Skip to main content

Soluble Signals and Insoluble Substrata

Novel Molecular Cues Instructing the Induction of Bone

  • Chapter
The Skeleton

Abstract

The repair and regeneration of bone is a complex process that is temporally and spatially regulated by soluble and insoluble signals (1). The initiation of bone formation during embryonic development and postnatal osteogenesis involves a complex cascade of molecular and morphogenetic processes that ultimately lead to the architectural sculpturing of precisely organized multicellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reddi, A. H. (2000) Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 6, 351–359.

    Article  PubMed  CAS  Google Scholar 

  2. Urist, M. R. (1965) Bone: formation by autoinduction. Science 159, 893–899.

    Article  Google Scholar 

  3. Reddi, A. H. and Huggins, C. B. (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc. Natl. Acad. Sci. USA 69, 1601–1605.

    Article  PubMed  CAS  Google Scholar 

  4. Reddi, A. H. (1981) Cell biology and biochemistry of endochondral bone development. Collagen Rel. Res. 1, 209–226.

    Article  CAS  Google Scholar 

  5. Sampath, T. K. and Reddi, A. H. (1981) Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc. Natl. Acad. Sci. USA 78, 7599–7603.

    Article  PubMed  CAS  Google Scholar 

  6. Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  7. Wozney, J. M. (1992) The bone morphogenetic protein family and osteogenesis. Mol. Repprod. Dev. 32, 160–167.

    Article  CAS  Google Scholar 

  8. Reddi, A. H. (1992) Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr. Opin. Cell. Biol. 4, 850–855.

    Article  PubMed  CAS  Google Scholar 

  9. Ripamonti, U. and Reddi, A. H. (1997) Tissue engineering, morphogenesis and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit. Rev. Oral Biol. Med. 8, 154–163.

    Article  PubMed  CAS  Google Scholar 

  10. Thomadakis, G., Ramoshebi, L. N., Crooks, J., Rueger, D. C., and Ripamonti, U. (1999) Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur. J. Oral Sci. 107. 368–377.

    Article  PubMed  CAS  Google Scholar 

  11. Ripamonti, U. and Duneas, N. (1998) Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg. 101, 227–239.

    Article  PubMed  CAS  Google Scholar 

  12. Ripamonti, U., van den Heever, B., Crooks, J., Tucker, M. M.., Sampath, T. K., Rueger, D. C., et al. (2000) Long term evaluation of bone formation by osteogenic protein-1 in the baboon and relative efficacy of bone-derived bone morphogenetic proteins delivered by irradiated xenogeneic collagenous matrices. J. Bone Miner. Res. 15, 1798–1809.

    Article  PubMed  CAS  Google Scholar 

  13. Ripamonti, U., Ma, S., Cunningham, N., Yeates, L., and Reddi, A. H. (1992) Initiation of bone regeneration in adult baboons by osteogenin, a bone morphogenetic protein. Matrix 12, 369–380.

    Article  PubMed  CAS  Google Scholar 

  14. Ripamonti, U., Ramoshebi, L. N., Matsaba, T., Tasker, J., Crooks, J., and Teare, J. (2001) Bone induction by BMPs/OPs and related family members in primates. The critical role of delivery systems. J. Bone Joint Surg. Am. 83-A, S 1116–S1127.

    Google Scholar 

  15. Groeneveld, E. H. J. and Burger, E. H. (2002) Bone morphogenetic proteins in human bone regeneration. Eur. J. Endocrinol. 142, 9–21.

    Article  Google Scholar 

  16. Ferretti, C. and Ripamonti, U. (2002) Human segmental mandibular defect treated with naturally derived bone morphogenetic proteins. J. Craniofacial Sure. 3. 434–444.

    Article  Google Scholar 

  17. Ripamonti, U., van den Heever, B., Heliotis, M., Dal Mas, I., Hähnle, U. R., and Biscardi, A. (2002) Local delivery of bone morphogenetic proteins in primates using a reconstituted basement membrane gel: tissue engineering with Matrigel. S. Afr. J. Sci. 98, 429–433.

    CAS  Google Scholar 

  18. Ripamonti, U., Heliotis, M., van den Heever B., and Reddi, A. H. (1994) Bone morphogenetic proteins induce periodontal regeneration in the baboon (Papio ursinus). J. Periodont. Res. 29, 439–445.

    Article  PubMed  CAS  Google Scholar 

  19. Ripamonti, U., Heliotis, M., Rueger, D. C., and Sampath, T. K. (1996) Induction of cementogenesis by recombinant human osteogenic protein-1 (hOP-1/BMP-7) in the baboon. Arch. Oral Biol. 41, 121–126.

    Article  PubMed  CAS  Google Scholar 

  20. Ripamonti, U., Crooks, J., Teare, J., Petit, J.-C., and Rueger, D. C. (2002) Periodontal tissue regeneration by recombinant human osteogenic protein-1 in periodontally-induced furcation defects of the primate Papio ursinus. S. Afr. J. Sci. 98. 361–368.

    CAS  Google Scholar 

  21. Centrella, M., Horowitz, M., Wozney, J. M., and McCarthy, T. L. (1994) Transforming growth factor β3 (TGF-ββ) family members and bone. Endocr. Rev. 15, 27–39.

    PubMed  CAS  Google Scholar 

  22. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., et al. (1986) Transforming growth factor type rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83, 4167–4171.

    Article  PubMed  CAS  Google Scholar 

  23. Shinozaki, M., Kawara, S., Hayashi, N., Kakinuba, T., Igarashi, A., and Takehara, K. (1997) Induction of subcutaneous tissue fibrosis in newborn mice by transforming growth factor-β3: simultaneous application with basic fibroblast growth factor causes persistent fibrosis. Biochem. Biophys. Res. Commun. 237, 292–296.

    Article  PubMed  CAS  Google Scholar 

  24. Raven, P. H. and Johnson, G. B. (1989) Evolutionary History of the Earth, in Biology 2nd ed. (Brake, D. K., ed), Times Mirror/Mosby College, St. Louis, pp. 419–441.

    Google Scholar 

  25. Ripamonti, U., Duneas, N., van den Heever, B., Bosch, C., and Crooks, J. (1997) Recombinant transforming growth factor-I31 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation. J. Bone Miner. Res. 12. 1584–1595.

    Article  PubMed  CAS  Google Scholar 

  26. Duneas, N., Crooks, J., and Ripamonti, U. (1998) Transforming growth factors ββ1: Induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1 (BMP-7) Growth Factors 15, 259–277.

    Article  PubMed  CAS  Google Scholar 

  27. Ripamonti, U., Crooks, J., Matsaba, T., and Tasker, J. (2000) Induction of endochondral bone formation by recombinant human transforming growth factor-132 in the baboon (Papio ursinus). Growth Factors 17, 269–285.

    Article  PubMed  CAS  Google Scholar 

  28. Ripamonti U., Teare, J., Matsaba, T., and Renton, L. (2001) Site, tissue and organ specificity of endochondral bone induction and morphogenesis by TGF-ββ isoforms in the primate Papio ursinus. Proceedings FASEB Summer Conference: The TGF-β3 superfamily: signaling and development, Tucson Arizona, USA, July 7–12.

    Google Scholar 

  29. Miyazono, K., Ten Dijke, P., and Heldin, C.-H. (2002) TGF-1β signaling by Smad proteins. Adv. Immunol. 75, 115–157.

    Article  Google Scholar 

  30. Ripamonti, U., Crooks, J., and Kirkbride, A. N. (1999) Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation. S. Afr. J. Sci. 95, 335–343.

    CAS  Google Scholar 

  31. Ripamonti, U. (2000) Smart biomaterials with intrinsic osteoinductivity: geometric control of bone differentiation, in Bone Engineering (Davies, J. E., ed.), EM2 Corporation, Toronto, Canada, pp. 215–222.

    Google Scholar 

  32. Ripamonti, U., Crooks, J., and Rueger D. C. (2001) Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast. Reconstr. Surg. 107, 977–988.

    Article  PubMed  CAS  Google Scholar 

  33. Ripamonti, U. and Duneas, N. (1996) Tissue engineering of bone by osteoinductive biomaterials. MRS Bull. 21, 36–39.

    Google Scholar 

  34. Gerber, H. P. and Ferrare, N. (2000) Angiogenesis and bone growth. Trends Cardiovasc. Med. 10, 223–228.

    Article  PubMed  CAS  Google Scholar 

  35. Colnot, C. I. and Helms, J. A. (2001) A molecular analysis of matrix remodeling and angiogenesis during long bone development. Mech. Dynamics 100, 245–250.

    Google Scholar 

  36. Paralkar, V. M., Nandedkar, A. K. N., Pointer, R. H., Kleinman, H. K., and Reddi, A. H. (1990) Interaction of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J. Biol. Chem. 265, 17281–17284.

    PubMed  CAS  Google Scholar 

  37. Heliotis, M. and Ripamonti, U. (1994) Phenotypic modulation of endothelial cells by bone morphogenetic protein fractions in vitro. In Vitro Cell. Dev. Biol. 30A, 353–355.

    Article  CAS  Google Scholar 

  38. Wang, J. S. and Aspenberg, P. (1993) Basic fibroblast growth factor and bone induction in rats. Acta. Orthop. Scand. 64, 557–561.

    Article  PubMed  CAS  Google Scholar 

  39. Takita, H., Tsuruga, E., Ono, I., and Kuboki, Y. (1997) Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats. Eur. J. Oral. Sci. 105, 588–592.

    Article  PubMed  CAS  Google Scholar 

  40. Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., and Ferrara, N. (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628.

    Article  PubMed  CAS  Google Scholar 

  41. Horner A., Bord S., Kelsall, A. W., Coleman, N., and Compston, J. E. (2001) Tie2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28, 65–71.

    Article  PubMed  CAS  Google Scholar 

  42. Delaissé, J. M., Ensig, M. T., Everts, V., del Carmen Ovejero, M., Ferreras, M., Lund, L., et al. (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin. Chim. Acta 291, 223–234.

    Article  PubMed  Google Scholar 

  43. Ripamonti, U., van den Heever, B., and Van Wyk, J. (1993) Expression of the osteogenic phenotype in porous hydroxyapatite implanted extraskeletally in baboons. Matrix. 13, 491–502.

    Article  PubMed  CAS  Google Scholar 

  44. Trueta, J. (1963) The role of the vessels in osteogeneis. J. Bone Joint Surg. 45B, 402–418.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ripamonti, U., Ramoshebi, N.L., Patton, J., Matsaba, T., Teare, J., Renton, L. (2004). Soluble Signals and Insoluble Substrata. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics