Skip to main content

Tumor Contamination of Stem Cell Products

The Role of Purging

  • Chapter
Book cover Stem Cell Transplantation for Hematologic Malignancies

Part of the book series: Contemporary Hematology ((CH))

Abstract

Despite the success of the use of combination chemotherapy for the treatment of advanced-stage malignancies, the majority of these patients die of their disease. In an attempt to overcome drug resistance, there has been increasing use of high-dose therapy (HDT) with a curative attempt both in patients with previously relapsed disease and increasingly as consolidation therapy in first complete remission. The myeloablation induced by HDT can be reversed by autologous or allogeneic hematopoietic cell transplantation (autoHCT and alloHCT, respectively). Autologous cells have several potential advantages over allogeneic cells for HCT. Autologous HCT overcomes the need for an human leukocyte antigen (HLA)-identical donor, eliminates the risk of graft-vs-host-disease (GVHD) and has, therefore, enabled the use of chemotherapy dose escalation for a large number of patients with hematologic and solid tumors (1–4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Craddock C. Haemopoietic stem-cell transplantation: recent progress and future promise. Lancet Oncol 2000; 1: 227–234.

    Article  PubMed  CAS  Google Scholar 

  2. Freedman AS, Neuberg D, Mauch P, et al. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma. Blood 1999; 94: 3325–3333.

    PubMed  CAS  Google Scholar 

  3. Ball ED, Wilson J, Phelps V, et al. Autologous bone marrow transplantation for acute myeloid leukemia in remission or first relapse using monoclonal antibody-purged marrow: results of phase II studies with long-term follow-up. Bone Marrow Transplant 2000; 25: 823–829.

    Article  PubMed  CAS  Google Scholar 

  4. Nieto Y, Champlin RE, Wingard 7R, et al. Status of high-dose chemotherapy for breast cancer: a review. Biol Blood Marrow Transplant 2000; 6: 476–495.

    Article  PubMed  CAS  Google Scholar 

  5. Freedman AS, Gribben 7G, Neuberg D, et al. High dose therapy and autologous bone marrow transplantation in patients with follicular lymphoma during first remission. Blood 1996; 88: 2780–2786.

    Google Scholar 

  6. Hurd DD, LeBien TW, Lasky LC, et al. Autologous bone marrow transplantation in non-Hodgkin’ s lymphoma: monoclonal antibodies plus complement for ex vivo marrow treatment. Am J Med 1988; 85: 829–834.

    Article  PubMed  CAS  Google Scholar 

  7. Freedman AS, Takvorian T, Anderson KC, et al. Autologous bone marrow transplantation in B-cell non-Hodgkin’s lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 1990; 8: 784–791.

    PubMed  CAS  Google Scholar 

  8. Braun S, Pantel K, Muller P, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000; 342: 525–533.

    Article  PubMed  CAS  Google Scholar 

  9. Gribben 7G, Neuberg D, Freedman AS, et al. Detection by polymerase chain reaction of residual cells with the bc1–2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 1993; 81: 3449–3457.

    PubMed  CAS  Google Scholar 

  10. Gribben 7G, Freedman A, Woo SD, et al. All advanced stage non-Hodgkin’s lymphomas with a polymerase chain reaction amplifiable breakpoint of bc1–2 have residual cells containing the bc1–2 rearrangement at evaluation and after treatment. Blood 1991; 78: 3275–3280.

    Google Scholar 

  11. Gribben 7G, Freedman AS, Neuberg D, et al. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 1991; 325: 1525–1533.

    Google Scholar 

  12. Benjamin D, Magrath IT, Douglass EC, et al. Derivation of lymphoma cell lines from microscopically normal bone marrow in patients with undifferentiated lymphoma: evidence of occult bone marrow involvement. Blood 1983; 61: 1017–1019.

    PubMed  CAS  Google Scholar 

  13. Estrov Z, Grunberger T, Dube ID. Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission N Engl J Med 1986; 315: 538–542.

    Article  PubMed  CAS  Google Scholar 

  14. Sharp JG, Joshi SS, Armitage JO, et al. Significance of detection of occult non-Hodgkin’s lymphoma in histologically uninvolved bone marrow by culture technique. Blood 1992; 79: 1074–1080.

    PubMed  CAS  Google Scholar 

  15. Sharp JG, Kessinger A, Mann S, et al. Outcome of high dose therapy and autologous transplantation in non-Hodgkin’ s lymphoma based on the presence of tumor in the marrow or infused hematopoietic harvest. J Clin Oncol 1996; 14: 214–219.

    PubMed  CAS  Google Scholar 

  16. Ross AA, Cooper BW, Lazarus HM, et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 1993; 82: 2605–2610.

    PubMed  CAS  Google Scholar 

  17. Ross RE, Jeter EK, Gazitt Y, et al. Predictive factors for the rate of engraftment of neuroblastoma patients autotransplanted with purged marrow. Prog Clin Biol Res 1994; 389: 139–143.

    PubMed  CAS  Google Scholar 

  18. Schiller G, Vescio R, Freytes C, et al. Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma. Blood 1995; 86: 390–397.

    PubMed  CAS  Google Scholar 

  19. Fields KK, Elfenbein GJ, Trudeau WL, et al. Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 1996; 14: 1868–1876.

    PubMed  CAS  Google Scholar 

  20. Brugger W, Bross KJ, Glatt M, et al. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 1994; 83: 636–640.

    PubMed  CAS  Google Scholar 

  21. Leonard BM, Hetu F, Busque L, et al. Lymphoma cell burden in progenitor cell grafts measured by competitive polymerase chain reaction: less than one log difference between bone marrow and peripheral blood sources. Blood 1998; 91: 331–339.

    PubMed  CAS  Google Scholar 

  22. Vescio RA, Han EJ, Schiller GJ, et al. Quantitative comparison of multiple myeloma tumor contamination in bone marrow harvest and leukapheresis autografts. Bone Marrow Transplant 1996; 18: 103–110.

    PubMed  CAS  Google Scholar 

  23. Gee AP, Bruce KM, Morris TD, et al. Evidence for an anticomplementary factor associated with human bone marrow cells. J Natl Cancer Inst 1985; 75: 441–445.

    PubMed  CAS  Google Scholar 

  24. Treleaven J, Gibson F, Udelstad J. Removal of neuroblastoma cells from bone marrow with monoclonal antibodies conjugated to magnetic microsphere. Lancet 1984;ii:70–76.

    Google Scholar 

  25. Gribben JG, Saporito L, Barber M, et al. Bone marrows of non-Hodgkin’s lymphoma patients with a bc1–2 translocation can be purged of polymerase chain reaction-detectable lymphoma cells using monoclonal antibodies and immunomagnetic bead depletion. Blood 1992; 80: 1083–1089.

    PubMed  CAS  Google Scholar 

  26. Fitzgerald DJ, Willingham MC, Cardarelli CO, et al. A monoclonal antibody-Pseudomonas toxin conjugate that specifically kills multidrug-resistant cells. Proc Natl . Acad Sci USA 1987; 84: 4288–4292.

    Article  PubMed  CAS  Google Scholar 

  27. Strong RC, Uckun F, Youle RJ, et al. Use of multiple T cell-directed intact ricin immunotoxins for autologous bone marrow transplantation. Blood 1985; 66: 627–635.

    Google Scholar 

  28. Stewart AK, Vescio R, Schiller G, et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. J Clin Oncol 2001; 19: 3771–3779.

    PubMed  CAS  Google Scholar 

  29. Roy DC, Felix M, Cannady WG, et al. Comparative activities of rabbit complements of different ages using an in-vitro marrow purging model. Leukemia Res 1990; 14: 407–416.

    Article  CAS  Google Scholar 

  30. De Fabritiis P, Bregni M, Lipton J, et al. (1985). Elimination of clonogenic Burkitt’ s lymphoma cells from human bone marow using 4-hydroperoxycyclophosphamide in combination with monoclonal antibodies and complement. Blood 1985; 65: 1064–1070.

    Google Scholar 

  31. Negrin RS, Kiem HP, Schmidt WI, et al. Use of the polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 1991; 77: 654–660.

    PubMed  CAS  Google Scholar 

  32. Kvalheim G, Sorensen O, Fodstad O, et al Immunomagnetic removal of B-lymphoma cells from human bone marrow: a procedure for clinical use. Bone Marrow Transplant 1988; 3: 31–41.

    PubMed  CAS  Google Scholar 

  33. Elias AD, Pap SA, Bernal SD. Purging of small cell lung cancer-contaminated bone marrow by monoclonal antibodies and magnetic beads. Prog Clin Biol Res 1990; 333: 263–275.

    PubMed  CAS  Google Scholar 

  34. Vrendenburgh JJ, Ball ED. Elimination of small cell carcinoma of the lung from human bone marrow by monoclonal antibodies and immunomagnetic beads. Cancer Res 1990; 50: 7216–7120.

    Google Scholar 

  35. Vrendenburgh JJ, Simpson W, Memoli VA, et al. Reactivity of anti-CD15 monoclonal antibody PM-81 with breast cancer and elimination of breast cancer cell lines from human bone marrow by PM-81 and immunomagnetic beads. Cancer Res 1991; 51: 2451–2455.

    Google Scholar 

  36. Freedman AS, Takvorian T, Neuberg D, et al. Autologous bone marrow transplantation in poor-prognosis intermediate-grade and high-grade B-cell non-Hodgkin’ s lymphoma in first remission: a pilot study. J Clin Oncol 1993; 11: 931–936.

    PubMed  CAS  Google Scholar 

  37. Freedman AS, Neuberg D, Gribben JG, et al. High-dose chemoradiotherapy and anti-B-cell monoclonal antibody-purged autologous bone marrow transplantation in mantle-cell lymphoma: no evidence for long-term remission [see comments]. J Clin Oncol 1998; 16: 13–18.

    PubMed  CAS  Google Scholar 

  38. Anderson KC, Andersen J, Soiffer R, et al. Monoclonal antibody-purged bone marrow transplantation therapy for multiple myeloma. Blood 1993; 82: 2568–2576.

    PubMed  CAS  Google Scholar 

  39. Vescio R, Schiller G, Stewart AK, et al. Multicenter phase III trial to evaluate CD34(+) selected versus unselected autologous peripheral blood progenitor cell transplantation in multiple myeloma [in process citation]. Blood 1999; 93: 1858–1868.

    PubMed  CAS  Google Scholar 

  40. Simonsson B, Burnett AK, Prentice HG, et al. Autologous bone marrow transplantation with monoclonal antibody purged marrow for high risk acute lymphoblastic leukemia. Leukemia 1989; 3: 631–636.

    PubMed  CAS  Google Scholar 

  41. Billett AL, Kornmehl E, Tarbell NJ, et al. Autologous bone marrow transplantation after a long first remission for children with recurrent acute lymphoblastic leukemia. Blood 1993; 81: 1651–1657.

    PubMed  CAS  Google Scholar 

  42. Robertson MJ, Soiffer RJ, Freedman AS, et al. Human bone marrrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: clinical trial of My9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia. Blood 1992; 79: 2229–2236.

    PubMed  CAS  Google Scholar 

  43. Shpall EJ, Jones RB, Bearman S. High-dose therapy with autologous bone marrow transplantation for the treatment of solid tumors [review]. Curr Opin Oncol 1994; 6: 135–138.

    Article  PubMed  CAS  Google Scholar 

  44. Humblet Y, Feyens AM, Sekhavat M, et al. Immunological and pharmacological removal of small cell lung cancer cells from bone marrow autografts. Cancer Res 1989; 49: 5058–5061.

    PubMed  CAS  Google Scholar 

  45. Kemshead JT, Heath L, Gibson FM, et al. Magnetic microspheres and monoclonal antibodies for the depletion of neuroblastoma cells from bone marrow: experiences, improvements and observations. Br J Cancer 1986; 54: 771–778.

    Article  PubMed  CAS  Google Scholar 

  46. Kemshead JT, Treleaven J, Heath L, et al. Monoclonal antibodies and magnetic microspheres for the depletion of leukemic cells from bone marrow harvested for autologous transplantation. Bone Marrow Transplant 1987; 2: 133–139.

    PubMed  CAS  Google Scholar 

  47. Combaret V, Favrot MC, Chauvin F, et al. Immunomagnetic depletion of malignant cells from autologous bone marrow graft: from experimental models to clinical trials. J Immunogenet 1989; 16: 125–136.

    Article  PubMed  CAS  Google Scholar 

  48. Preijers FWMB, De Witte T, Wessels JMC, et al. Autologous transplantation of bone marrow purged in vitro with anti-CD7-(WT1-) ricin A immunotyoxin in T-cell lymphoblastic leukemia and lymphoma. Blood 1989; 74: 1152–1158.

    PubMed  CAS  Google Scholar 

  49. Uckun F, Kersey JH, Vallera DA, et al. Autologous bone marrow transplantation in high risk remission T-lineage acute lymphoblastic leukemia using immunotoxins plus 4-hydroperoxycyclophosphamide for marrow purging. Blood 1990; 76: 1723–1733.

    PubMed  CAS  Google Scholar 

  50. Corradini P, Astolfi M, Cherasco C, et al. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin’s lymphomas treated with high dose chemotherapy and peripheral blood progenitor cell autografting. Blood 1997; 89: 724–731.

    PubMed  CAS  Google Scholar 

  51. Williams CD, Goldstone AH, Pearce RM, et al. Purging of bone marrow in autologous bone marrow transplantation for non-Hodgkin’s lymphoma: a case-matched comparison with unpurged cases by the European Blood and Marrow Transplant Lymphoma Registry. J Clin Oncol 1996; 14: 2454–2464.

    PubMed  CAS  Google Scholar 

  52. Brenner MK, Rill DR, Holladay MS, et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993; 342: 1134–1137.

    Article  PubMed  CAS  Google Scholar 

  53. Rill DR, Buschle M, Foreman NK, et al. Retrovirus-mediated gene transfer as an approach to analyze neuro-blastoma relapse after autologous bone marrow transplantation. Hum Gene Ther 1992; 3: 129–136.

    Article  PubMed  CAS  Google Scholar 

  54. Rill DR, Moen RC, Buschle M, et al. An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer. Blood 1992; 79: 2694–2700.

    PubMed  CAS  Google Scholar 

  55. Rill DR, Santana VM, Roberts WM, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 1994; 84: 380–383.

    PubMed  CAS  Google Scholar 

  56. Flinn IW, O’Donnell PV, Goodrich A, et al. Immunotherapy with rituximab during peripheral blood stem cell transplantation for non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2000; 6: 628–632.

    Article  PubMed  CAS  Google Scholar 

  57. Ladetto M, Zallio F, Vallet S, et al. Concurrent administration of high-dose chemotherapy and rituximab is a feasible and effective chemo/immunotherapy for patients with high-risk non-Hodgkin’s lymphoma. Leukemia 2001; 15: 1941–1949.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gribben, J.G. (2004). Tumor Contamination of Stem Cell Products. In: Soiffer, R.J. (eds) Stem Cell Transplantation for Hematologic Malignancies. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-733-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-733-8_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6588-5

  • Online ISBN: 978-1-59259-733-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics