Skip to main content

Molecular Basis of Cell—Cell Interaction and Signaling in Mesenchymal Chondrogenesis

  • Chapter
The Skeleton
  • 220 Accesses

Abstract

Chondrogenesis, the first step in embryonic skeletal development, involves a series of highly regulated events, encompassing recruitment and condensation of mesenchymal chondroprogenitor cells and subsequent differentiation into chondrocytes. This chapter deals with the molecular events contributing to the above processes, specifically cell-cell interactions, cellular signaling pathways, and regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fell, H. B. (1925) The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J. Motphol. 40, 417–451.

    Article  Google Scholar 

  2. Hall, B. and Miyake, T. (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107–124.

    Article  PubMed  CAS  Google Scholar 

  3. Aulthouse, A. L. and Solursh, M. (1987) The detection of a precartilage, blastema-specific marker. Devv. Biol. 120, 377–384.

    Article  CAS  Google Scholar 

  4. Gotz, W., Fischer, G., and Herken, R. (1991) Lectin binding pattern in the embryonal and early fetal human vertebral column. Anat. Embryol. 184, 345–353.

    Article  PubMed  CAS  Google Scholar 

  5. Ede, D. (1983) Cellular Condensations and Chondrogenesis. Academic Press, New York.

    Google Scholar 

  6. Ede, D. A., Flint, O. P., Wilby, O. K., and Colquhoun, P. (1977) The development of precartilage condensations in limb-bud mesenchyme of normal and mutant embryos in vivo and in vitro, in Vertebrate Limb and Sonnte Morphogenesis (Balls, M., ed). Cambridge University Press, London and New York, pp. 161–179.

    Google Scholar 

  7. Newman, S., Frenz, D., Tomasek, J. and Rabuzzi, D. (1985) Matrix-driven translocation of cells and nonliving particles. Science 228, 885–889.

    Article  PubMed  CAS  Google Scholar 

  8. Oster, G. (1984) On the crawling of cells. J. Embryol. Exp. Morphol. 83, 329–364.

    PubMed  Google Scholar 

  9. Oster, G. F., Murray, J. D., and Maini, P. K. (1985) A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryo!. Exp. Morphol. 89, 93–112.

    CAS  Google Scholar 

  10. Ahrens, P. B., Solursh, M., and Reiter, R. S. (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60, 69–82.

    Article  PubMed  CAS  Google Scholar 

  11. San Antonio, J. and Tuan, R. (1986) Chondrogenesis of limb bud mesenchymal in vitro: stimulation by cations. Devv. Biol. 115, 313–324.

    Article  CAS  Google Scholar 

  12. Evans, M. S. and Tuan, R. S. (1988) Cellular condensation and collagen Type II expression during chondrogenesis in vitro. J. Cell Biol. 107, 163a.

    Article  Google Scholar 

  13. Coelho, C. N. and Kosher, R. A. (1991) Gap junctional communication during limb cartilage differentiation. Dev. Biol. 144, 47–53.

    Article  PubMed  CAS  Google Scholar 

  14. Coelho, C. N. and Kosher, R. A. (1991) A gradient of gap junctional communication along the anterior-posterior axis of the developing chick limb bud. Dev. Biol. 148, 529–535.

    Article  PubMed  CAS  Google Scholar 

  15. Mundlos, S. and Olsen, B. R. (1997) Heritable diseases of the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 11, 125–132.

    PubMed  CAS  Google Scholar 

  16. Toole, B. P., Jackson, G., and Gross, J. (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc. Natl. Acad. Sci. USA 69, 1384–1386.

    Article  PubMed  CAS  Google Scholar 

  17. Toole, B. and Linsenmayer, T. (1977) Newer knowledge of skeletogenesis: macromolecular transitions in the extrarelluilar matrix Clin Orthon. Nov-Dee. 258–278.

    Google Scholar 

  18. Knudson, C. B. and Toole, B. P. (1987) Hyaluronate-cell interactions during differentiation of chick embryo limb mesoderm. Devv. Biol. 124, 82–90.

    Article  CAS  Google Scholar 

  19. Oberlander, S. and Tuan, R. (1994) Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes. Commun. 2, 521–537.

    Article  Google Scholar 

  20. Travella, S., Raffo, P., Tacchetti, C., Cancedda, R., and Castagnola, P. (1994) N-CAM and N-cadherin expression during in vitro chondrogenesis. Exp. Cell Res. 215, 354–362.

    Article  Google Scholar 

  21. Oberlander, S. and Tuan, R. (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Develonmment 120, 177–187.

    Google Scholar 

  22. Widelitz, R. B., Jiang, T. X., Murray, B. A., and Chuong, C. M. (1993) Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J. Cell. Physiol. 156, 399–411.

    Article  PubMed  CAS  Google Scholar 

  23. Dessau, W., von der Mark, H., von der Mark, K., and Fischer, S. (1980) Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J. Embryol Exp. Morphol. 57, 51–60.

    PubMed  CAS  Google Scholar 

  24. Kulyk, W. M., Upholt, W. B., and Kosher, R. A. (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106, 449–455.

    PubMed  CAS  Google Scholar 

  25. Frenz, D., Akiyama, S., Paulsen, D., and Newman, S. (1989) Latex beads as probes of cell surface-extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin. Dec. Biol. 136. 87–96.

    Article  CAS  Google Scholar 

  26. Frenz, D., Jaikaria, N., and Newman, S. (1989) The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dec. Biol. 136, 97–103.

    Article  CAS  Google Scholar 

  27. Gehris, A. L., Oberlender, S. A., Shepley, K. J., Tuan, R. S., and Bennett, V. D. (1996) Fibronectin mRNA alternative splicing is temporally and spatially regulated during chondrogenesis in vivo and in vitro. Devel. Dynamics 206, 19–230

    Google Scholar 

  28. Gehris, A. L., Stringa, E., Spina, J., Desmond, M. E., Tuan, R. S., and Bennett, V. D. (1997) The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation. Dev. Biol. 190, 191–205.

    Article  PubMed  CAS  Google Scholar 

  29. Bennett, V. D., Pallante, K. M., and Adams, S. L. (1991) The splicing pattern of fibronectin mRNA changes during chondrogenesis resulting in an unusual form of the mRNA in cartilage. J. Biol. Chem. 266, 5918–5924.

    PubMed  CAS  Google Scholar 

  30. Edelman, G. M. (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol. 2, 81–116.

    Article  PubMed  CAS  Google Scholar 

  31. Edelman, G. M. and Crossin, K. L. (1991) Cell adhesion molecules: implications for a molecular histology [Review]. Annu. Rev. Biochem. 60, 155–190.

    Article  PubMed  CAS  Google Scholar 

  32. Grunwald, G. (1996) Discovery and Analysis of the Classical Cadherins. JAI Press, Greenwich.

    Google Scholar 

  33. Marrs, J. A. and Nelson, W. J. (1996) Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol. 165, 159–205.

    Article  PubMed  CAS  Google Scholar 

  34. Takeichi, M. (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655.

    PubMed  CAS  Google Scholar 

  35. Takeichi, M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Ann. Rev. Biochemm. 59, 237–252.

    Article  CAS  Google Scholar 

  36. Takeichi, M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator [Review]. Science 251. 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  37. Takeichi, M. (1995) Morphogenetic roles of classic cadherins. Curr. Ovin. Cell Biol. 7. 619–627.

    Article  CAS  Google Scholar 

  38. Rutishauser, U. (1990) Neural cell adhesion molecule as a regulator of cell-cell interactions. Adv. Exp. Med. Biol. 265, 179–183.

    CAS  Google Scholar 

  39. Aberle, H., Schwartz, H., and Kemler, R. (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J. Cell. Biochem. 61. 514–523.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki, S. T. (1996) Structural and functional diversity of cadherin superfamily: are new members of cadherin superfamily involved in signal transduction pathway? J. Cell. Biochem. 61. 531–542.

    Article  PubMed  CAS  Google Scholar 

  41. Grunwald, G. B., Pratt, R. S., and Lilien, J. (1982) Enzymic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells. J. Cell Sci. 55, 69–83.

    PubMed  CAS  Google Scholar 

  42. Hatta, K. and Takeichi, M. (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449.

    Article  PubMed  CAS  Google Scholar 

  43. Hatta, K., Takagi, S., Fujisawa, H., and Takeichi, M. (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120, 215–227.

    Article  PubMed  CAS  Google Scholar 

  44. Hatta, K., Nose, A., Nagafuchi, A., and Takeichi, M. (1988) Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J. Cell. Biochem. 106, 873–881.

    CAS  Google Scholar 

  45. Inuzuka, H., Redies, C., and Takeichi, M. (1991) Differential expression of R- and N-cadherin in neural and mesodermal tissues during early chicken development. Development 113, 959–967.

    PubMed  CAS  Google Scholar 

  46. Fujimori, T., Miyatani, S., and Takeichi, M. (1990) Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110, 97–104.

    PubMed  CAS  Google Scholar 

  47. Fujimori, T. and T akeichi, M. (1993) Disruption of epithelial cell-cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin. Mol. Biol. Cell 4, 37–47.

    PubMed  CAS  Google Scholar 

  48. Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M., and Hynes, R. O. (1997) Developmental defects in mouse embryos lacking N-cadherin. Der. Biol. 181, 64–78.

    CAS  Google Scholar 

  49. Hamburger, V. and Hamilton, H. L. (1951) A series of normal stages in development of the chick embryo. J. Morphol. 88. 49–92.

    Article  Google Scholar 

  50. Duprez, D. M., Coltey, M., Amthor, H., Brickell, P. M., and Tickle, C. (1996) Bone morphogenetic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures. Dev. Biol. 174. 448–452.

    Article  PubMed  CAS  Google Scholar 

  51. Tyndall, W. A. and Tuan, R. S. (1994) Involvement of N-cadherin mediated cell adhesion in TGF-B1 stimulation of limb mesenchymal chondrogenesis. Mol. Biol. Cell 5, 103A.

    Google Scholar 

  52. Tyndall, W. and Tuan, R. (1994) Effect of TGF-β31/BMP-2 on limb mesenchyme chondrogenesis in vitro: modulation of N-cadherin and certain association. Trans. Ortho. Res. Soc. 21, 179.

    Google Scholar 

  53. Denker, A. E., Haas, A. R., Nicoll, S. B., and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/ 2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64, 67–76.

    Article  PubMed  CAS  Google Scholar 

  54. Haas, A. R. and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 64, 77–89.

    Article  PubMed  CAS  Google Scholar 

  55. DeLise, A. M. and Tuan, R. S. (2002) Perturbing N-cadherin function inhibits cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. Devel. Dyn. 225, 195–204.

    Article  CAS  Google Scholar 

  56. DeLise, A. M. and Tuan, R. S. (2002) Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J.Cell. Biochem. 87, 342–359.

    Article  PubMed  CAS  Google Scholar 

  57. Chothia, C. and Jones, E. (1997) The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66, 823–862.

    Article  PubMed  CAS  Google Scholar 

  58. Cunningham, B., Hemperly, J., and Murray, B. (1987) Neural cell adhesion molecule: structure, immunoglobulinlike domains, cell surface modulation, and alternative RNA splicing. Science 236, 799–806.

    Article  PubMed  CAS  Google Scholar 

  59. Murray, B., Hemperly, J., Prediger, E., Edelman, G., and Cunningham, B. (1986) Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM). J. Cell. Biol. 102, 189–193.

    Article  PubMed  CAS  Google Scholar 

  60. Nelson, R., Bates, P., and Rutishauser, U. (1995) Protein determinants for specific polysialylation of the neural cell adhesion molecule. J.Biol. Chem. 270, 17171–17179.

    Article  PubMed  CAS  Google Scholar 

  61. Rutishauser, U. (1996) Polysialic acid and the regulation of cell interactions. Curr. Opin. Cell. Biol. 8, 679–684.

    Article  PubMed  CAS  Google Scholar 

  62. Rao, Y., Wu, X., Gariepy, J., Rutishauser, U., and Siu, C. (1992) Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J.Cell. Biol. 118, 937–949.

    Article  PubMed  CAS  Google Scholar 

  63. Chuong, C. (1990) Adhesion molecules (N-CAM and tenascin) in embryonic development and tissue regeneration. J.Craniofac. Genet. Dev. Biol. 10, 147–161.

    PubMed  CAS  Google Scholar 

  64. Chuong, C. M., Widelitz, R. B., Jiang, T. X., Abbott, U. K., Lee, Y. S., and Chen, H. M. (1993) Roles of adhesion molecules NCAM and tenascin in limb skeletogenesis: analysis with antibody perturbation, exogenous gene expression, talpid mutants and activin stimulation. Prog. Clin. Biol. Res. 383B, 465–474.

    PubMed  CAS  Google Scholar 

  65. Abbott, U., Taylor, L., and Abplanalp, H. (1959) Studies with talpid2, an embryonic lethal of the fowl. J.Heredity 383B, 465–474.

    Google Scholar 

  66. Niederman, R. and Armstrong, P. (1972) Is abnormal limb bud morphology in the mutant talpid 2 chick embryo a result of altered intercellular adhesion? Studies employing cell sorting and fragment fusion. J.Exp. Zool. 181, 17–32.

    Article  PubMed  CAS  Google Scholar 

  67. Matsuyoshi, N., Hamaguchi, M., Taniguchi, S., Nagafuchi, A., Tsukita, S., and Takeichi, M. (1992) Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J.Cell. Biol. 118, 703–714.

    Article  PubMed  CAS  Google Scholar 

  68. Balsamo, J., Leung, T., and Ernst, H. (1996) Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J.Cell. Biol. 134, 801–813.

    Article  PubMed  CAS  Google Scholar 

  69. Lilien, J., Balsamo, J., Hoffman, S., and Eisenberg, C. (1997) β-catenin is a target for extracellular signals controlling cadherin function: the neurocan-GalNAcPTase connection. Curr. Top Dev. Biol. 35, 161–189.

    Article  PubMed  CAS  Google Scholar 

  70. Balsamo, J., Ernst, H., Zanin, M. K., Hoffman, S., and Lilien, J. (1995) The interaction of the retina cell surface N-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherinmediated adhesion. J . Cell. Biol. 129, 1391–401.

    Article  CAS  Google Scholar 

  71. Hoschuetzky, H., Aberle, H., and Kemler, R. (1994) β3-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J.Cell. Biol. 127, 1375–1380.

    Article  PubMed  CAS  Google Scholar 

  72. Shibamoto, S., Hayakawa, M., Takeuchi, K., Hori, T., Miyazawa, K., Kitamura, N., et al. (1995) Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes. J.Cell. Biol. 128, 949–957.

    Article  PubMed  CAS  Google Scholar 

  73. Daniel, J. M. and Reynolds, A. B. (1997) Tyrosine phosphorylation and cadherin/catenin function. Bioessays 19, 883–891.

    Article  PubMed  CAS  Google Scholar 

  74. Hazan, R. and Norton, L. (1998) The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J.Biol. Chem. 273, 9078–9084.

    Article  PubMed  CAS  Google Scholar 

  75. Papkoff, J. (1997) Regulation of complexed and free catenin pools by distinct mechanisms. J.Biol. Chem. 272, 4536–4543.

    PubMed  CAS  Google Scholar 

  76. Kinch, M., Clark, G., Der, C., and Burrridge, K. (1995) Tyrosine phosphorylation regulates the adhesion of ras-transformed breast epithelia. J.Cell. Biol. 130, 461–471.

    Article  PubMed  CAS  Google Scholar 

  77. Mo, Y. and Reynolds, A. (1996) Identification of murine p120cas isoforms in human tumor cell lines. Cancer Res. 56, 2633–2640.

    PubMed  CAS  Google Scholar 

  78. Ohkubo, T. and Ozawa, M. (1999) p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J.Biol. Chem. 274, 21409–21415.

    Article  PubMed  CAS  Google Scholar 

  79. Aono, S., Nakagawa, S., Reynolds, A. B., and Takeichi, M. (1999) p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J.Cell. Biol. 145, 551–562.

    Article  PubMed  CAS  Google Scholar 

  80. Rubinfeld, B., Souza, B., and Albert, I. (1993) Association of AP gene product with β3-catenin. Science 262, 1731–1734.

    Article  PubMed  CAS  Google Scholar 

  81. Su, L., Vogelstein, B., and Kinzler, K. (1993) Association of the APC tumor supressor protein with catenins. Science 262. 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  82. Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.

    Article  PubMed  CAS  Google Scholar 

  83. Huber, O., Korn, R., and McLaughlin, J. (1996) Nuclear localization of -catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10.

    Article  PubMed  CAS  Google Scholar 

  84. Moolenar, M., van de Wetering, M., and Oosterwegel, M. (1996) XTcf-3 transcription factor mediates β-catenininduced axis formation in Xenopus embryos. Cell 86, 391–399.

    Article  Google Scholar 

  85. Peifer, M., Pai, L.-M., and Casey, M. (1994) Phosphorylation of the Drosophila adherens junction protein armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166, 543–556.

    Article  PubMed  CAS  Google Scholar 

  86. Rubinfeld, B., Albert, I., and Porfiri, E. (1996) Binding of GSK-3β to the APC-β3-catenin complex and regulation of complex assembly. Science 272, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  87. Cadigan, K. and Nusse, R. (1997) Wnt signaling: a common theme in animal development. Genes Dec. 11, 3286–3305.

    Article  CAS  Google Scholar 

  88. Nusse, R. and Varmus, H. (1992) Wnt genes. Cell 60, 1073–1087.

    Google Scholar 

  89. Bahnot, P., Brink, M., and Samos, C. (1996) A new member of the frizzled family from Drosophila functions as a wingless recentor. Nature 382. 225–230.

    Article  Google Scholar 

  90. Klingensmith, J., Yand, Y., and Axelrod, D. (1996) Conservation of dishevelled structure and function between flies and mice: isolation and characterization of dv1–2. Mech. Dev. 58, 15–26.

    Article  PubMed  CAS  Google Scholar 

  91. Siegfried, E., Chou, T., and Perrimon, N. (1992) Wingless signaling acts through zeste-white 3, the Drosophila hommologue of glycogen svnthase kinaçe 3 to regulate engrailed and establish cell fate. Cell 7L 1167–1179.

    Article  Google Scholar 

  92. Tomlinson, A., Strapps, W., and Heemskerk, J.(1997) Linking frizzled and Wnt signaling in Drospohila. Development 124, 4515–4521.

    PubMed  CAS  Google Scholar 

  93. Cook, D., Fry, M., and Hughes, L. (1996) Wingless inactivities glycogen synthase kinase-3 via an intracellular signaling pathway which involves a protein kinase C. EMBO J. 15, 4526–4536.

    PubMed  CAS  Google Scholar 

  94. Munemitsu, S., Albert, I., Rubinfeld, B., and Polakis, P. (1996) Deletion of an amino-terminal sequence stabilizes [3-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol. Cell. Biol. 16, 4088–4094.

    PubMed  CAS  Google Scholar 

  95. Salomon, D., Sacco, P., and Roy, S. (1997) Regulation of P-catenin levels and localization by overexpression of olakoglobin and inhibition of the ubiquitin-proteasome system. J. Cell. Biol. 139, 1325–1335.

    Article  PubMed  CAS  Google Scholar 

  96. Orford, K., Crockett, C., Jensen, J., Weissmann, M., and Byers, S. (1997) Serine phosphorylation-regulated ubiquitination and degradation of β3-catenin. J. Biol. Chem. 272, 2473–2478.

    Article  Google Scholar 

  97. Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997)β3-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804.

    Article  PubMed  CAS  Google Scholar 

  98. Goode, N., Hughes, K., Woodgett, J., and Parker, P. (1992) Differential regulation of glycogen synthase kinase-3 beta by nrotein kinase C isotvnes. J. Biol. Chem. 267. 16878–16882.

    PubMed  CAS  Google Scholar 

  99. Fagatto, F., Gluck, U., and Gumbiner, B. (1998) Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr. Biol. 8, 181–190.

    Article  Google Scholar 

  100. Korinek, V., Barker, N., and Willert, K. (1998) Two members of the TCF family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol. Cell. Biol. 18, 1248–1256.

    PubMed  CAS  Google Scholar 

  101. Fagatto, F. and Gumbiner, B. (1994) Beta-catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries. Development 120, 3667–3679.

    Google Scholar 

  102. Novak, A., Shu, C., and Chungyee, L. (1998) Cell adhesion and the integrin-linked kinase regulate the LEF-1 and β3catenin signaling pathways. Proc. Natl. Acad. Sci. USA 95, 4374–4379.

    Article  PubMed  CAS  Google Scholar 

  103. Waltzer, L. and Bienz, M. (1998) CBP represses the transcription factor TCF to antagonize wingless signaling. Nature 395, 521–525.

    Article  PubMed  CAS  Google Scholar 

  104. Oosterwegel, M., van de Wetering, M., and Timmerman, J. (1993) Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Development 118, 439–448.

    PubMed  CAS  Google Scholar 

  105. Kratochwil, K., Dull, M., Farinas, I., Galceran, J., and Grosschedl, R. (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 10, 1382–1394.

    Article  PubMed  CAS  Google Scholar 

  106. Bradley, R. S., Cowin, P., and Brown, A. M. (1993) Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J. Cell. Biol. 123, 1857–1865.

    Article  PubMed  CAS  Google Scholar 

  107. Hinck, L., Nelson, W. J., and Papkoff, J. (1994) Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. J. Cell. Biol. 124, 729–741.

    Article  PubMed  CAS  Google Scholar 

  108. Zakany, J. and Duboule, D. (1993) Correlation of expression of Wnt-1 in developing limbs with abnormalities in growth and skeletal patterning. Nature 362, 546–549.

    Article  PubMed  CAS  Google Scholar 

  109. Torres, M., Yang-Snyder, J., Purcell, S., DeMarais, A., and McGrew, L. (1996) Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell. Biol. 133, 1123–1137.

    Article  PubMed  CAS  Google Scholar 

  110. Parr, B. A. and McMahon, A. P. (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limB. Nature 374, 350–353.

    Article  PubMed  CAS  Google Scholar 

  111. Gavin, B., McMahon, J., and McMahon, A. (1990) Expression of multiple novel Wnt- 1 /int- 1 -related genes during fetal and adult mouse development. Genes Dev. 4, 2319–2332.

    Article  PubMed  CAS  Google Scholar 

  112. Yang, Y. and Niswander, L. (1995) Interaction between the signaling molecules WNT7a and SHH during vertebrate limb develonment: dorsal signals regulate anteroposterior patterning. Cell 80, 939–947.

    Article  PubMed  CAS  Google Scholar 

  113. Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M., and Tabin, C. (1995) Induction of the LIM homeobox gene Lmx 1 by WNT7a establishes dorsoventral pattern in the vertebrate limB. Cell 83, 631–640.

    Article  PubMed  CAS  Google Scholar 

  114. Rudnicki, J. A. and Brown, A. M. (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev. Biol. 185, 104–118.

    Article  PubMed  CAS  Google Scholar 

  115. Stark, K., Vainio, S., Vassileva, G., and McMahon, A. (1994) Epithelial transformation of mesonephric mesenchyme in the developing kidney regulated by wnt-4. Nature 372, 679–683.

    Article  PubMed  CAS  Google Scholar 

  116. Kengaku, M., Capdevila, J., and Rodriguez-Esteban, C. (1998) Distinct Wnt pathways regulating AER and dorsoventral polarity in the chick limb bud. Science 280, 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  117. Roelink, H. and Nusse, R. (1990) Expression of two members of the Wnt family during mouse development-restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 5, 381–388.

    Article  Google Scholar 

  118. Fischer, L., Boland, G., and Tuan, R. S. (2002) Functional involvement of Wnt signaling in BMP-2 stimulation of mesenchymal chondrogenesis. J. Cell. Biochem. 84, 816–831.

    Article  PubMed  CAS  Google Scholar 

  119. Fischer, L., Boland, G., and Tuan, R. S. (2002) Wnt-3a enhances BMP-2 mediated chondrogenesis of murine C3H10T1/2 mesenchvmal cells. J. Biol. Chem. 277, 30870–30878.

    Article  PubMed  CAS  Google Scholar 

  120. Fischer, L., Haas, A., and Tuan, R. (2001) Cell adhesion and signaling mechanisms in BMP-2 induction of mesenchymal chondrogenesis. Signal Transduction 2, 66–78.

    Article  Google Scholar 

  121. Tufan, A. and Tuan, R.(2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered Ncadherin-related functions. FASEB J. 15, 1436–1438.

    PubMed  CAS  Google Scholar 

  122. Hartmann, C. and Tabin, C. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limB. Development 127, 3141–3159.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuan, R.S. (2004). Molecular Basis of Cell—Cell Interaction and Signaling in Mesenchymal Chondrogenesis. In: Massaro, E.J., Rogers, J.M. (eds) The Skeleton. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-736-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-736-9_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-427-2

  • Online ISBN: 978-1-59259-736-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics