Skip to main content
Book cover

The Skeleton pp 159–170Cite as

Retinoids and Indian Hedgehog Orchestrate Long Bone Development

  • Chapter
  • 215 Accesses

Abstract

Long bone formation is a complex process that has been studied for decades (1–3). It initiates with the emergence, at specific times and sites, of mesenchymal cell condensations that are patterned by the concerted action of the zone of polarizing activity (ZPA), apical ectodermal ridge, and dorsal ectoderm. The condensed cells differentiate into chondrocytes that produce characteristic cartilage matrix components and give rise to readily identifiable cartilaginous elements. The chondrocytes within each element start a process of maturation, which includes a proliferative, prehypertrophic, hypertrophic, and post-hypertrophic phase, and become organized in growth plates. At the same time, diarthrodial synovial joints develop at each epiphyseal end. Once formed, hypertrophic cartilage is invaded by bone, marrow, and vascular progenitor cells from adjacent perichondrial tissues, is eroded, and is finally replaced by endochondral bone and marrow. In addition, perichondrial cells give rise to an intramembranous bone collar surrounding the elements, which is critical to determine diameter and shape of the shaft (1).Maturation, hypertrophy, blood vessel invasion, and ossification first occur in the diaphyseal region and then spread toward the opposing epiphyses with increasing developmental time. Thus, long bone formation requires multiple and topographically restricted events within the cartilaginous elements as well as coordinated events in perichondrial tissues. It is not fully understood how all these processes are set and regulated, what signaling molecules mediate cartilage-perichondrium communication and interactions, and how events in cartilage are coordinated with those in perichondrium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fell, H. B. (1925) The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J. Morphol. Physiol. 40,417–459.

    Article  Google Scholar 

  2. Thorogood, P. (1983) Morphogenesis of cartilage, in Cartilage(Hall, B. K., ed.), vol. 2. Academic Press, New York, pp. 223–254.

    Google Scholar 

  3. Hinchcliffe, J. R. and Johnson, D. R. (1990) The Development of the Vertebrate Limb,Clarendon Press, Oxford.

    Google Scholar 

  4. Bitgood, M. J. and McMahon, A. P. (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172,126–138.

    Article  PubMed  CAS  Google Scholar 

  5. Vortkamp, A., Lee, K., Lanske, B., Segre, G. V., Kronenberg, H. M., and Tabin, C. J. (1996) Regulation of the rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273,613–622.

    Article  PubMed  CAS  Google Scholar 

  6. Vortkampt, A., Pathi, S., Peretti, G. M., Caruso, E. M., Zaleske, D. J., and Tabin, C. J. (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev. 71,65–76.

    Article  Google Scholar 

  7. Koyama, E., Leatherman, J. L., Noji, S., and Pacifici, M. (1996) Early chick limb cartilaginous elements possess polarizing activity and express hedgehog-related morphogenetic factors. Dev. Dyn. 207,344–354.

    Article  PubMed  CAS  Google Scholar 

  8. Koyama, E., Golden, E. B., Vaias, L., Kirsch, T., Adams, S. L., Chandraratna, R. A. S., et al. (1999) Retinoid signaling is required for chondrocyte maturation and endochondral bone formation during limb skeletogenesis. Dev. Biol. 208,375–391.

    Article  PubMed  CAS  Google Scholar 

  9. Nakamura, T., Aikawa, T., Enomoto-Iwamoto, M., Iwamoto, M., Higuchi, Y., Pacifici, M., et al. (1997) Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Commun. 237,465–469.

    Article  PubMed  CAS  Google Scholar 

  10. St-Jacques, B., Hammerschidt, M., and McMahon, A. P. (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13,2076–2086.

    Article  Google Scholar 

  11. Walbach, S. B. and Hegsted, D. M. (1952) Vitamin A deficiency in the duck. Skeletal growth and the central nervous system. Arch. Pathol. 54,548–563.

    Google Scholar 

  12. Chambon, P. (1994) The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 5,115–125.

    Article  PubMed  CAS  Google Scholar 

  13. Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) The retinoid receptors, in The Retinoids: Biology, Chemistry, and Medicine.(Sporn, M. B., et al., eds.), Raven Press, New York, pp. 319–349.

    Google Scholar 

  14. Dolle, P., Ruberte, E., Kastner, P., Petkovich, M., Stoner, C. M., Gudas, L. J., et al. (1989) Differential expression of genes encoding a, 13 and y retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342,702–705.

    Article  PubMed  CAS  Google Scholar 

  15. Mendelsohn, C., Lohnes, D., Decimo, D., Lufkin, T., LeLeur, M., Chambon, P., et al. (1994) Function of the retinoic acid receptors (RARs) during development. II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120,2749–2771.

    PubMed  CAS  Google Scholar 

  16. Iwamoto, M., Shapiro, I. M., Yagami, K., Boskey, A. L., Leboy, P. S., Adams, S. L., et al. (1993) Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes. Exp. Cell Res. 207,413–420.

    Article  PubMed  CAS  Google Scholar 

  17. von Schroder, H. P. and Heersche, J. N. M. (1998) Retinoic acid responsiveness of cells and tissues in developing fetal limbs evaluated in a RAREhsplacZ transgenic mouse model. J.Orthop. Res. 16,155–364

    Article  Google Scholar 

  18. Riddle, R. D., Johnson, R. L., Laufer, E., and Tabin, C.(1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75,1401–1416.

    Article  PubMed  CAS  Google Scholar 

  19. Wagner, M., Han, B., and Jessell, T. M. (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116,55–66.

    PubMed  CAS  Google Scholar 

  20. Keidel, S., LeMotte, P., and Apfel, C. (1994) Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol. Cell Biol. 14,287–298.

    PubMed  CAS  Google Scholar 

  21. Gibson, G. J. and Flint, M. H. (1985) Type X collagen syntheiss by chick sternal cartilage and its relationship to endochondral development. J. Cell Biol. 101,277–284.

    Article  PubMed  CAS  Google Scholar 

  22. Eichele, G. and Thaller, C. (1987) Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud. J. Cell Biol. 105,1917–1923.

    Article  PubMed  CAS  Google Scholar 

  23. Eichele, G., Tickle, C., and Alberts, B. (1984) Micro-controlled release of biologically active compounds in chick embryos: beads of 200-pm diameter for the local release of retinoids. Anal. Biochem. 142,542–555.

    Article  PubMed  CAS  Google Scholar 

  24. Chung, U.-I., Schipani, E., McMahon, A. P., and Kronenberg, H. M. (2001) Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J. Clin. Invest. 107,295–304.

    Article  PubMed  CAS  Google Scholar 

  25. Long, F., Zhang, X. M., Karp, S., Yang, Y., and McMahon, A. P. (2001) Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128,5099–5108.

    PubMed  CAS  Google Scholar 

  26. Wu, Q., Zhang, Y., and Chen, Q. (2001) Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J. Biol. Chem. 276,35290–35296.

    Article  PubMed  CAS  Google Scholar 

  27. Gentili, C., Koyama, E., Iwamoto, M., and Pacifici, M. (2002) Indian hedgehog mediates multiple chondrocyte functions in the growth plate. Trans. Orth. Res. Soc. 48.122.

    Google Scholar 

  28. Yin, M., Gentili, C., Koyama, E., Zasloff, M., and Pacifici, M. (2002) Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis. J. Bone Miner. Res. 17,56–65.

    Article  PubMed  CAS  Google Scholar 

  29. Gritli-Linde, A., Lewis, P., McMahon, A. P., and Linde, A. (2001) The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236.364–386.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, W. and Kirsch, T. (2002) Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J. Cell Biol. 157,1061–1070.

    Article  PubMed  CAS  Google Scholar 

  31. Jimenez, M. J., Balbin, M., Alvarez, J., Komori, T., Bianco, P., Holmbeck, K., et al. (2001) A regulatory cascade involving retinoic acid, Cbfa 1 , and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol. 155,1333–1344.

    Article  PubMed  CAS  Google Scholar 

  32. Iwamoto, M., Koyama, E., Enomoto-Iwamoto, M., Golden, E. B., Adams, S. L., and Pacifici, M. (2001) Indian hedgehog and Cbfa 1 expression in growth plate chondrocytes is regulated by retinoid signaling. Proc. Orthop. Res. Soc. 47.352.

    Google Scholar 

  33. Iwamoto, M., Kitagaki, J., Tamamura, Y., Gentili, C., Koyama, E., Enomoto, H., et al. (2003) Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide. Osteoarthr. Cart.11,6–15.

    Article  CAS  Google Scholar 

  34. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997) Targeted disruption of Cbfa 1 results in a complete lack of bone formation owing to maturation arrest of osteoblasts. Cell 89,755–764.

    Article  PubMed  CAS  Google Scholar 

  35. Zelser, E., McLean, W., Ng, Y., Fukai, N., Reginato, A. M., Lovejoy, S., et al. (2002) Skeletal defects in VEGF120/120mice reveal multiple roles for VEGF in skeletogenesis. Development 129,1893–1904.

    Google Scholar 

  36. Long, F. and Linsenmayer, T. F. (1998) Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 125,1067–1073.

    PubMed  CAS  Google Scholar 

  37. Alvarez, J., Sohn, P., Zeng, X., Doetschman, T., Robbins, D. J., and Serra, R. (2002) TGFβ32 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129,1913–1924.

    PubMed  CAS  Google Scholar 

  38. Pechak, D. G., Kujawa, M. J., and Caplan, A. I. (1986) Morphological and histochemical events during first bone formation in embryonic chick limbs. Bone 7,441–458.

    Article  PubMed  CAS  Google Scholar 

  39. Gigante, A., Specchia, N., Non, S., and Greco, F. (1996) Distribution of elastic fiber types in the epiphyseal region. J. Orthop. Res. 14,810–817.

    Article  PubMed  CAS  Google Scholar 

  40. Koyama, E., Shimazu, A., Leatherman, J. L., Golden, E. B., Nah, H.-D., and Pacifici, M. (1996) Expression of syndecan3 and tenascin-C: possible involvement in periosteum development. J. Orthop. Res. 14,403–412.

    Article  PubMed  CAS  Google Scholar 

  41. Koyama, E., Leatherman, J. L., Shimazu, A., Nah, H.-D., and Pacifici, M. (1995) Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev. Dyn. 203,152–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pacifici, M., Gentili, C., Golden, E., Koyama, E. (2004). Retinoids and Indian Hedgehog Orchestrate Long Bone Development. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics