Skip to main content

Abstract

The central nervous system (CNS) is an increasingly recognized site of tumor recurrence. Tumor spread to the CNS, manifest as either neoplastic meningitis or intraparenchymal metastases, is in part due to the pharmacologic sanctuary created by the blood-brain (BBB) and blood-cerebrospinal fluid (CSF) barriers. As a result, tumor cells within the CNS are protected from the cytotoxic effects of systemically administered chemotherapy. Leukemias and lymphomas remain the most common cancers with a predilection for leptomeningeal spread. However, there are many solid tumors that may also disseminate within the CNS including breast and small-cell lung cancer (1–3); primary CNS tumors such as medulloblastoma and glioma (4,5); and childhood tumors such as neuroblastoma, retinoblastoma, and rhabdomyosarcoma (6–9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nugent J, Bunn P7, Matthews M, et al. CNS metastases in small cell bronchogenic carcinoma: increasing frequency and changing pattern with lengthening survival. Cancer 1979; 44: 1885–1883.

    Article  PubMed  CAS  Google Scholar 

  2. Rosen S, Aisner J, Makuch R, et al. Carcinomatous leptomeningitis in small cell lung cancer: a clinicopathologic review of the National Cancer Institute experience. Medicine 1982; 61: 45–53.

    Article  PubMed  CAS  Google Scholar 

  3. Yap H, Yap B, Tashima C, DiStefano A, Blumenschein G. Meningeal carcinomatosis in breast cancer. Cancer 1978; 42: 283–286.

    Article  PubMed  CAS  Google Scholar 

  4. Chintagumpala M, Berg SL, Blaney S. Treatment controversies in medulloblastoma. Curr Opin Oncol 2001; 13: 154–159.

    Article  PubMed  CAS  Google Scholar 

  5. Whelan H, Sung J, Mastri A. Diffuse leptomeningeal gliomatosis: report of three cases. Clin Neuropathol 1987; 6: 164–168.

    PubMed  CAS  Google Scholar 

  6. Meli F, Boccaleri C, Manzitti J, Lylyk P. Meningeal dissemination of retinoblastoma: CT findings in with patients. Am J Neuroradiol 1990; 11: 983–986.

    PubMed  CAS  Google Scholar 

  7. Blatt J, Fitz C, Mirro J, Jr. Recognition of central nervous system metastases in children with metastatic primary extracranial neuroblastoma. Pediatr Hematol Oncol 1997; 14: 233241.

    Google Scholar 

  8. Shaw PJ, Eden T. Neuroblastoma with intracranial involvement: an ENSG study. Med Pediatr Oncol 1992; 20: 149–155.

    Article  PubMed  CAS  Google Scholar 

  9. Kline R, Oseas R, Jolley S, et al. Leptomeningeal metastasis from a paraspinal rhabdomyosarcoma with a del(13)t(1:13)(q23,q32) in a 14-month-old boy. Cancer Genet Cytogenet 1997; 15: 97–101.

    Article  Google Scholar 

  10. Pardridge W, Oldendorf W, Cancilla P, et al. Blood brain barrier: interface between internal medicine and the brain. Ann Intern Med 1986; 105: 82–95.

    Article  PubMed  CAS  Google Scholar 

  11. Betz A. An overview of the multiple functions of the blood-brain barrier. NIDA Res Monogr 1992; 120: 5–72.

    Google Scholar 

  12. Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 1999; 96: 3900–3905.

    Article  PubMed  CAS  Google Scholar 

  13. Schinkel A. P-glycoprotein, agatekeeperin the blood-brain barrier. Adv Drug Deliv Rev 1999; 36: 179–194.

    Article  Google Scholar 

  14. Angeletti RH, Novikoff PM, Juvvadi SR, Fritschy JM, Meier PJ, Wolkoff AW. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci USA 1997; 94: 283–286.

    Article  PubMed  CAS  Google Scholar 

  15. Wijnholds J, deLange EC, Scheffer GL, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 2000; 105: 279–285.

    Article  PubMed  CAS  Google Scholar 

  16. Patel M, Blaney S, Balis F. Pharmacokinetics of drug delivery to the central nervous system. In: Grochow L, Ames M (eds). A Clinician’ s Guide to Chemotherapy Pharmacokinetics and Pharmacodynamics. Baltimore, MD: Williams & Wilkins, 1998, pp. 67–90.

    Google Scholar 

  17. Balis F, Savitch J, Bleyer B, Reaman G, Poplack D. Remission induction of meningeal leukemia with high-dose intravenous methotrexate. J Clin Oncol 1985; 11: 74–86.

    Google Scholar 

  18. Poplack D, Bleyer W, Horowitz M. Pharmacology of antineoplastic agents in cerebrospinal fluid. In: Wood JH (ed). Neurobiology of Cerebrospinal Fluid, Vol. II. New York, NY: Plenum Press, 1980, pp. 561–568.

    Chapter  Google Scholar 

  19. Larson S, Schall G, DiChiro G. The influence of previous lumbar puncture and pneumoencephalography on the incidence of unsuccessful radioisotope cisternography. J Nucl Med 1971; 12: 555–557.

    PubMed  CAS  Google Scholar 

  20. Di Chiro G, Hammock MK, Bleyer WA. Spinal descent of cerebrospinal fluid in man. Neurology 1976; 26: 1–8.

    Article  PubMed  CAS  Google Scholar 

  21. Rieselbach RE, Di Chiro G, Freireich EJ, Rail DP. Subarachnoid distribution of drugs after lumbar injection. N Engl J Med 1962; 267: 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  22. Haaxma-Reiche H, Piers DA, Beekhuis H. Normal cerebrospinal fluid dynamics: a study with intraventricular injection of 111-In-DTPA in leukemia and lymphoma without meningeal involvement. Arch Neurol 1989; 46: 997–999.

    Article  PubMed  CAS  Google Scholar 

  23. Blasberg R, Patlak C, FernstermacherJ. Intrathecal chemotherapy. Brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975; 195: 73–83.

    PubMed  CAS  Google Scholar 

  24. Sagar S. Carcinomatous meningitis: it does not have to be a death sentence. Oncology 2002; 237–243.

    Google Scholar 

  25. Penn R, York M, Paice J. Catheter systems for intrathecal drug delivery. J Neurosurg 1995; 83: 215 217.

    Google Scholar 

  26. Shapiro W, Young D, Mehta M. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med 1975; 293: 161–166.

    Article  PubMed  CAS  Google Scholar 

  27. Bleyer W, Drake J, Chabner B. Neurotoxicity and elevated cerebrospinal fluid methotrexate concentration in meningeal leukemia. N Engl J Med 1973; 289: 770–773.

    Article  PubMed  CAS  Google Scholar 

  28. Price R, Jamieson P. The central nervous system in childhood leukemia. II. Subacute leukoencephalopathy. Cancer 1975; 35: 306–318.

    Article  PubMed  CAS  Google Scholar 

  29. Bleyer W, Poplack D, Simon R, et al. Concentration x time’ methotrexate via a subcutaneous reservoir: a less toxic regimen for intraventricular chemotherapy of central nervous system neoplasms. Blood 1978; 51: 835–842.

    PubMed  CAS  Google Scholar 

  30. Moser AM, Adamson PC, Gillespie AJ, Poplack DG, Balis FM. Intraventricular concentration times time (C x T) methotrexate and cytarabine for patients with recurrent meningeal leukemia and lymphoma. Cancer 1999; 85: 511–516.

    Article  PubMed  CAS  Google Scholar 

  31. Bleyer W, Savitch J, Holcenberg J. An improved regimen for intrathecal chemotherapy. Clin Pharmacol Ther 1976; 19: 103.

    Google Scholar 

  32. Bleyer W. Clinical pharmacology of intrathecal methotrexate. II. An improved dosage regimen derived from age-related pharmacokinetics. Cancer Treat Rep 1977; 61: 1419–1425.

    PubMed  CAS  Google Scholar 

  33. Bleyer W, Coccia P, Sather H, et al. Reduction in central nervous system leukemia with a pharmacokinetically derived intrathecal methotrexate dosage regimen. J Clin Oncol 1983; 1: 317–325.

    PubMed  CAS  Google Scholar 

  34. Chamberlain MC. Leptomeningeal metastasis: a comparison of gadolinium-enhanced MR and contrast-enhanced CT of the brain. Neurology 1990; 40: 435–447.

    Article  PubMed  CAS  Google Scholar 

  35. Glantz M, Hall W, Cole B, et al. Diagnosis, management, and survival of patients with leptomeningeal cancer based on cerebrospinal fluid-flow status. Cancer 1995; 75: 2919–2931.

    Article  PubMed  CAS  Google Scholar 

  36. Grossman S, Trump D, Chen D, Thompson G, Camargo E. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis: an evaluation using 111Indium-DTPA ventriculography. Am J Med 1982; 73: 641–647.

    Article  PubMed  CAS  Google Scholar 

  37. Blaney S, Poplack D, Godwin K, McCully C, Murphy R, Balis F. The effect of body position on ventricular cerebrospinal fluid methotrexate concentration following intralumbar administration. J Clin Oncol 1995; 13: 177–179.

    PubMed  CAS  Google Scholar 

  38. Pullen J, BoyettJ, Shuster J, et al. Extended triple intrathecal chemotherapy trial for prevention of CNS relapse in good-risk and poor-risk patients with B -progenitor acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol 1993; 11: 839–849.

    PubMed  CAS  Google Scholar 

  39. Tubergen D, Gilchrist G, O’Brien R, et al. Prevention of CNS disease in intermediate-risk acute lymphoblastic leukemia: comparison of cranial radiation and intrathecal methotrexate and the importance of systemic therapy: a Children’s Cancer Group report. J Clin Oncol 1993; 11: 520–526.

    PubMed  CAS  Google Scholar 

  40. Kumar P, Kun L, Hustu H, et al. Survival outcome following isolated central nervous sytem relapse treated with additional chemotherapy and craniospinal irradiation in childhood acute lymphoblastic leukemia. Int J Radiat Oncol Biol Phys 1995; 31: 477–483.

    Article  PubMed  CAS  Google Scholar 

  41. Kun L, Camitta B, Mulhern R, et al. Treatment of meningeal relapse in childhood acute lymphoblastic leukemia. I. Results of craniospinal irradiation. J Clin Oncol 1984; 2: 359–364.

    PubMed  CAS  Google Scholar 

  42. Ribiero R, Rivera G, Hudson M, et al. An intensive re-treatment protocol for children with an isolated CNS relapse of acute lymphoblastic leukemia. J Clin Oncol 1995; 13: 333–338.

    Google Scholar 

  43. Grossman SA, Spence A. NCCN clinic practice guidelines for carcinomatous/lymphomatous meningitis. Oncology 1999; 13: 144–152.

    Google Scholar 

  44. Bleyer W, Poplack D. Clinical studies on the central-nervous-system pharmacology of methotrexate. In: Pinedo H (ed). Clinical Pharmacology of Antineoplastic Drugs. Amsterdam: Elsevier/North-Holland Biomedica, 1978, pp. 115–131.

    Google Scholar 

  45. Bode U, McGrath I, Bleyer W, Poplack D, Glaubiger D. Active transport of methotrexate from cerebrospinal fluid in humans. Cancer Res 1980; 40: 2184–2187.

    PubMed  CAS  Google Scholar 

  46. Bleyer W. Neurologic sequelae of methotrexate and ionizing radiation: a new classification. Cancer Treat Rep 1981; 65: 89–98.

    PubMed  Google Scholar 

  47. Kaplan R, Wiernik P. Neurotoxicity of antineoplastic drugs. Semin Oncol 1982; 9: 103–130.

    PubMed  CAS  Google Scholar 

  48. Price R. Therapy related central nervous system disease in children with acute lymphocytic leukemia. In: Mastrangelo R, Poplack D, Riccardi R (eds). Central Nervous System Leukemia. Boston, MA: Martinus Nijhoff, 1983, pp. 71–81.

    Google Scholar 

  49. Adamson P, Balis F, McCully C, et al. Rescue of experimental intrathecal methotrexate overdose with carboxypeptidase-G2. J Clin Oncol 1991; 9: 670–674.

    PubMed  CAS  Google Scholar 

  50. Widemann B, Balis F, Shalabi A, et al. Carboxypeptidase-G2 (CPDG2) treatment of accidental intrathecal (IT) methotrexate (MTX) overdose. Proc Am Soc Clin Oncol 2002; 21: 123a.

    Google Scholar 

  51. Camiener G, Smith C. Studies of the enzymatic deamination of cytosine arabinoside. I. Enzyme distribution and species specificity. Biochem Pharmacol 1965; 14: 1405–1416.

    Article  PubMed  CAS  Google Scholar 

  52. Ho D, Frei E. Clinical pharmacology of 1–13-D-arabinofuranosyl cytosine. Clin Pharmacol Ther 1971; 12: 944–954.

    PubMed  CAS  Google Scholar 

  53. Przuntek H, Breithaupt H. Cytarabine: distribution in ventricular cerebrospinal fluid after lumbar injection. J Neurol 1981; 226: 73–76.

    Article  PubMed  CAS  Google Scholar 

  54. Zimm S, Collins J, Miser J, Chatterji D, Poplack D. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther 1984; 35: 826–830.

    Article  PubMed  CAS  Google Scholar 

  55. Berry B, Erlichman C. Clinical pharmacology of anticancer agents. In: Schilsky R, Milano G, Ratain M (eds). Principles of Antineoplastic Drug Development and Pharmacology. New York, NY: Marcel Dekker, 1996, pp. 75–122.

    Google Scholar 

  56. Russell JA, Powles RL. Neuropathy due to cytosine arabinoside. Br Med J 1974; 14: 652–653.

    Article  Google Scholar 

  57. Wolff L, Zighelboim J, Gale R. Paraplegia following intrathecal cytosine arabinoside. Cancer 1979; 43: 83–88.

    Article  PubMed  CAS  Google Scholar 

  58. Eden O, Goldie W, Wood T, Etcubanas E. Seizures following intrathecal cytosine arabinoside in young children with acute lymphocytic leukemia. Cancer 1978; 42: 53–58.

    Article  PubMed  CAS  Google Scholar 

  59. Baker W, Royer G, Weiss R. Cytarabine and neurologic toxicity. J Clin Oncol 1992; 9: 679–693.

    Google Scholar 

  60. Kim S, Khatibi S, Howell S, McCully C, Balis F, Poplack D. Prolongation of drug exposure in cerebrospinal fluid by encapsulation into DepoFoam. Cancer Res 1993; 53: 1596–1598.

    PubMed  CAS  Google Scholar 

  61. Kim S, Chatelut E, Kim J, et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol 1993; 11: 2186–2193.

    PubMed  CAS  Google Scholar 

  62. Glantz MJ, Jaeckle KA, Chamberlain MC, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 1999; 5: 3394–3402.

    PubMed  CAS  Google Scholar 

  63. Bomgaars L, Geyer J, Franklin J, et al. A Phase I study of intrathecal liposomal cytarabine (DepoCytTM) in pediatric patients with advanced meningeal malignancies. Proc Am Soc Clin Oncol 2002; 21: 109a.

    Google Scholar 

  64. Strong J, Collins J, Lester C, Poplack D. Pharmacokinetics of intraventricular and intravenous N,N’,N“-triethylenethiophosphoramide (thiotepa) in Rhesus monkeys and humans. Cancer Res 1986; 46: 6101–6104.

    PubMed  CAS  Google Scholar 

  65. Grossman S, Finkelstein D, Ruckdeschel J, Trump D, Moynihan T, Ettinger D. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol 1993; 11: 561–569.

    PubMed  CAS  Google Scholar 

  66. Fisher P, Kadan-Lottick N, Korones D. Intrathecal thiotepa: reappraisal of an established therapy. J Pediatr Hematol Oncol 2002; 24: 274–278.

    Article  PubMed  Google Scholar 

  67. Blaney S, Balis F, Murphy R, Arndt C, Gillespie A, Poplack D. A Phase 1 study of intrathecal mafosfamide (MF) in patients with refractory meningeal malignancies. Proceedings of American Society of Clinical Oncology. 1992; 11:113, abstract 274.

    Google Scholar 

  68. Blaney S, Balis F, Murphy R, Arndt C, Gillespie A, Poplack D. A Phase I study of intrathecal mafosfamide in patients with refractory meningeal malignancies. Proc Am Soc Clin Oncol 1992; 11: 113.

    Google Scholar 

  69. Blaney S, Boyett J, Friedman H, et al. Phase I trial of intrathecal mafosfamide in infants with embyronal CNS tumors: a Pediatric Brain Tumor Consortium Study, International Symposium on Pediatric NeuroOncology, London, England, 2002.

    Google Scholar 

  70. Blaney S, Heideman R, Berg S, et al. Phase I clinical trial of intrathecal topotecan in patients with neoplastic meningitis. J Clin Oncol 2003; 21: 143–147.

    Article  PubMed  CAS  Google Scholar 

  71. Archer GE, Sampson JH, McLendon RE, et al. Intrathecal busulfan treatment of human neoplastic meningitis in athymic nude rats. J Neuro-Oncol 1999; 44: 233–241.

    Article  CAS  Google Scholar 

  72. Quinn JA, Glantz M, Petros W, et al. Phase I trial of intrathecal Spartaject busulfan for patients with neoplastic meningitis. Proc Am Soc Clin Oncol 2002; 21: 80a.

    Google Scholar 

  73. Hui YF, Reitz J. Gemcitabine: a cytidine analog active against solid tumors. Am J Hlth Syst Pharm 1997; 54: 162–170.

    CAS  Google Scholar 

  74. Storniolo AM, Enas NH, Brown CA, Voi M, Rothenberg ML, Schilsky R. An investigational new drug treatment program for patients with gemcitabine: results for over 3000 patients with pancreatic carcinoma. Cancer 1999; 85: 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  75. Luftner D, Flath B, Akrivakis C, Grunewald R, Mergenthaler HG, Possinger K. Gemcitabine for palliative treatment in metastatic breast cancer. J Cancer Res Clin Oncol 1998; 124: 527–531.

    Article  PubMed  CAS  Google Scholar 

  76. Postmus PE, Schramel FMNH, Smit EF. Evaluation of new drugs in small cell lung cancer: the activity of gemcitabine. Semin Oncol 1998; 25: 79–82.

    PubMed  CAS  Google Scholar 

  77. Vogelzang NJ, Stadler WM. Gemcitabine and other new chemotherapeutic agents for the treatment of metastatic bladder cancer. Urology 1999; 53: 243–250.

    Article  PubMed  CAS  Google Scholar 

  78. Kerr JZ, Berg SL, Egorin MJ, et al. Pharmacokinetics of intravenous (IV) gemcitabine (DFDC) in nonhuman primates (NHP). Proc Am Assoc Cancer Res 2000; 41:706, abstract 4488A.

    Google Scholar 

  79. Egorin MJ, Zuhowski EG, McCully CM, et al. Pharmacokinetics of intrathecal (I.T.) gemcitabine (DFDC) in non-human primates (NHP). Proc Am Assoc Cancer Res 2000; 41:490, abstract 3128.

    Google Scholar 

  80. Papanastassiou V, Pizer B, Chandler C, Zananiri T, Kemshead J, Hopkins K. Pharmacokinetics and dose estimates following intrathecal administration of 131I-monoclonal antibodies for the treatment of central nervous system malignancies. Int J Radiat Oncol Biol Phys 1995; 31: 541–552.

    Article  PubMed  CAS  Google Scholar 

  81. Brown MT, Coleman RE, Friedman AH, et al. Intrathecal 131I-labeled antitenascin monoclonal antibody 8106 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: Phase 1 trial results. Clin Cancer Res 1996; 2: 963–972.

    PubMed  CAS  Google Scholar 

  82. Pastan I, Archer C, McLendon R, et al. Intrathecal administration of single-chain immunotoxin, LMB7 [B3(Fv)-PE38], produces cures of carcinomatous meningitis in a rat model. Proc Natl Acad Sci USA 1995; 92: 2765–2769.

    Article  PubMed  CAS  Google Scholar 

  83. Gunther R, Chelstrom L, Tuel-Ahlgren L, Simon J, Myers D, Uckun F. Biotherapy for xenografted human central nervous system leukemia in mice with severe combined immunodeficiency using B43 (Anti-CD19)-pokeweed antiviral protein immunotoxin. Blood 1995; 85: 2537–2545.

    PubMed  CAS  Google Scholar 

  84. Puri RK, Hoon DS, Leland P, et al. Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma. Cancer Res 1996; 56: 5631–5637.

    PubMed  CAS  Google Scholar 

  85. Blaney S, Cole D, Godwin D, Sung C, Poplack D, Balis F. Intrathecal administration of topotecan in nonhuman primates. Cancer Chemother Pharmacol 1995; 36: 121–124.

    Article  PubMed  CAS  Google Scholar 

  86. Blaney S, Heideman R, Cole D, et al. A Phase I study of intrathecal topotecan. Proc Am Soc Cancer Res 1998; 39: 2198.

    Google Scholar 

  87. Balis F, Poplack D. Cancer Chemotherapy. In: Nathan DG, Oski FA (eds). Hematology of Infancy and Childhood, 4th Edit. Philadelphia, PA: WB Saunders, 1993, pp. 1207–1238.

    Google Scholar 

  88. Blaney S, Cole D, Balis F, Godwin K, Poplack D. Plasma and cerebrospinal fluid pharmacokinetic study of topotecan in nonhuman primates. Cancer Res 1993; 53: 725–727.

    PubMed  CAS  Google Scholar 

  89. B alis F, Poplack D. Central nervous system pharmacology of antileukemia drugs. Am J Pediatr Hematol Oncol 1989; 11: 74–86.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stone, J., Blaney, S.M. (2004). Intrathecal Chemotherapy. In: Figg, W.D., McLeod, H.L. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-734-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-734-5_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5345-5

  • Online ISBN: 978-1-59259-734-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics