Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 458 Accesses

Abstract

The setting of chemotherapy for cancer is rife with potential for significant drug interactions and this topic has been the subject of several excellent reviews (1–4). Most patients receive multidrug combinations for their malignancy. Also, many of these patients are treated with intercurrent medication for co-morbidity or for cancer-related disorders (coagulopathy, infection, pain, seizures, etc.). The clinical significance of these potential drug interactions is also all the more relevant in cancer chemotherapy because the cytotoxic agents traditionally used do not have clear therapeutic windows. That is, the doses selected produce toxicity in a significant proportion of patients without necessarily providing benefit. Drug interactions causing an increased exposure of the patient to the cytotoxic agent may produce more severe side effects, whereas those causing a decreased exposure may jeopardize tumor control. Unfortunately, both the good and bad effects of chemotherapy are unpredictable, and the influence of drug interactions in either eventuality is almost impossible to detect in individual patients. These, however, may be borne out in large-scale studies, or when combined with pharmacokinetic data (for example, see refs. 5,6). Therefore, most drug interactions in cancer chemotherapy may go undetected unless some a priori knowledge alerts the clinician or oncology pharmacist to their likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balis FM. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet 1986; 11: 223–235.

    Article  PubMed  CAS  Google Scholar 

  2. Loadman PM, Bibby MC. Pharmacokinetic drug interactions with anticancer drugs. Clin Pharmacokinet 1994; 26: 486–500.

    Article  PubMed  CAS  Google Scholar 

  3. van Meerten E, Verweij J, Schellens JH. Antineoplastic agents. Drug interactions of clinical significance. Drug Safety 1995; 12: 168–182.

    Article  PubMed  Google Scholar 

  4. McLeod HL. Clinically relevant drug—drug interactions in oncology. Br J Clin Pharmacol 1998; 45: 539–544.

    Article  PubMed  CAS  Google Scholar 

  5. Relling MV, Pui CH, Sandlund JT, et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 2000; 356: 285–290.

    Article  PubMed  CAS  Google Scholar 

  6. Yule SM, Boddy AV, Cole M, et al. Cyclophosphamide metabolism in children. Cancer Res 1995; 55: 803–809.

    PubMed  CAS  Google Scholar 

  7. Yu DK. The contribution of P-glycoprotein to pharmacokinetic drug—drug interactions. J Clin Pharmacol 1999; 39: 1203–1211.

    Article  PubMed  CAS  Google Scholar 

  8. Reigner B, Verweij J, Dirix L, et al. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin Cancer Res 1998; 4: 941–948.

    PubMed  CAS  Google Scholar 

  9. Nimmo W. Drugs, diseases and altered gastric emptying. In: Gibaldi M, Prescott, L (eds). Handbook of Clinical Pharmacokinetics. New York, NY: ADIS Health Science Press, 1983.

    Google Scholar 

  10. Riccardi R, Balis FM, Ferrara P, Lasorella A, Poplack DG, Mastrangelo R. Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 1986; 3: 319–324.

    Article  PubMed  CAS  Google Scholar 

  11. Pearson AD, Craft AW, Eastham EJ, et al. Small intestinal transit time affects methotrexate absorption in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 1985; 14: 211–215.

    Article  PubMed  CAS  Google Scholar 

  12. Swaisland H, Laight A, Stafford L, et al. Pharmacokinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers. Clin Pharmacokinet 2001; 40: 297–306.

    Article  PubMed  CAS  Google Scholar 

  13. Hughes AN, Rafi I, Griffin MJ, et al. Phase I studies with the nonclassical antifolate nolatrexed dihydrochloride (AG337, THYMITAQ) administered orally for 5 days. Clin Cancer Res 1999; 5: 111–118.

    PubMed  CAS  Google Scholar 

  14. Akhtar S, Beckman RA, Mould DR, Doyle E, Fields SZ, Wright J. Pretreatment with ranitidine does not reduce the bioavailability of orally administered topotecan. Cancer Chemother Pharmacol 2000; 46: 204–210.

    Article  PubMed  CAS  Google Scholar 

  15. Beale P, Judson I, Moore S, et al. Effect of gastric pH on the relative oral bioavailability and pharmacokinetics of temozolomide. Cancer Chemother Pharmacol 1999; 44: 389–394.

    Article  PubMed  CAS  Google Scholar 

  16. Saven A, Cheung WK, Smith I, et al. Pharmacokinetic study of oral and bolus intravenous 2-chlorodeoxyadenosine in patients with malignancy. J Clin Oncol 1996; 14: 978–983.

    PubMed  CAS  Google Scholar 

  17. Reigner B, Clive S, Cassidy J, et al. Influence of the antacid Maalox on the pharmacokinetics of capecitabine in cancer patients. Cancer Chemother Pharmacol 1999; 43: 309–315.

    Article  PubMed  CAS  Google Scholar 

  18. Malingre MM, Schellens JH, Van Tellingen O, et al. The co-solvent Cremophor EL limits absorption of orally administered paclitaxel in cancer patients. Br J Cancer 2001; 85: 1472–1477.

    Article  PubMed  CAS  Google Scholar 

  19. Zimm S, Collins JM, ONeill D, Chabner BA, Poplack DG. Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 1983; 34: 810–817.

    Article  PubMed  CAS  Google Scholar 

  20. Balis FM, Holcenberg JS, Zimm S, et al. The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clin Pharmacol Ther 1987; 41: 384–387.

    Article  PubMed  CAS  Google Scholar 

  21. Phillips TA, Howell A, Grieve RJ, Welling PG. Pharmacokinetics of oral and intravenous fluorouracil in humans. J Pharmaceut Sci 1980; 69: 1428–1431.

    Article  CAS  Google Scholar 

  22. DiAsio R. Clinical implications of dihydropyrimidine dehydrogenase on 5-FU pharmacology. Oncology 2001; 15: 21–26.

    PubMed  CAS  Google Scholar 

  23. Jones R, Twelves C. Oral uracil-tegafur: an alternative to intravenous 5-fluorouracil? Exp Opin Pharmacother 2001; 2: 1495–1505.

    Article  CAS  Google Scholar 

  24. Baker SD, Khor SP, Adjei AA, et al. Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 1996; 14: 3085–3096.

    PubMed  CAS  Google Scholar 

  25. Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001; 31: 469–497.

    Article  PubMed  CAS  Google Scholar 

  26. Schellens JH, Malingre MM, Kruijtzer CM, et al. Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur J Pharmaceut Sci 2000; 12: 103–110.

    Article  CAS  Google Scholar 

  27. van Asperen J, van Tellingen O, van der Valk MA, Rozenhart M, B eij nen JH. Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporin A. Clin Cancer Res 1998; 4: 2293–2297.

    PubMed  Google Scholar 

  28. van Asperen J, van Tellingen O, Sparreboom A, et al. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 1997; 76: 1181–1183.

    Article  PubMed  Google Scholar 

  29. Meerum Terwogt JM, Malingre MM, Beijnen JH, et al. Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 1999; 5: 3379–3384.

    PubMed  CAS  Google Scholar 

  30. Britten CD, Baker SD, Denis LJ, et al. Oral paclitaxel and concurrent cyclosporin A: targeting clinically relevant systemic exposure to paclitaxel. Clin Cancer Res 2000; 6: 3459–3468.

    PubMed  CAS  Google Scholar 

  31. Bardelmeijer HA, BeijnenJH, Brouwer KR, et al. Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin Cancer Res 2000; 6: 4416–4421.

    PubMed  CAS  Google Scholar 

  32. Malingre MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001; 84: 42–47.

    Article  PubMed  Google Scholar 

  33. Jonker JW. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000; 92: 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  34. Advani R, Fischer G, Lum B, et al. A phase I trial of doxorubicin, paclitaxel and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 2001; 7: 1221–1229.

    PubMed  CAS  Google Scholar 

  35. Bart J, Groen HJ, Hendrikse NH, van der Graaf WT, Vaalburg W, de Vries EG. The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 2000; 26: 449–462.

    Article  PubMed  CAS  Google Scholar 

  36. Schinkel AH, Wagenaar E, Mol C, Deemter L. P-glycoprotein in the blood brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–2524.

    Article  PubMed  CAS  Google Scholar 

  37. Hendrikse NH, Schinkel AH, de Vries EG, et al. Complete in vivo reversal of p-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 1998; 124: 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  38. Hendrikse NH, de Vries EG, Eriks-Fluks L, et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res 1999; 59: 2411–2416.

    PubMed  CAS  Google Scholar 

  39. Warren KE, Patel MC, McCully CM, Montuenga LM, Balis FM. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother Pharmacol 2000; 45: 207–212.

    Article  PubMed  CAS  Google Scholar 

  40. Toffoli G, Aita P, Sono R, et al. Effect of cyclosporin A on protein binding of teniposide in cancer patients. Anticancer Drugs 1999; 10: 511–518.

    Article  PubMed  CAS  Google Scholar 

  41. Long KS, Frenia ML. Methotrexate and nonsteroidal antiinflammatory drug interactions. Ann Pharmacother 1992; 26: 234–237.

    PubMed  Google Scholar 

  42. Ferrazzini G, Klein J, Sulh H, Chung D, Griesbrecht E, Koren G. Interaction between trimethoprimsulfamethoxazole and methotrexate in children with leukemia. J Pediatr 1990; 117: 823–826.

    Article  PubMed  CAS  Google Scholar 

  43. Treskes M, Holwerda U, Klein I, Pinedo HM, van der Vijgh WJ. The chemical reactivity of the modulating agent WR2721 (ethiofos) and its main metabolites with the antitumor agents cisplatin and carboplatin. Biochem Pharmacol 1991; 42: 2125–2130.

    Article  PubMed  CAS  Google Scholar 

  44. Korst AE, van der Sterre ML, Eeltink CM, Fichtinger-Schepman AM, Vermorken JB, van der Vijgh WJ. Pharmacokinetics of carboplatin with and without amifostine in patients with solid tumors. Clin Cancer Res 1997; 3: 697–703.

    PubMed  CAS  Google Scholar 

  45. Korst AE, van der Sterre ML, Gall HE, Fichtinger-Schepman AM, Vermorken JB, van der Vijgh WJ. Influence of amifostine on the pharmacokinetics of cisplatin in cancer patients. Clin Cancer Res 1998; 4: 331–336.

    PubMed  CAS  Google Scholar 

  46. Czejka M, Schueller J, Eder I, et al. Clinical pharmacokinetics and metabolism of paclitaxel after polychemotherapy with the cytoprotective agent amifostine. Anticancer Res 2000; 20: 3871–3877.

    PubMed  CAS  Google Scholar 

  47. Martens-Lobenhoffer J, Fuhlroth J, Ridwelski K. Influence of the administration of amifostine on the pharmacokinetics of 5-fluorouracil in patients with metastatic colorectal carcinoma. Int J Clin Pharmacol Ther 2000; 38: 41–44.

    PubMed  CAS  Google Scholar 

  48. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430.

    Article  PubMed  CAS  Google Scholar 

  49. Jones DR, Gorski JC, Hamman MA, Mayhew BS, Rider S, Hall SD. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290: 1116–1125.

    PubMed  CAS  Google Scholar 

  50. Weaver RJ. Assessment of drug-drug interactions: concepts and approaches. Xenobiotica 2001; 31: 499–538.

    Article  PubMed  CAS  Google Scholar 

  51. Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 2000; 28: 1031–1037.

    PubMed  CAS  Google Scholar 

  52. Bosque E. Possible drug interaction between itraconazole and vinorelbine tartrate leading to death after one dose of chemotherapy. Ann Intern Med 2001; 134: 427.

    Article  PubMed  CAS  Google Scholar 

  53. Yule S, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 1999; 27: 417–421.

    PubMed  CAS  Google Scholar 

  54. Ong CE, Coulter S, Birkett DJ, Bhasker CR, Miners JO. The xenobiotic inhibitor profile of cytochrome P4502C8. Br J Clin Pharmacol 2000; 50: 573–580.

    Article  PubMed  CAS  Google Scholar 

  55. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994; 54: 5543–5546.

    PubMed  CAS  Google Scholar 

  56. Jamis-Dow CA, Klecker RW, Katki AG, Collins JM. Metabolism of taxol by human and rat liver in vitro: a screen for drug interactions and interspecies differences. Cancer Chemother Pharmacol 1995; 36: 107–114.

    Article  PubMed  CAS  Google Scholar 

  57. Jamis-Dow CA, Pearl ML, Watkins PB, Blake DS, Klecker RW, Collins JM. Predicting drug interactions in vivo from experiments in vitro. Human studies with paclitaxel and ketoconazole. Am J Clin Oncol 1997; 20: 592–599.

    Article  PubMed  CAS  Google Scholar 

  58. Haaz MC, Rivory L, Riche C, Vernillet L, Robert J. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 1998; 58: 468–472.

    PubMed  CAS  Google Scholar 

  59. Dodds HM, Haaz MC, Riou JF, Robert J, Rivory LP. Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J Pharmacol Exp Ther 1998; 286: 578–583.

    PubMed  CAS  Google Scholar 

  60. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R. Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 1996; 56: 1296–1302.

    PubMed  CAS  Google Scholar 

  61. Kehrer D, Mathij ssen R, Verweij J, de Bruijn P, Sparreboom A. Modulation of irinotecan metabolism by ketoconazole. J Clin Oncol 2002; 20: 3122–3129.

    Article  PubMed  CAS  Google Scholar 

  62. Siegsmund MJ, Cardarelli C, Aksentijevich I, Sugimoto Y, Pastan I, Gottesman MM. Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 1994; 151: 485–491.

    PubMed  CAS  Google Scholar 

  63. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharmaceut Res 1999; 16: 408–414.

    Article  CAS  Google Scholar 

  64. Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491–502.

    Article  PubMed  CAS  Google Scholar 

  65. Bohme A, Ganser A, Hoelzer D. Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL. Ann Hematol 1995; 71: 311–312.

    Article  PubMed  CAS  Google Scholar 

  66. Gillies J, Hung KA, Fitzsimons E, Soutar R. Severe vincristine toxicity in combination with itraconazole. Clin Lab Haematol 1998; 20: 123–124.

    Article  PubMed  CAS  Google Scholar 

  67. Warren KE, McCully CM, Walsh TJ, Balis FM. Effect of fluconazole on the pharmacokinetics of doxorubicin in nonhuman primates. Antimicrob Agents Chemother 2000; 44: 1100–1101.

    Article  PubMed  CAS  Google Scholar 

  68. Fischer V, Rodriguez-Gascon A, Heitz F, et al. The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 1998; 26: 802–811.

    PubMed  CAS  Google Scholar 

  69. Ng SF, Waxman DJ. N,N;N“-triethylenethiophosphoramide (thio-TEPA) oxygenation by constitutive hepatic P450 enzymes and modulation of drug metabolism and clearance in vivo by P450-inducing agents. Cancer Res 1991; 51: 2340–2345.

    PubMed  CAS  Google Scholar 

  70. Huitema AD, Kerbusch T, Tibben MM, Rodenhuis S, Beijnen JH. Reduction of cyclophosphamide bioactivation by thioTEPA: critical sequence-dependency in high-dose chemotherapy regimens. Cancer Chemother Pharmacol 2000; 46: 119–127.

    Article  PubMed  CAS  Google Scholar 

  71. Rae J, Soukhova N, Flockhart D, Desta Z. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab Dispos 2002; 30: 525–530.

    Article  PubMed  CAS  Google Scholar 

  72. Ren S, Slatterly J. Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. AAPS Pharmaceut Sci 1999; 1: E14.

    Article  CAS  Google Scholar 

  73. Okuda H, Ogura K, Kato A, Takubo H, Watabe T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J Pharmacol Exp Ther 1998; 287: 791–799.

    PubMed  CAS  Google Scholar 

  74. Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y, Ohnishi Y. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 1997; 7: 35–43.

    Article  PubMed  CAS  Google Scholar 

  75. Yan J, Tyring SK, McCrary MM, et al. The effect of sorivudine on dihydropyrimidine dehydrogenase activity in patients with acute herpes zoster. Clin Pharmacol Ther 1997; 61: 563–573.

    Article  PubMed  CAS  Google Scholar 

  76. Desgranges C, Razaka G, De Clercq E, et al. Effect of (E)-5-(2-bromovinyl)uracil on the catabolism and antitumor activity of 5-fluorouracil in rats and leukemic mice. Cancer Res 1986; 46: 1094–1101.

    PubMed  CAS  Google Scholar 

  77. Ahmed FY, Johnston SJ, Cassidy J, et al. Eniluracil treatment completely inactivates dihydropyrimidine dehydrogenase in colorectal tumors. J Clin Oncol 1999; 17: 2439–2445.

    PubMed  CAS  Google Scholar 

  78. Evans TR, Di Salle E, Ornati G, et al. Phase I and endocrine study of exemestane (FCE 24304), a new aromatase inhibitor, in postmenopausal women. Cancer Res 1992; 52: 5933–5939.

    PubMed  CAS  Google Scholar 

  79. Yamazaki S, Hayashi M, Toth LN, Ozawa N. Lack of interaction between bropirimine and 5-fluorouracil on human dihydropyrimidine dehydrogenase. Xenobiotica 2001; 31: 25–31.

    Article  PubMed  CAS  Google Scholar 

  80. Watanabe M, Tateishi T, Takezawa N, et al. Effects of PR-350, a newly developed radiosensitizer, on dihydropyrimidine dehydrogenase activity and 5-fluorouracil pharmacokinetics. Cancer Chemother Pharmacol 2001; 47: 250–254.

    Article  PubMed  CAS  Google Scholar 

  81. Belle D, Callaghan J, Gorski J, et al. The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 2002; 53: 67–74.

    Article  PubMed  CAS  Google Scholar 

  82. Gurtoo HL, Marinello A, Struck R, Paul B, Dahms R. Studies on the mechanism of denaturation of cytochrome P-450 by cyclophosphamide and its metabolites. J Biol Chem 1981; 256:11, 691–11, 701.

    Google Scholar 

  83. Thomas H, Porter D, Bartelink I, et al. Randomized cross-over clinical trial to study potential pharmacokinetic interactions between cisplatin or carboplatin and etoposide. Br J Clin Pharmacol 2002; 53: 83–91.

    Article  PubMed  CAS  Google Scholar 

  84. Ando Y, Shimizu T, Nakamura K, et al. Potent and non-specific inhibition of cytochrome P450 by JM216, a new oral platinum agent. Br J Cancer 1998; 78: 1170–1174.

    Article  PubMed  CAS  Google Scholar 

  85. Boisdron-Celle M, Craipeau C, Brienza S, et al. Influence of oxaliplatin on 5-fluorouracil plasma clearance and clinical consequences. Cancer Chemother Pharmacol 2002; 49: 235–243.

    Article  PubMed  CAS  Google Scholar 

  86. Yoshisue K, Nagayama S, Shindo T, Kawaguchi Y. Effects of 5-fluorouracil on the drug-metabolizing enzymes of the small intestine and the consequent drug interaction with nifedipine in rats. J Pharmacol Exp Ther 2001; 297: 1166–1175.

    PubMed  CAS  Google Scholar 

  87. Kolesar J, Johnson C, Freeberg B, Berlin J, Schiller J. Warfarin-5-FU interaction: a series of consecutive case series. Pharmacotherapy 1999; 19: 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  88. Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet 2001; 40: 85–104.

    Article  PubMed  CAS  Google Scholar 

  89. GilbarP, Brodribb T. Phenytoin and fluorouracil interaction. Ann Pharmacother 2001; 35: 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  90. LeBlanc GA, Sundseth SS, Weber GF, Waxman DJ. Platinum anticancer drugs modulate P-450 mRNA levels and differentially alter hepatic drug and steroid hormone metabolism in male and female rats. Cancer Res 1992; 52: 540–547.

    PubMed  CAS  Google Scholar 

  91. Chang TK, Waxman DJ. Cyclophosphamide modulates rat hepatic cytochrome P450 2C11 and steroid 5 alpha-reductase activity and messenger RNA levels through the combined action of acrolein and phosphoramide mustard. Cancer Res 1993; 53: 2490–2497.

    PubMed  CAS  Google Scholar 

  92. Morgan ET. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 2001; 29: 207–212.

    PubMed  CAS  Google Scholar 

  93. Rivory LP, Slaviero K, Clarke J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer 2002; 87: 277 280.

    Google Scholar 

  94. Hassan M, Nilsson C, Olsson H, Lundin J, Osterborg A. The influence of interferon-alpha on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite in patients with multiple myeloma. Eur J Haematol 1999; 63: 163–170.

    Article  PubMed  CAS  Google Scholar 

  95. Danhauser LL, Freimann JH, Jr, Gilchrist TL, et al. Phase I and plasma pharmacokinetic study of infusional fluorouracil combined with recombinant interferon alfa-2b in patients with advanced cancer. J Clin Oncol 1993; 11: 751–761.

    PubMed  CAS  Google Scholar 

  96. Grem JL, McAtee N, Murphy RF, et al. A pilot study of gamma-lb-interferon in combination with fluorouracil, leucovorin, and alpha-2a-interferon. Clin Cancer Res 1997; 3: 1125–1134.

    PubMed  CAS  Google Scholar 

  97. Yee LK, Allegra CJ, Steinberg SM, Grem JL. Decreased catabolism of fluorouracil in peripheral blood mononuclear cells during combination therapy with fluorouracil, leucovorin, and interferon alpha-2a. J Natl Cancer Inst 1992; 84: 1820–1825.

    Article  PubMed  CAS  Google Scholar 

  98. Kim J, Zhi J, Satoh H, et al. Pharmacokinetics of recombinant human interferon-alpha 2a combined with 5-fluorouracil in patients with advanced colorectal carcinoma. Anticancer Drugs 1998; 9: 689–696.

    Article  PubMed  CAS  Google Scholar 

  99. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17.

    Article  PubMed  CAS  Google Scholar 

  100. Villikka K, Kivisto KT, Maenpaa H, Joensuu H, Neuvonen PJ. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999; 66: 589–593.

    PubMed  CAS  Google Scholar 

  101. Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999; 17: 1516–1525.

    PubMed  CAS  Google Scholar 

  102. Baker DK, Relling MV, Pui CH, Christensen ML, Evans WE, Rodman JH. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992; 10: 311–315.

    PubMed  CAS  Google Scholar 

  103. Zamboni WC, Gajjar AJ, Heideman RL, et al. Phenytoin alters the disposition of topotecan and N-desmethyl topotecan in a patient with medulloblastoma. Clin Cancer Res 1998; 4: 783–789.

    PubMed  CAS  Google Scholar 

  104. Anderson CD, Wang J, Kumar GN, McMillan JM, Walle UK, Walle T. Dexamethasone induction of taxol metabolism in the rat. Drug Metab Dispos 1995; 23: 1286–1290.

    PubMed  CAS  Google Scholar 

  105. Monsarrat B, Chatelut E, Royer I, et al. Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3A4. Drug Metab Dispos 1998; 26: 229–233.

    PubMed  CAS  Google Scholar 

  106. Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 2001; 29: 242–251.

    PubMed  CAS  Google Scholar 

  107. Chang TK, Yu L, Maurel P, Waxman DJ. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997; 57: 1946–1954.

    PubMed  CAS  Google Scholar 

  108. Riva M, Landonio G, Defanti CA, Siena S. The effect of anticonvulsant drugs on blood levels of methotrexate. J Neurooncol 2000; 48: 249–250.

    Article  PubMed  CAS  Google Scholar 

  109. Lum BL, Kaubisch S, Yahanda AM, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 1992; 10: 1635–1642.

    PubMed  CAS  Google Scholar 

  110. Aherne GW, Piall E, Marks V, Mould G, White WF. Prolongation and enhancement of serum methotrexate concentrations by probenecid. Br Med J 1978; 1: 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  111. Uwai Y, Saito H, Inui K. Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur J Pharmacol 2000; 409: 31–36.

    Article  PubMed  CAS  Google Scholar 

  112. Ronchera CL, Hernandez T, Penis JE, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin Ther Drug Monit 1993; 15: 375–379.

    CAS  Google Scholar 

  113. Blum R, S eymour JF, Toner G. Significant impairment of high-dose methotrexate clearance following vancomycin administration in the absence of overt renal impairment. Ann Oncol 2002; 13: 327–330.

    Article  PubMed  CAS  Google Scholar 

  114. Dalle JH, Auvrignon A, Vassal G, Leverger G. Interaction between methotrexate and ciprofloxacin. J Pediatr Hematol Oncol 2002; 24: 321–322.

    Article  PubMed  Google Scholar 

  115. Beorlegui B, Aldaz A, Ortega A, Aquerreta I, Sierrasesumega L, Giraldez J. Potential interaction between methotrexate and omeprazole. Ann Pharmacother 2000; 34: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  116. Koren G, Beatty K, Seto A, Einarson TR, Lishner M. The effects of impaired liver function on the elimination of antineoplastic agents. Ann Pharmacother 1992; 26: 363–371.

    PubMed  CAS  Google Scholar 

  117. Donelli MG, Zucchetti M, Munzone E, Dlncalci M, Crosignani A. Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur J Cancer 1998; 34: 33–46.

    Article  PubMed  CAS  Google Scholar 

  118. Gianni L, Vigano L, Locatelli A, et al. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J Clin Oncol 1997; 15: 1906–1915.

    PubMed  CAS  Google Scholar 

  119. Booth CL, Brouwer KR, Brouwer KL. Effect of multidrug resistance modulators on the hepatobiliary disposition of doxorubicin in the isolated perfused rat liver. Cancer Res 1998; 58: 3641–3648.

    PubMed  CAS  Google Scholar 

  120. Smit JW, Duin E, Steen H, Oosting R, Roggeveld J, Meijer DK. Interactions between P-glycoprotein substrates and other cationic drugs at the hepatic excretory level. Br J Pharmacol 1998; 123: 361–370.

    Article  PubMed  CAS  Google Scholar 

  121. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–318.

    PubMed  CAS  Google Scholar 

  122. Fuhr U, Weiss M, Kroemer HK, et al. Systematic screening for pharmacokinetic interactions during drug development. Int J Clin Pharmacol Ther 1996; 34: 139–151.

    PubMed  CAS  Google Scholar 

  123. Rodrigues AD, Winchell GA, Dobrinska MR. Use of in vitro drug metabolism data to evaluate metabolic drug-drug interactions in man: the need for quantitative databases. J Clin Pharmacol 2001; 41: 368–373.

    Article  PubMed  CAS  Google Scholar 

  124. Bonnabry P, Sievering J, Leemann T, Dayer P. Quantitative drug interactions prediction system (Q-DIPS): a dynamic computer-based method to assist in the choice of clinically relevant in vivo studies. Clin Pharmacokinet 2001; 40: 631–640.

    Article  PubMed  CAS  Google Scholar 

  125. Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 1999; 57: 465–480.

    Article  PubMed  CAS  Google Scholar 

  126. Crespi CL, Stresser DM. Fluorometric screening for metabolism-based drug-drug interactions. J Pharmacol Toxicol Methods 2000; 44: 325–331.

    Article  PubMed  CAS  Google Scholar 

  127. Stresser DM, Blanchard AP, Turner SD, et al. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 2000; 28: 1440–1448.

    PubMed  CAS  Google Scholar 

  128. Crespi CL, Fox L, Stocker P, Hu M, Steimel DT. Analysis of drug transport and metabolism in cell monolayer systems that have been modified by cytochrome P4503A4 cDNA-expression. Eur J Pharmaceut Sci 2000; 12: 63–68.

    Article  CAS  Google Scholar 

  129. Baumhakel M, Kasel D, Rao-Schymanski RA, et al. Screening for inhibitory effects of antineoplastic agents on CYP3A4 in human liver microsomes. Int J Clin Pharmacol Ther 2001; 39: 517–528.

    PubMed  CAS  Google Scholar 

  130. Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drug Metab Dispos 1999; 27: 417–421.

    PubMed  CAS  Google Scholar 

  131. Rodrigues AD, Lin 7H. Screening of drug candidates for their drug-drug interaction potential. Curr Opin Chem Biol 2001; 5: 396–401.

    Article  PubMed  CAS  Google Scholar 

  132. Bisogno G, Cowie F, Boddy A, Thomas HD, Dick G, Pinkerton CR. High-dose cyclosporin with etoposide toxicity and pharmacokinetic interaction in children with solid tumours. Br 7 Cancer 1998; 77: 2304–2309.

    Article  CAS  Google Scholar 

  133. Murray LS, Jodrell DI, Morrison JG, et al. The effect of cimetidine on the pharmacokinetics of epirubicin in patients with advanced breast cancer: preliminary evidence of a potentially common drug interaction. Clin Oncol 1998; 10: 35–38.

    Article  CAS  Google Scholar 

  134. Kamataki T, Yokoi T, Fujita K, Ando Y. Preclinical approach for identifying drug interactions. Cancer Chemother Pharmacol 1998; 42 (Suppl): S50–S53.

    Article  PubMed  CAS  Google Scholar 

  135. Lovless H, Arena E, Felsted RL, Bachur NR. Comparative mammalian metabolism of adriamycin and daunorubicin. Cancer Res 1978; 38: 593–598.

    Google Scholar 

  136. Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 1997; 106: 161–182.

    Article  PubMed  CAS  Google Scholar 

  137. Turesky R7, Constable A, Fay LB, Guengerich FP. Interspecies differences in metabolism of heterocyclic aromatic amines by rat and human P450 1A2. Cancer Lett 1999; 143: 109–112.

    Google Scholar 

  138. Boobis AR, Sesardic D, Murray BP, et al. Species variation in the response of the cytochrome P-450-dependent monooxygenase system to inducers and inhibitors. Xenobiotica 1990; 20: 1139–1161.

    Article  PubMed  CAS  Google Scholar 

  139. Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999; 369: 11–23.

    Article  PubMed  CAS  Google Scholar 

  140. Grasela TH, Jr, Antal E7, Ereshefsky L, Wells BG, Evans RL, Smith RB. An evaluation of population pharmacokinetics in therapeutic trials. Part II. Detection of a drug-drug interaction. Clin Pharmacol Ther 1987; 42: 433–441.

    Article  PubMed  Google Scholar 

  141. Bauer LA, Horn 7R, Pettit H. Mixed-effect modeling for detection and evaluation of drug interactions: digoxin-quinidine and digoxin-verapamil combinations. Ther Drug Monit 1996; 18: 46–52.

    Article  PubMed  CAS  Google Scholar 

  142. Millward MJ, Webster LK, Rischin D, et al. Phase I trial of Cremophor EL with bolus doxorubicin. Clin Cancer Res 1998; 4: 2321–2329.

    PubMed  CAS  Google Scholar 

  143. Badary OA, Abdel-Naim AB, Khalifa AE, Hamada FM. Differential alteration of cisplatin cytotoxicity and myelotoxicity by the paclitaxel vehicle cremophor EL. Naunyn Schmiedebergs Arch Pharmacol 2000; 361: 339–344.

    Article  PubMed  CAS  Google Scholar 

  144. de Vos AI, Nooter K, Verweij J, et al. Differential modulation of cisplatin accumulation in leukocytes and tumor cell lines by the paclitaxel vehicle Cremophor EL. Ann Oncol 1997; 8: 1145–1150.

    Article  PubMed  Google Scholar 

  145. Badary OA, Al-Shabanah OA, Al-Gharably NM, Elmazar MM. Effect of Cremophor EL on the pharmacokinetics, antitumor activity and toxicity of doxorubicin in mice. Anticancer Drugs 1998; 9: 809–815.

    Article  PubMed  CAS  Google Scholar 

  146. Webster LK, Cosson E7, Stokes KH, Millward M7. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice. Br J Cancer 1996; 73: 522–524.

    Article  PubMed  CAS  Google Scholar 

  147. Holmes FA, Madden T, Newman RA, et al. Sequence-dependent alteration of doxorubicin pharmacokinetic s by paclitaxel in a Phase I study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J Clin Oncol 1996; 14: 2713–2721.

    PubMed  CAS  Google Scholar 

  148. Moreira A, Lobato R, Morais J, et al. Influence of the interval between the administration of doxorubicin and paclitaxel on the pharmacokinetics of these drugs in patients with locally advanced breast cancer. Cancer Chemother Pharmacol 2001; 48: 333–337.

    Article  PubMed  CAS  Google Scholar 

  149. Ellis AG, Webster LK. Inhibition of paclitaxel elimination in the isolated perfused rat liver by Cremophor EL. Cancer Chemother Pharmacol 1999; 43: 13–18.

    Article  PubMed  CAS  Google Scholar 

  150. Cummings J, Forrest G7, Cunningham D, Gilchrist NL, Soukop M. Influence of polysorbate 80 (Tween 80) and etoposide (VP-16–213) on the pharmacokinetics and urinary excretion of adriamycin and its metabolites in cancer patients. Cancer Chemother Pharmacol 1986; 17: 80–84.

    Article  PubMed  CAS  Google Scholar 

  151. Paal K, Horvath J, Csaki C, Ferencz T, Schuler D, Borsi JD. Effect of etoposide on the pharmacokinetics of methotrexate in vivo. Anticancer Drugs 1998; 9: 765–772.

    Article  PubMed  CAS  Google Scholar 

  152. Mayer LD, Reamer J, Bally MB. Intravenous pretreatment with empty pH gradient liposomes alters the pharmacokinetics and toxicity of doxorubicin through in vivo active drug encapsulation. J Pharmaceut Sci 1999; 88: 96–102.

    Article  CAS  Google Scholar 

  153. Waterhouse DN, Dos Santos N, Mayer LD, Bally MB. Drug-drug interactions arising from the use of liposomal vincristine in combination with other anticancer drugs. Pharmaceut Res 2001; 18: 1331–1335.

    Article  CAS  Google Scholar 

  154. Hudes GR, LaCreta F, Walczak J, et al. Pharmacokinetic study of trimetrexate in combination with cisplatin. Cancer Res 1991; 51: 3080–3087.

    PubMed  CAS  Google Scholar 

  155. Thodtmann R, Depenbrock H, Dumez H, et al. Clinical and pharmacokinetic phase I study of multitargeted antifolate (LY231514) in combination with cisplatin. J Clin Oncol 1999; 17: 3009–3016.

    PubMed  CAS  Google Scholar 

  156. Kaye SB, McWhinnie D, Hart A, et al. The treatment of advanced bladder cancer with methotrexate and cis-platinum a pharmacokinetic study. Eur J Cancer Clin Oncol 1984; 20: 249–252.

    Article  PubMed  CAS  Google Scholar 

  157. Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42: 497–503.

    Article  PubMed  CAS  Google Scholar 

  158. Cagnoni PJ, Matthes S, Day T, Bearman SI, Shpall EJ, Jones RB. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant 1999; 24: 1–4.

    Article  PubMed  CAS  Google Scholar 

  159. Schrijvers D, Pronk L, Highley M, et al. Pharmacokinetics of ifosfamide are changed by combination with docetaxel: results of a phase I pharmacologic study. Am J Clin Oncol 2000; 23: 358–363.

    Article  PubMed  CAS  Google Scholar 

  160. Schilsky RL, Levin J, West WH, et al. Randomized, open-label, phase III study of a 28-day oral regimen of eniluracil plus fluorouracil versus intravenous fluorouracil plus leucovorin as first-line therapy in patients with metastatic/advanced colorectal cancer. J Clin Oncol 2002; 20: 1519–1526.

    Article  PubMed  CAS  Google Scholar 

  161. Hustert E, Zibat A, Presecan-Siedel E, et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Disp 2001; 29: 1454–1459.

    CAS  Google Scholar 

  162. Rivory LP, Slaviero KA, Hoskins JM, Clarke SJ. The erythromycin breath test for the prediction of drug clearance. Clin Pharmacokinet 2001; 40: 151–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rivory, L.P. (2004). Drug Interactions. In: Figg, W.D., McLeod, H.L. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-734-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-734-5_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5345-5

  • Online ISBN: 978-1-59259-734-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics