Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer chemotherapy is a rather young discipline. It has been pursued with scientific vigor and multinational collaborations only since the mid-20th century. Although 92 approved anticancer drugs are available today for the treatment of more than 200 different tumor entities, effective therapies for most of these tumors are lacking (1). Out of the 92 registered drugs, 17 are considered by oncologists to be more broadly applicable and 12 additional agents are perceived as having certain advantages in some clinical settings (2). They are mostly cytotoxic in nature and act by a very limited number of molecular mechanisms. Thus, the need for novel drugs to treat malignant disease requiring systemic therapy is still pressing. Public institutions, the pharmaceutical industry, and, more recently, small business and biotech companies create hundreds of thousands of compounds with potential anticancer activity. Only a certain number of drugs and concepts, however, can be evaluated clinically because of cost and ethical considerations. A preselection, called the screening process, is therefore required. The aim of screening efforts is to identify products that will produce antitumor effects matching the activity criteria used to define which compounds can progress to the next stage in the preclinical development program. Anticancer drug screening can be performed using various types of in vitro and in vivo tumor models. The ideal screening system, however, should combine speed, simplicity, and low costs with optimal predictability of pharmacodynamic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sikora K, Advani S, Koroltchouk V, et al. Essential drugs for cancer therapy: a World Health Organization consultation. Ann Oncol 1999; 10: 385–390.

    Article  PubMed  CAS  Google Scholar 

  2. Aherne W, Garret M, McDonald T, Workman P. Mechanism-based high-throughput screening for novel anticancer drug discovery. In: Baguley BC, Kerr DJ (eds). Anticancer Drug Development. London, UK; San Diego, CA: Academic Press, 2002, pp. 249–267.

    Google Scholar 

  3. Goldin A, Woolley PV, Tew KD, Schein PS. Sources of agents and their selection for antitumor activity screening. In: Hilgard P, Hellman K (eds). Anticancer Drug Development, Barcelona, Spain: Prous, 1983, pp. 9–45.

    Google Scholar 

  4. Simpson BT, Marsh MC. Chemotherapeutic experiments with coaltar dyes on spontaneous mouse tumors. J Cancer Res 1926; 10: 50–60.

    CAS  Google Scholar 

  5. Mendel B. Action of ferricyanide on tumor cells. Am J Cancer 1937; 30: 549–552.

    Article  CAS  Google Scholar 

  6. Boyland E. Experiments on the chemotherapy of cancer. I. The effects of certain antibacterial substances and related compounds. Biochem J 1938; 32: 1207–1213.

    PubMed  CAS  Google Scholar 

  7. Shear MJ, Hartwell JL, Peters VB, et al. Some aspects of a joint institutional research program on chemotherapy of cancer: current laboratory and clinical experiments with bacterial polysaccharide and with synthetic organic compounds. In: Moulton FR (ed). Approaches to Tumor Chemotherapy. Washington DC: American Association for the Advancement Science, 1947, pp. 236–284.

    Google Scholar 

  8. Gilman A, Philips FS. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 1946; 103: 409–415.

    Article  CAS  Google Scholar 

  9. Faber S, Diamond LK, Mercer RD, et al. Temporary remissions in acute leukemia in children produced by folic acid antagonists, 4-aminopteroyl-glutamic acid (aminopterin). NEngl JMed 1948; 238: 787–793.

    Article  Google Scholar 

  10. Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in the NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84: 1424–1431.

    Article  PubMed  CAS  Google Scholar 

  11. Zubrod CG, Schepartz S, Leiter J, et al. The chemotherapy program of the National Cancer Institute: history, analysis and plans. Cancer Chemother Rep 1966; 50: 349–540.

    Google Scholar 

  12. Venditti JM. Preclinical drug development: rationale and methods. Semin Oncol 1981; 8: 349–361.

    PubMed  CAS  Google Scholar 

  13. Monks A, Scudiero D, Shoemaker R, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 1991; 83: 757–766.

    Article  PubMed  CAS  Google Scholar 

  14. Paull KD, Shoemaker RH, Hodes L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989; 81: 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  15. Dykes DJ, Abbott BJ, Mayo JG, et al. Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. In: Fiebig HH, Berger DP (eds). Contributions to Oncology, Vol. 42: Immunedeficient Mice in Oncology. Basel: Karger, 1992, pp. 1–22.

    Google Scholar 

  16. Hollingshead M, Plowman J, Alley MC, Mayo J, Sausville E. The hollow fibre assay. In: Fiebig HH, Burger AM (eds). Contributions to Oncology, Vol. 54: Relevance of Tumor Models for Anticancer Drug Development. Basel: Karger, 1999, pp. 109–120.

    Google Scholar 

  17. Plowman J, Camalier R, Alley M, Sausville E, Schepartz S. US-NCI testing procedures. In: Fiebig HH, Burger AM (eds). Contributions to Oncology, Vol. 54: Relevance of Tumor Models for Anticancer Drug Development. Basel: Karger, 1999, pp. 121–135.

    Google Scholar 

  18. Sausville EA, Feigal E. Evolving approaches to cancer drug discovery and development at the National Cancer Institute, USA. Ann Oncol 1999; 10: 1287–1291.

    Google Scholar 

  19. Scherf U, Ross DT, Waltham M, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000; 24: 236–244.

    Article  PubMed  CAS  Google Scholar 

  20. Beveridge M, Park YW, Hermes J, Marenghi A, Brophy G, Santos A. Detection of p56ick kinase activity using scintillation proximity assay in 384-well format and imaging proximity assay in 384- and 1536-well format. J Biomol Screen 2000; 5: 205–211.

    Article  PubMed  CAS  Google Scholar 

  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.

    Article  PubMed  CAS  Google Scholar 

  22. Alley MC, Scudiero DA, Monks A, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 589–601.

    PubMed  CAS  Google Scholar 

  23. Skehan P, Storeng R, Scudiero D, et al. New colorimetric assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82: 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  24. Dengler W, Schulte J, Berger DP, Mertelsmann R, Fiebig HH. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 1995; 6: 522–532.

    Article  PubMed  CAS  Google Scholar 

  25. Crouch SPM, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 1993; 160: 81–88.

    Article  PubMed  CAS  Google Scholar 

  26. Andreotti PE, Cree IA, Kurbacher CM, et al. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res 1995; 55: 5276–5282.

    PubMed  CAS  Google Scholar 

  27. Phillips RM. In vitro models of solid-tumour biology and drug delivery: implications for and applications to target-oriented screening for novel anticancer drugs. In: Fiebig HH, Burger AM (eds). Con-

    Google Scholar 

  28. Burger and Fiebig

    Google Scholar 

  29. tributions to Oncology, Vol. 54: Relevance of Tumor Models for Anticancer Drug Development. Basel: Karger, 1999, pp. 67–80.

    Google Scholar 

  30. Phillips RM, Clayton MRK. Plateau phase cultures: an experimental model for identifying drugs which are bioactivated within the microenvironment of solid tumours. Br J Cancer 1997; 75: 196–201.

    Article  PubMed  CAS  Google Scholar 

  31. Kelland RL. Telomerase: biology and phase I trials. Lancet Oncol 2001; 2: 95–102.

    Article  PubMed  CAS  Google Scholar 

  32. Holt SE, Shay JW, Wright WE. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol 1996; 14: 1734–1741.

    Article  Google Scholar 

  33. Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20: 6958–6968.

    Article  PubMed  CAS  Google Scholar 

  34. Nassani I, Yamori T, Tsuruo T. Screening with COMPARE analysis for telomerase inhibitors. In: Double JA, Thompson MJ (eds). Methods in Molecular Biology, Vol. 191: Telomeres and Telomerase. Totowa, NJ: Humana Press, 2002, pp. 197–207.

    Google Scholar 

  35. Nassani I, Seimiya H, Yamori T, Tsuruo T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res 1999; 59: 4004–4011.

    Google Scholar 

  36. Schächtele C, Trotzke F, Mundt M, Finkenzeller G, Marme D. Robot screening: a new dimension in target-oriented drug discovery. In: Fiebig HH, Burger AM (eds). Contributions to Oncology, Vol. 54: Relevance of Tumor Models for Anticancer Drug Development. Basel: Karger, 1999, pp. 249–260.

    Google Scholar 

  37. Goldman JM. Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet 2000; 355: 1031–1032.

    Article  PubMed  CAS  Google Scholar 

  38. Mow BM, Chandra J, Svingen PA, et al. Effects of the Bcr/abl kinase inhibitors ST1571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 2002; 99: 664–671.

    Article  PubMed  CAS  Google Scholar 

  39. Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 2000; 6: 3319–3326.

    PubMed  CAS  Google Scholar 

  40. Burger AM, Kaur G, Hollingshead M, et al. Antiproliferative activity in vitro and in vivo of the spicamycin analogue KRN5500 with altered glycoprotein expression in vitro. Clin Cancer Res 1997; 3: 455–463.

    PubMed  CAS  Google Scholar 

  41. Kamishohara M, Kenney S, Domergue R, Vistica DT, Sausville EA. Selective accumulation of the endoplasmic reticulum-Golgi intermediate compartment induced by the antitumor drug KRN55O0. Exp Cell Res 2000; 256: 468–479.

    Article  PubMed  CAS  Google Scholar 

  42. Kenny S, Kamishohara M, Boswell J, Sausville EA, Vistica D. KRN5500: an antileukemic analog of ceramide. Proc Am Assoc Cancer Res 2002; 43: 409.

    Google Scholar 

  43. Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W. Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer 2000; 29: 137–146.

    Article  PubMed  CAS  Google Scholar 

  44. Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999; 1: 60–67.

    Article  PubMed  CAS  Google Scholar 

  45. Marko D, Schatzle S, Friedel A, et al. Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br J Cancer 2001; 84: 283–289.

    Article  PubMed  CAS  Google Scholar 

  46. Fiebig HH, Schmid JR, Bieser W, Henss H, Löhr GW. Colony assay with human tumor xenografts, murine tumors and human bone marrow. Potential for anticancer drug development. Eur J Cancer Clin Oncol 1987; 23: 937–948.

    Article  PubMed  CAS  Google Scholar 

  47. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend S. Integrating genetic approaches into the discovery of anticancer drugs. Science 1997; 278: 1064–1068.

    Article  PubMed  CAS  Google Scholar 

  48. Simon JA, Szankasi P, Nguyen DK, et al. Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res 2000; 60: 328–333.

    PubMed  CAS  Google Scholar 

  49. Gura, T. Systems for identifying new drugs are often faulty. Science 1997; 278: 1041–1042.

    Article  PubMed  CAS  Google Scholar 

  50. DeVita JV. Principles of chemotherapy. In: DeVita VT, Hellmann S, Rosenberg SA (eds). Cancer Principles & Practice of Oncology, 3rd Edit. Philadelphia, PA: Lippincott, 1989, pp. 277–300.

    Google Scholar 

  51. Salmon, SE, Hamburger AW, Soehnlen B, Durie BGM, Alberts DS, Moon TE. Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N Engl J Med 1978; 298: 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  52. Scholz CC, Berger DP, Winterhalter BR, Henss H, Fiebig HH. Correlation of drug response in patients and in the clonogenic assay using solid human tumor xenografts. Eur J Cancer 1990; 26: 901–905.

    Article  PubMed  CAS  Google Scholar 

  53. Burger AM, Fiebig HH. Screening using animal systems. In: Baguley BC, Kerr DJ (eds). Anticancer Drug Development. San Diego, CA: Academic Press, 2001, pp. 285–297.

    Google Scholar 

  54. Fiebig HH, Dengler WA, Roth T. Human tumor xenografts: predictivity, characterization and discovery of new anticancer agents. In: Fiebig HH, Burger AM (eds). Contributions to Oncology, Vol 54: Relevance of Tumor Models for Anticancer Drug Development. Basel: Karger, 1999, pp. 29–50.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burger, A.M., Fiebig, HH. (2004). Preclinical Screening for New Anticancer Agents. In: Figg, W.D., McLeod, H.L. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-734-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-734-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5345-5

  • Online ISBN: 978-1-59259-734-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics