Skip to main content

ABC Transporters

Involvement in Multidrug Resistance and Drug Disposition

  • Chapter
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 455 Accesses

Abstract

Drug resistance can occur at several levels and is ultimately the cause of treatment failure in oncology. Cellular resistance has been the most widely studied, although host factors and host-tumor interactions may also play critical roles. Cellular resistance mediated by a reduced accumulation of chemotherapy can be due to the expression of drug transporters in tumor cells. The ATP-binding cassette (ABC) transporters, the largest transporter family, are found in a wide range of normal tissues and transport a wide range of substrates important in normal physiology. The normal tissue function of these transporters may be protection from toxic compounds such as xenobiotics. Because chemotherapeutic drugs have been found to be substrates for several of these transporters, some are referred to as multidrug transporters. This chapter reviews the role of these multidrug transporters in oncology and in normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean M, Hamon Y, Chimini G The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001; 42: 1007–1017.

    PubMed  CAS  Google Scholar 

  2. Gottesman MM, Foj o T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58.

    PubMed  CAS  Google Scholar 

  3. Klein I, Sarkadi B, Varadi A. An inventory of the human ABC proteins. Biochim Biophys Acta 1999; 1461: 237–262.

    PubMed  CAS  Google Scholar 

  4. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11: 1156–1166.

    PubMed  CAS  Google Scholar 

  5. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295–1302.

    PubMed  CAS  Google Scholar 

  6. Kruh GD, Zeng H, Rea PA, et al. MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr 2001; 33: 493–501.

    PubMed  CAS  Google Scholar 

  7. Lee JS, Paull K, Alvarez M, et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute Drug Screen. Mol Pharmacol 1994; 46: 627–6638.

    PubMed  CAS  Google Scholar 

  8. Schinkel AH. P-Glycoprotein, a gatekeeper in the blood brain barrier. Adv Drug Deliv Rev 1999; 36: 179–194.

    Google Scholar 

  9. Thiebaut F, Tsuruo T, Hamada H, Gotesman MM, Pastan I, Willingham MC Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and cross reactivity of one antibody with muscle protein. J Histochem Cytochem 1989; 37: 159–164.

    PubMed  CAS  Google Scholar 

  10. Bart J, Groen HJ, van der Graaf WT, et al. An oncological view on the blood—testis barrier. Lancet Oncol 2002; 3: 357–363.

    PubMed  Google Scholar 

  11. Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 1999; 96: 3900–3905.

    PubMed  CAS  Google Scholar 

  12. Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of mouse mdr-la p-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502.

    PubMed  CAS  Google Scholar 

  13. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdrla P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96: 1698–1705.

    PubMed  CAS  Google Scholar 

  14. Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC. The role of P-gycoprotein in blood brain barrier transport of morphine: transcortical microdialysis studies in mdrl a(-/-) and mdrl a (+/+) mice. Br J Pharmacol 1999; 128: 563–568.

    PubMed  CAS  Google Scholar 

  15. Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdrlA P-glycoprotein knockout mice. Endocrinology 1998; 139: 1789–1793.

    PubMed  CAS  Google Scholar 

  16. van Asperen J, Schinkel AH, Beijnen JH, Nooijen WJ, Borst P, van Tellingen O. Altered pharmacokinetics of vinblastine in Mdrla P-glycoprotein-deficient Mice. J Natl Cancer Inst 1996; 88: 994–999.

    PubMed  Google Scholar 

  17. Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-Glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–2524.

    PubMed  CAS  Google Scholar 

  18. Hendrikse NH, Schinkel AH, de Vries EG, et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 1998; 124: 1413–1418.

    PubMed  CAS  Google Scholar 

  19. van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdrla P-glycoprotein. Br J Cancer 1999; 79: 108–113.

    PubMed  Google Scholar 

  20. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 1999; 99: 552–557.

    PubMed  CAS  Google Scholar 

  21. Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000; 28: 655–6660.

    PubMed  CAS  Google Scholar 

  22. Karssen AM, Meijer OC, van der Sandt IC, et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 2001; 142: 2686–2694.

    PubMed  CAS  Google Scholar 

  23. de Lange EC, Marchand S, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. EurJ Pharm Sci 2000; 12: 85–93.

    Google Scholar 

  24. Yamaguchi H, Yano I, Saito H, Inui K. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J Pharmacol Exp Ther 2002; 300: 1063–1069.

    PubMed  CAS  Google Scholar 

  25. Meerum Terwogt JM, Malingre MM, Beijnen JH, et al. Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 1999; 5: 3379–3384.

    PubMed  CAS  Google Scholar 

  26. Malingre MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001; 84: 42–47.

    PubMed  Google Scholar 

  27. van Asperen J, van Tellingen O, Sparreboom A, Schinkel AH, Borst P, Nooijen WJ, et al. Enhanced oral bioavailability of paclitaxel in mice treated with the P- glycoprotein blocker SDZ PSC 833. Br J Cancer 1997; 76: 1181–1183.

    PubMed  Google Scholar 

  28. Guns ES, Denyssevych T, Dixon R, Bally MB, Mayer L. Drug interaction studies between paclitaxel (Taxol) and OC144–093 a new modulator of MDR in cancer chemotherapy. Eur J Drug Metab Phar- macokinet 2002; 27: 119–126.

    CAS  Google Scholar 

  29. Kimura Y, Aoki J, Kohno M, Ooka H, Tsuruo T, Nakanishi O. P-Glycoprotein inhibition by the multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemother Pharmacol 2002; 49: 322–328.

    PubMed  CAS  Google Scholar 

  30. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 1987; 84: 265–269.

    PubMed  CAS  Google Scholar 

  31. Bates SE. Solving the problems of multidrug resistance: ABC transporters in clinical oncology. In: Holland IB, Cole SPC, Kuchler K, Higgins CF (eds). ABC Proteins: From Bacteria to Man. London, UK: Elsevier Science, 2002, pp. 359–391.

    Google Scholar 

  32. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/ gp170 expression and its possible functional significance. J Natl Cancer Inst 1997; 89: 917–931.

    PubMed  CAS  Google Scholar 

  33. Mechetner E, Kyshtoobayeva A, Zonis S, et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998; 4: 389–398.

    PubMed  CAS  Google Scholar 

  34. Tsuruo T, Iida H, Tsukagoshi S, et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhancing cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981; 41: 1967–1972.

    PubMed  CAS  Google Scholar 

  35. Ozols RF, Cunnion RE, Klecker RW, et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 1987; 5: 641–647.

    PubMed  CAS  Google Scholar 

  36. Abraham J, Bakke S, Rutt A, et al. A phase II trial of combination chemotherapy and surgical resection for the treatment of metastatic adrenocortical carcinoma: continuous infusion doxorubicin, vincristine, and etoposide with daily mitotane as a P-glycoprotein antagonist. Cancer 2002; 94: 2333–2343.

    PubMed  CAS  Google Scholar 

  37. Cisternino S, Rousselle C, Dagenais C, Scheumann JM. Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharm Res 2001; 18: 183–190.

    PubMed  CAS  Google Scholar 

  38. Boote DJ, Dennis IF, Twentyman PR, et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol 1996; 14: 610–618.

    PubMed  CAS  Google Scholar 

  39. Giaccone G, Linn SC, Welink J, et al. A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 1997; 3: 2005–2015.

    PubMed  CAS  Google Scholar 

  40. Minami H, Ohtsu T, Fujii H, et al. Phase I study of intravenous PSC-833 and doxorubicin: reversal of multidrug resistance. Jpn J Cancer Res 2001; 92: 220–230.

    PubMed  CAS  Google Scholar 

  41. Fracasso PM, Westerveldt P, Fears CA, et al. Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. J Clin Oncol 2000; 18: 1124.

    PubMed  CAS  Google Scholar 

  42. Chico I, Kang MH, Bergan R, et al. Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J Clin Oncol 2001; 19: 832–842.

    PubMed  CAS  Google Scholar 

  43. Bates S, Kang M, Meadows B, et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer 2001; 92: 1577–1590.

    PubMed  CAS  Google Scholar 

  44. Sonneveld P, Marie J-P, Huisman C, et al. Reversal of multidrug resistance by SDZ PSC 833, combined with VAD (vincristine, doxorubicin, dexamethasone) in refractory multiple myeloma. A Phase I study. Leukemia 1996; 10: 1741–1750.

    PubMed  CAS  Google Scholar 

  45. Patnaik A, Warner E, Michael M, et al. Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors. J Clin Oncol 2000; 18: 3677–3689.

    PubMed  CAS  Google Scholar 

  46. Advani R, Fisher GA, Lum BL, et al. A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 2001; 7: 1221–1229.

    PubMed  CAS  Google Scholar 

  47. Fracasso PM, Brady MF, Moore DH, et al. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J Clin Oncol 2001; 19: 2975–2982.

    PubMed  CAS  Google Scholar 

  48. Baekelandt M, Lehne G, Trope CG, et al. Phase I/II trial of the multidrug-resistance modulator valspodar combined with cisplatin and doxorubicin in refractory ovarian cancer. J Clin Oncol 2001; 19: 2983–2993.

    PubMed  CAS  Google Scholar 

  49. Kornblau SM, Estey E, Madden T, et al. Phase I study of mitoxantrone plus etoposide with multidrug blockade by SDZ PSC-833 in relapsed or refractory acute myelogenous leukemia. J Clin Oncol 1997; 15: 1796–1802.

    PubMed  CAS  Google Scholar 

  50. Advani R, Visani G, Milligan D, et al. Treatment of poor prognosis AML patients using PSC833 (valspodar) plus mitoxantrone, etoposide, and cytarabine (PSC-MEC). In: Kaspers G, Pieters R (eds). Drug Resistance in Leukemia and Lymphoma III. New York, NY: Kluwer Academic/Plenum, 1999, pp. 47–56.

    Google Scholar 

  51. Lee EJ, George SL, Caligiuri M, et al. Parallel Phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: results of cancer and leukemia group B study 9420. J Clin Oncol 1999; 17: 2831–2839.

    PubMed  CAS  Google Scholar 

  52. Chauncey TR, Rankin C, Anderson JE, et al. A Phase I study of induction chemotherapy for older patients with newly diagnosed acute myeloid leukemia (AML) using mitoxantrone, etoposide, and the MDR modulator PSC 833: a Southwest Oncology Group study 9617. Leuk Res 2000; 24: 567–574.

    PubMed  CAS  Google Scholar 

  53. Don R, Karanes C, Spier C, et al. Phase I/II study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. J Clin Oncol 2001; 19: 1589–1599.

    Google Scholar 

  54. Visani G, Milligan D, Leoni F, et al. Combined action of PSC 833 (Valspodar), a novel MDR reversing agent, with mitoxantrone, etoposide and cytarabine in poor-prognosis acute myeloid leukemia. Leukemia 2001; 15: 764–771.

    PubMed  CAS  Google Scholar 

  55. Joly F, Joly F, Mangioni C, et al. A Phase 3 study of PSC 833 in combination with paclitaxel and carboplatin (PC-PSC) versus paclitaxel and carboplatin (PC) alone in patients with stage IV or sub-optimally debulked stage III epithelial ovarian cancer or primary cancer of the peritoneum. Proc Am Soc Clin Oncol 2002; abstract 809.

    Google Scholar 

  56. Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100: 1224–1232.

    PubMed  CAS  Google Scholar 

  57. Rowinsky EK, Smith L, Wang YM, et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J Clin Oncol 1998; 16: 2964–2976.

    PubMed  CAS  Google Scholar 

  58. Peck RA, Hewett J, Harding MW, et al. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J Clin Oncol 2001; 19: 3130–3141.

    PubMed  CAS  Google Scholar 

  59. Toppmeyer D, Seidman AD, Pollak M, et al. Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin Cancer Res 2002; 8: 670–678.

    PubMed  CAS  Google Scholar 

  60. Bramwell VH, Morris D, Ernst DS, et al. Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin Cancer Res 2002; 8: 383–393.

    PubMed  CAS  Google Scholar 

  61. Seiden MV, Swenerton KD, Matulonis U, et al. A Phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 2002; 86: 302–310.

    PubMed  CAS  Google Scholar 

  62. Rollins DE, Klaassen CD. Biliary excretion of drugs in man. Clin Pharmacokinet 1979; 4: 368–379.

    PubMed  CAS  Google Scholar 

  63. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis 2000; 20: 273–292.

    PubMed  CAS  Google Scholar 

  64. Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998; 273:10, 046–10, 050.

    Google Scholar 

  65. Bohme M, Muller M, Leier I, Jedlitschky G, Keppler D. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 1994; 107: 255–265.

    PubMed  CAS  Google Scholar 

  66. Song S, Suzuki H, Kawai R, Tanaka C, Akasaka I, Sugiyama Y. Dose-dependent effects of PSC 833 on its tissue distribution and on the biliary excretion of endogenous substrates in rats. Drug Metab Dispos 1998; 26: 1128–1133.

    PubMed  CAS  Google Scholar 

  67. Danielson PB. The cytochrome p450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002; 3: 561–597.

    PubMed  CAS  Google Scholar 

  68. Gorski JC, Hall SD, Jones DR, VandenBranden M, Wrighton SA. Regioselective biotransformation of midazolamby members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 47: 1643–1653.

    PubMed  CAS  Google Scholar 

  69. List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98: 3212–3220.

    PubMed  CAS  Google Scholar 

  70. Newman MJ, Rodarte JC, Benbatoul KD, et al. Discovery and characterization of 0C144–093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res 2000; 60: 2964–2972.

    PubMed  CAS  Google Scholar 

  71. van Zuylen L, Sparreboom A, van der Gaast A, et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 2000; 6: 1365–1371.

    PubMed  Google Scholar 

  72. Witherspoon SM, Emerson DL, Kerr BM, Lloyd TL, Dalton WS, Wissel PS. Flow cytometric assay of modulation of P-glycoprotein function in whole blood by the multidrug resistance inhibitor GG918. Clin Cancer Res 1996; 2: 7–12.

    PubMed  CAS  Google Scholar 

  73. Robey R, Bakke S, Stein W, et al. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833. Blood 1999; 93: 306–314.

    PubMed  CAS  Google Scholar 

  74. Piwnica-Worms D, Chiu ML, Budding M, Kronaauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 1993; 53: 977–984.

    PubMed  CAS  Google Scholar 

  75. Cole SPC, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–1654.

    PubMed  CAS  Google Scholar 

  76. Bakos E, Evers R, Szakacs G, Tusnady GE, Welker E, Szabo K, et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem 1998; 273:32, 167–32, 175.

    Google Scholar 

  77. Tammur J, Prades C, Arnould I, et al. Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene 2001; 273: 89–96.

    PubMed  CAS  Google Scholar 

  78. Schuetz JD, Connelly MC, Sun D, et al. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5: 1048–1051.

    PubMed  CAS  Google Scholar 

  79. Wijnholds J, Mol CA, van Deemter L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci USA 2000; 97: 7476–7481.

    PubMed  CAS  Google Scholar 

  80. Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275:30, 069–30, 074.

    Google Scholar 

  81. Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4: resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276:33, 747–33, 754.

    Google Scholar 

  82. Lai L, Tan TM. Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem J 2002; 361: 497–503.

    PubMed  CAS  Google Scholar 

  83. Wijnholds J, deLange EC, Scheffer GL, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 2000; 105: 279–285.

    PubMed  CAS  Google Scholar 

  84. Konig J, Rost D, Cui Y, Keppler D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 1999; 29: 1156–1163.

    PubMed  CAS  Google Scholar 

  85. Scheffer GL, Hu X, Pijnenborg AC, Wijnholds J, Bergen AA, Scheper RJ. MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest 2002; 82: 515–518.

    PubMed  CAS  Google Scholar 

  86. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002; 13: 595–603.

    PubMed  Google Scholar 

  87. Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62: 3144–3150.

    PubMed  CAS  Google Scholar 

  88. Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem 2001; 276: 46400–46407.

    PubMed  CAS  Google Scholar 

  89. Allen JD, Brinkhuis RF, van Deemter L, Wijnholds J, Schinkel AH. Extensive contribution of the multi-drug transporters P-glycoprotein and Mrpl to basal drug resistance. Cancer Res 2000; 60: 5761–5766.

    PubMed  CAS  Google Scholar 

  90. Lorico A, Rappa G, Finch RA, Yang D, Flavell RA, Sartorelli AC. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res 1997; 57: 5238–5242.

    PubMed  CAS  Google Scholar 

  91. Ilias A, Urban Z, Seidl TL, et al. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem 2002; 277:16, 860–16, 867.

    Google Scholar 

  92. Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 1999; 59: 8–13.

    PubMed  CAS  Google Scholar 

  93. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95:15, 665–15, 670.

    Google Scholar 

  94. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998; 58: 5337–5339.

    PubMed  CAS  Google Scholar 

  95. Litman T, Jensen U, Hansen A, et al. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta 2002; 1565: 6–16.

    PubMed  CAS  Google Scholar 

  96. Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002; 97: 626–630.

    PubMed  CAS  Google Scholar 

  97. Rocchi E, Khodjakov A, Volk EL, et al. The product of the ABC half-transporter gene ABCG2 (BCRP/ MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 2000; 271: 42–46.

    PubMed  CAS  Google Scholar 

  98. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001; 61: 3458–3464.

    PubMed  CAS  Google Scholar 

  99. Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000; 92: 1651–1656.

    PubMed  CAS  Google Scholar 

  100. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    PubMed  CAS  Google Scholar 

  101. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrpl gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002; 99:12, 339–12, 344.

    Google Scholar 

  102. Litman T, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 2000; 113: 2011–2021.

    PubMed  CAS  Google Scholar 

  103. Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999; 59: 5938–5946.

    PubMed  CAS  Google Scholar 

  104. Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 1999; 91: 429–433.

    PubMed  CAS  Google Scholar 

  105. Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59: 4559–4563.

    PubMed  CAS  Google Scholar 

  106. Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 2001; 280: 1216–1223.

    PubMed  CAS  Google Scholar 

  107. Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/9BCP-overexpressing cells. Cancer Res 2001; 61: 6635–6639.

    PubMed  CAS  Google Scholar 

  108. Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH. The mouse Bcrpl/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999; 59: 4237–4241.

    PubMed  CAS  Google Scholar 

  109. Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the bcrpl (abcg2) multidrug transporter in mouse cell lines selected for doxorubicin resistance. Cancer Res 2002; 62: 2294–2299.

    PubMed  CAS  Google Scholar 

  110. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002; 62: 5035–5040.

    PubMed  CAS  Google Scholar 

  111. Childs S, Yeh RL, Hui D, Ling V. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res 1998; 58: 4160–4167.

    PubMed  CAS  Google Scholar 

  112. Strautnieks SS, Bu11LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998; 20: 233–238.

    PubMed  CAS  Google Scholar 

  113. Laing NM, Belinsky MG, Kruh GD, et al. Amplification of the ATP-binding cassette 2 transporter gene is functionally linked with enhanced efflux of estramustine in ovarian carcinoma cells. Cancer Res 1998; 58: 1332–1337.

    PubMed  CAS  Google Scholar 

  114. Vulevic B, Chen Z, Boyd JT, et al. Cloning and characterization of human adenosine 5’-triphosphatebinding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res 2001; 61: 3339–3347.

    PubMed  CAS  Google Scholar 

  115. Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/AB CP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7: 145–152.

    PubMed  CAS  Google Scholar 

  116. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bates, S.E., Fojo, T. (2004). ABC Transporters. In: Figg, W.D., McLeod, H.L. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-734-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-734-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5345-5

  • Online ISBN: 978-1-59259-734-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics