. Bianco, P., Cancedda, F. D., Riminucci, M., and Cancedda, R. (1998) Bone formation via cartilage models: the “borderline” chondrocyte. Matrix Biol. 17, 185–192.

    Article  PubMed  CAS  Google Scholar 

  7. Pathi, S., Rutenberg, J. B., Johnson, R. L., and Vortkamp, A. (1999) Interaction of Ihh and BMP Noggin signaling during cartilage differentiation. Dev. Biol. 209, 239–253.

    Article  PubMed  CAS  Google Scholar 

  8. Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., and Tabin, C. J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622.

    Article  PubMed  CAS  Google Scholar 

  9. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A., and Leder, P. (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921.

    Article  PubMed  CAS  Google Scholar 

  10. Lanske, B., Karaplis, A. C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog- regulated bone growth. Science 273, 663–666.

    Article  PubMed  CAS  Google Scholar 

  11. Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M., and Tabin C. J. (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179.

    Article  PubMed  CAS  Google Scholar 

  12. Karp, S. J., Schipani, E., St-Jaques, B., Hunzelman, J., Kronenberg, H., and McMahon, A. P. (2000) Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127, 543–548.

    PubMed  CAS  Google Scholar 

  13. St-Jacques, B., Hammerschmidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086.

    Article  PubMed  CAS  Google Scholar 

  14. Hunziker, E. H., Kapfinger, E., and Saager, C. (1999) Hypertrophy of growth plate chondrocytes in vivo is accompanied by modulations in the activity state and surface area of their cytoplasmic organelles. Histochem. Cell Biol. 112, 115–123.

    Article  PubMed  CAS  Google Scholar 

  15. Kingsley, D. M. (1994) The TGF-beta superfamily: new members, new receptors and new genetic test of function in different organisms. Genes Dev. 8, 133–146.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, E. A., Rose, V., Cordes, P., Hewick, R. M., Kriz, M. J., Luxenberg, D. P., et al. (1988) Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA 85, 9484–9488.

    Article  PubMed  CAS  Google Scholar 

  17. Bitgood, M. J. and McMahon, A. P. (1995) Hedgehog and Bmp genes are coexpresed at many diverse sites of cellcell interaction in the mouse embryo. Dey. Biol. 172, 126–138.

    Article  CAS  Google Scholar 

  18. Macias, D., Ganan, Y., Sampath, T. K., Piedra, M. E., Ros, M. A., and Hurle, J. M. (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124, 1109–1117.

    PubMed  CAS  Google Scholar 

  19. Zou, H., Wieser, R., Massague, J., and Niswander, L. (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11, 2191–2203.

    Article  PubMed  CAS  Google Scholar 

  20. Segev, O., Chumakov, I., Nevo, Z., Givol, D., Madar-Shapiro, L., Sheinin, U., et al. (2000) Restrained chondrocyte proliferation and maturation with abnormal growth plate vascularization and ossification in human FGFR-3G390R transgenic mice. Human Mol. Genet. 9, 249–258.

    Article  CAS  Google Scholar 

  21. Shiang, R., Thompson, L. M., Zhu, Y. Z., Church, D. M., Fielder, T. J., Bocian, M., et al. (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342.

    Article  PubMed  CAS  Google Scholar 

  22. Green, P. J., Walsh, F. S., and Doherty, P. (1996) Promiscuity of fibroblast growth factor receptors. BioEssays 18, 639–646.

    Article  PubMed  CAS  Google Scholar 

  23. Mancilla, E. E., De Luca, F., Uyeda, J. A., Czerwiec, F. S., and Baron, J. (1998) Effects of fibroblast growth factor-2 on longitudinal bone growth. Endocrinology 139, 2900–2904.

    Article  PubMed  CAS  Google Scholar 

  24. Pelton, R. W., Hogan, B. L., Miller, D. A., and Moses, H. L. (1990) Differential expression of genes encoding TGFs beta 1, beta 2, and beta 3 during murine palate formation. Dev. Biol. 141, 456–460.

    Article  PubMed  CAS  Google Scholar 

  25. Serra, R., Johnson, M., Filvaroff, E. H., LaBorder, J., Sheehan, D. M., Derynck, R., et al. (1997) Expression of a truncated, kinase-defective TGF-13 type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 139, 541–552.

    Article  PubMed  CAS  Google Scholar 

  26. Serra, R., Karaplis, A., and Sohn, P. (1999) Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor ββ (TGFβ3) on endochondral bone formation. J. Cell Biol. 145, 783–794.

    Article  PubMed  CAS  Google Scholar 

  27. Howell, J. and Thompson, J. (1967) Observations on the lesions in vitamin A deficient adult fowls with particular reference to changes in bone and central nervous system. Br. J. Exp. Pathol. 48, 450–454.

    PubMed  CAS  Google Scholar 

  28. Koyama, E., Golden, E. B., Kirsch, T., Adams, S. L., Chandraratna, R. A. S., Michaille, J. J., et al. (1999) Retinoid signaling is required for chondrocyte maturation and endochondral bone formation during limb skeletogenesis. Biol. 208, 375–391.

    CAS  Google Scholar 

  29. Smith, S. M., Kirstein, I. J., Wang, Z. S., Fallon, J. F., Kelley, J., and Bradshaw-Rouse, J. (1995) Differential expression of retinoic acid receptor-beta isoforms durina chick limb ontoaeny. Dev. Dyn. 202, 54–66.

    Article  PubMed  CAS  Google Scholar 

  30. De Luca, F., Uyeda, J. A., Mericq, V., Mancilla, E. E., Yanovski, J. A., Barnes, K. M., et al. (2000) Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology 141, 346–353.

    Article  PubMed  Google Scholar 

  31. Di Nino, D. L., Long, F., and Linsenmayer, T. F. (2001) Regulation of Edochondral Cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum. Dev. Biol. 240, 433–442.

    Article  PubMed  Google Scholar 

  32. Di Nino, D. L., Crochiere, M. L., and Linsenmayer, T. F. (2002) Multiple mechanisms of perichondrial regulation of cartilage growth. Dev. Dyn. 225, 250–259.

    Article  PubMed  Google Scholar 

  33. Lovitch, D. and Christianson, M. L. (1997) Mineralization is more reliable in periosteum explants from size-selected chicken embryos (letter). In Vitro Cell. Dev. Biol. Animal 33, 234–235.

    Article  CAS  Google Scholar 

  34. Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  PubMed  CAS  Google Scholar 

  35. Stocum, D. L., Davis, R. M., Leger, M., and Conrad, H. E. (1979) Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologicallv distinct reaions. J. Embryol. Exp. Morphol. 54, 155–170.

    PubMed  CAS  Google Scholar 

  36. Alvarez, J., Horton, J., Sohn, P., and Serra, R. (2001) The perichondrium plays an important role in mediating the effects of TGF-β1 on endochondral bone formation. Dev. Dyn. 221, 311–321.

    Article  PubMed  CAS  Google Scholar 

  37. Hartmann, C. and Tabin, C. J. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141–3159.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Nino, D.L., Linsenmayer, T.F. (2004). Perichondrial and Periosteal Regulation of Endochondral Growth. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics