Skip to main content

Epithelial Stem/Progenitor Cells in Thymus Organogenesis

  • Chapter
Adult Stem Cells

Abstract

The thymus provides a unique three-dimensional hematopoietic environment that is essential for the development of T (thymus-derived) lymphocytes. T-cell progenitors do not arise in the thymus itself, but migrate to the thymus from central hematopoietic organs such as the liver and bone marrow during fetal and adult life, respectively (1–3). Despite the fact that prethymic T lineage-committed progenitors have been identified (e.g., in fetal blood) (4),adult thymus-colonizing pro-T cells have remained elusive. Moreover, the molecular and cellular basis underlying thymus homing has not been resolved. Intrathymic stages of T-cell development have been studied in great detail both at the cellular and the molecular levels (reviewed in refs. 5–7). The intrathymic developmental sequence can be ordered into three major stages:

  1. 1.

    Growth factor-driven proliferation and protection from apoptosis of rare pro-T cells (growth factor expansion phase; reviewed in refs. 8 and 9).

  2. 2.

    Rearrangement of β, γ, and δ T-cell antigen receptor (TCR) genes, followed by thymocyte selection for further development based on the expression of productive TCR β-chains. This process, termed β-selection, depends on the assembly of the pre-TCR complex (reviewed in ref. 10). The β-selected thymocytes undergo massive proliferation and become CD4+CD8+, still immature, thymocytes.

  3. 3.

    Following TCR α-chain rearrangements, the pre-TCR is replaced by the αβTCR complex at the CD4+CD8+ stage. Cells that succeed to assemble a complete αβ-TCR can be selected based on TCR-MHC (major histocompatibility complex) interactions (αβ-selection). Thymocytes undergo further differentiation as CD4+CD8 (helper-type) or CD4CD8+ (cytotoxic-type) singlepositive cells before they populate as MHC-restricted (positive selection) and self-tolerant (negative selection) antigen-reactive T cells the circulation and the peripheral lymphoid organs (reviewed in ref.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, M. A. S., and Owen, J. J. T. (1967). Stem-cell migration in developing myeloid and lymphoid systems. Lancet 2, 658–659.

    Article  Google Scholar 

  2. Suniara, R. K., Jenkinson, E. J., and Owen, J. J. (1999). Studies on the phenotype of migrant thymic stem cells. Eur J Immunol 29, 75–80.

    Article  PubMed  CAS  Google Scholar 

  3. Foss, D. L., Donskoy, E., and Goldschneider, I. (2001). The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J Exp Med 193, 365–374.

    Article  PubMed  CAS  Google Scholar 

  4. Rodewald, H.-R., Kretzschmar, K., Takeda, S., Hohl, C., and Dessing, M. (1994). Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonization. EMBO J 13, 4229–4240.

    Google Scholar 

  5. Kisielow, P., and von Boehmer, H. (1995). Development and selection of T cells: facts and puzzles. Adv Immunol 58, 87–209.

    Article  PubMed  CAS  Google Scholar 

  6. Shortman, K., and Wu, L. (1996). Early T lymphocyte progenitors. Annu Rev Immunol 14, 29–47.

    Article  PubMed  CAS  Google Scholar 

  7. Rodewald, H.-R., and Fehling, H. J. (1998). Molecular and cellular events in early thymocyte development. Adv Immunol 69, 1–112.

    Article  PubMed  CAS  Google Scholar 

  8. Akashi, K., Kondo, M., and Weissman, I. L. (1998). Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunol Rev 165, 13–28.

    Article  PubMed  CAS  Google Scholar 

  9. DiSanto, J. P., and Rodewald, H.-R. (1998). In vivo roles of receptor tyrosine kinases and cytokine receptors in thymocyte development. Curr Opin Immunol 10, 196–207.

    Article  CAS  Google Scholar 

  10. von Boehmer, H., and Fehling, H. J. (1997). Structure and function of the pre-T cell receptor. Annu Rev Immunol 15, 433–452.

    Article  Google Scholar 

  11. Miller, J. F. A. P. (1961). Immunological function of the thymus. Lancet 2, 748–749.

    Article  PubMed  CAS  Google Scholar 

  12. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., and Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–107.

    Article  PubMed  CAS  Google Scholar 

  13. Nehls, M., Kyewski, B., Messerle, M., et al. (1996). Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889.

    Article  PubMed  CAS  Google Scholar 

  14. Kaestner, K. H., Knochel, W., and Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14, 142–146.

    PubMed  CAS  Google Scholar 

  15. Lindsay, E. A., Vitelli, F., Su, H., et al. (2001). Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101.

    Article  PubMed  CAS  Google Scholar 

  16. Jerome, L. A., and Papaioannou, V. E. (2001). DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbxl. Nat Genet 27, 286–291.

    Google Scholar 

  17. Rodewald, H. R. (1998). The thymus in the age of retirement [comment]. Nature 396, 630–631.

    Article  PubMed  CAS  Google Scholar 

  18. van Ewijk, W. (1991). T-cell differentiation is influenced by thymic microenvironments. Annu Rev Immunol 9, 591–615.

    Article  PubMed  Google Scholar 

  19. Anderson, G., Moore, N. C., Owen, J. J. T., and Jenkinson, E. J. (1996). Cellular interactions in thymocyte development. Annu Rev Immunol 14, 73–99.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson, G., and Jenkinson, E. J. (2001). Lymphostromal interactions in thymic development and function. Nature Rev Immunol 1, 31–40.

    Article  CAS  Google Scholar 

  21. Anderson, M., Anderson, S. K., and Farr, A. G. (2000). Thymic vasculature: organizer of the medullary epithelial compartment? Int Immunol 12, 1105 1110.

    Google Scholar 

  22. von Gaudecker, B. (1991). Functional histology of the human thymus. Anat Embryol (Berl) 183, 1–15.

    Article  Google Scholar 

  23. Kranz, A., Kendall, M. D., and von Gaudecker, B. (1997). Studies on rat and human thymus to demonstrate immunoreactivity of calcitonin gene-related peptide, tyrosine hydroxylase and neuropeptide Y. J Anat 191, 441–450.

    Article  PubMed  CAS  Google Scholar 

  24. Rodewald, H.-R., Ogawa, M., Haller, C., Waskow, C., and DiSanto, J. P. (1997). Pro-thymocyte expansion by c-Kit and the common cytokine receptor y chain is essential for repertoire formation. Immunity 6, 265–272.

    Article  PubMed  CAS  Google Scholar 

  25. Waskow, C., Paul, S., Haller, C., Gassmann, M., and Rodewald, H. R. (2002).

    Google Scholar 

  26. Viable c-kit(W/W) mutants reveal pivotal role for c-Kit in the maintenance of lymphopoiesis. Immunity 17, 277–288.

    Google Scholar 

  27. Carvalho, T. L., Mota-Santos, T., Cumano, A., Demengeot, J., and Vieira, P. (2001). Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7(-/-) mice. J Exp Med 194, 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  28. Rolink, A., Ghia, P., Grawunder, U., et al. (1995). In-vitro analyses of mechanisms of B-cell development. Semin Immunol 7, 155–167.

    Article  PubMed  CAS  Google Scholar 

  29. Dejbakhsh-Jones, S., and Strober, S. (1999). Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A 96, 14,493–14, 498.

    Google Scholar 

  30. Jenkinson, E. J., and Owen, J. J. (1990). T-cell differentiation in thymus organ cultures. Semin Immunol 2, 51–58.

    PubMed  CAS  Google Scholar 

  31. Anderson, K. L., Moore, N. C., McLoughlin, D. E., Jenkinson, E. J., and Owen, J. J. (1998). Studies on thymic epithelial cells in vitro. Dev Comp Immunol 22, 367–377.

    Article  PubMed  CAS  Google Scholar 

  32. Rodewald, H. R., Paul, S., Haller, C., Bluethmann, H., and Blum, C. (2001). Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768.

    Article  PubMed  CAS  Google Scholar 

  33. Crisan, C. (1935). Die Entwicklung des thyreo-parathyreo-thymischen Systems der weissen Maus. Z Anat Entwicklungsgesch 104, 327–358.

    Article  Google Scholar 

  34. Norris, E. H. (1938). The morphogenesis and histogenesis of the thymus gland in man: in which the origin of the Hassall’s corpuscles of the human thymus is discovered. Contrib Embryol 166, 191–221.

    Google Scholar 

  35. Cordier, A. C., and Haumont, S. M. (1980). Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157, 227–263.

    Article  PubMed  CAS  Google Scholar 

  36. Manley, N. R. (2000). Thymus organogenesis and molecular mechanisms of thymic epithelial cell differentiation. Semin Immunol 12, 421–428.

    Article  PubMed  CAS  Google Scholar 

  37. Lampert, I. A., and Ritter, M. A. (1988). The origin of the diverse epithelial cells of the thymus: is there a common stem cell In: Kendall, R. M., ed., Thymus Update. London: Harwood, pp. 5–25.

    Google Scholar 

  38. Ritter, M. A., and Boyd, R. L. (1993). Development in the thymus: it takes two to tango. Immunol Today 14, 462–469.

    Article  PubMed  CAS  Google Scholar 

  39. Ropke, C., Van Soest, P., Platenburg, P. P., and Van Ewijk, W. (1995). A common stem cell for murine cortical and medullary thymic epithelial cells? Dev Immunol 4, 149–156.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson, G., Jenkinson, E. J., Moore, N. C., and Owen, J. J. (1993). MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73.

    Article  PubMed  CAS  Google Scholar 

  41. Shinohara, T., and Honjo, T. (1996). Epidermal growth factor can replace thymic mesenchyme in induction of embryonic thymus morphogenesis in vitro. Eur J Immunol 26, 747–752.

    Article  PubMed  CAS  Google Scholar 

  42. Shinohara, T., and Honjo, T. (1997). Studies in vitro on the mechanism of the epithelial/mesenchymal interaction in the early fetal thymus. Eur J Immunol 27, 522–529.

    Article  PubMed  CAS  Google Scholar 

  43. Suniara, R. K., Jenkinson, E. J., and Owen, J. J. (2000). An essential role for thymic mesenchyme in early T cell development. J Exp Med 191, 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  44. Conway, S. J., Henderson, D. J., and Copp, A. J. (1997). Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124, 505–514.

    PubMed  CAS  Google Scholar 

  45. Hetzer-Egger, C., Schorpp, M., Haas-Assenbaum, A., Balling, R., Peters, H., and Boehm, T. (2002). Thymopoiesis requires Pax9 function in thymic epithelial cells. Eur J Immunol 32, 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  46. van Ewijk, W., Shores, E. W., and Singer, A. (1994). Crosstalk in the mouse thymus Immunol Today 15, 214–217.

    Article  Google Scholar 

  47. van Ewijk, W., Hollander, G., Terhorst, C., and Wang, B. (2000). Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591.

    PubMed  Google Scholar 

  48. Xu, P. X., Zheng, W., Laclef, C., et al. (2002). Eyal is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129, 3033–3044.

    PubMed  CAS  Google Scholar 

  49. Manley, N. R., and Capecchi, M. R. (1995). The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003.

    PubMed  CAS  Google Scholar 

  50. Dietrich, S., and Gruss, P. (1995). Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol 167, 529–548.

    Article  PubMed  CAS  Google Scholar 

  51. Su, D. M., and Manley, N. R. (2000). Hoxa3 and Paxl transcription factors regulate the ability of fetal thymic epithelial cells to promote thymocyte development. J Immunol 164, 5753–5760.

    PubMed  CAS  Google Scholar 

  52. Su, D., Ellis, S., Napier, A., Lee, K., and Manley, N. R. (2001). Hoxa3 and Paxl regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236, 316–329.

    Article  PubMed  CAS  Google Scholar 

  53. Peters, H., Neubuser, A., Kratochwil, K., and Balling, R. (1998). Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12, 2735–2747.

    Article  PubMed  CAS  Google Scholar 

  54. Bleui, C. C., and Boehm, T. (2001). Laser capture microdissection-based expression profiling identifies PD1-ligand as a target of the nude locus gene product. Eur J Immunol 31, 2497–2503.

    Article  Google Scholar 

  55. Bleul, C. C., and Boehm, T. (2000). Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol 30, 3371–3379.

    Article  PubMed  CAS  Google Scholar 

  56. Rouse, R. V., Bolin, L. M., Bender, J. R., and Kyewski, B. A. (1988). Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. J Histochem Cytochem 36, 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  57. Boyd, R. L., Tucek, C. L., Godfrey, D. I., et al. (1993). The thymic microenvironment. Immunol Today 14, 445–459.

    Article  PubMed  CAS  Google Scholar 

  58. Gray, D. H., Chidgey, A. P., and Boyd, R. L. (2002). Analysis of thymic stromal cell populations using flow cytometry J Immunol Methods 260, 15–28.

    CAS  Google Scholar 

  59. Oosterwegel, M. A., Haks, M. C., Jeffry, U., Murray, R., and Kruisbeek, A. M. (1997). Induction of TCR gene rearrangements in uncommitted stem cells by a subset of IL-7 producing, class II-expressing thymic stromal cells. Immunity 6, 351–360.

    Google Scholar 

  60. Muller, K. M., Luedecker, C. J., Udey, M. C., and Farr, A. G. (1997). Involvement of E-cadherin in thymus organogenesis and thymocyte maturation. Immunity 6, 257–264.

    Article  PubMed  CAS  Google Scholar 

  61. Rodewald, H.-R. (2000). Thymus epithelial cell reaggregate grafts. Curr Top Microbiol Immunol 251, 101–108.

    Article  PubMed  CAS  Google Scholar 

  62. Kendall, M. D., Schuurman, H. J., Fenton, J., Broekhuizen, R., and Kampinga, J. (1988). Implantation of cultured thymic fragments in congenitally athymic (nude) rats. Cell Tissue Res 254, 283–294.

    Article  PubMed  CAS  Google Scholar 

  63. Pyke, K. W., Bartlett, P. F., and Mandel, T. E. (1983). The in vitro production of chimeric murine thymus from non-lymphoid embryonic precursors. J Immunol Methods 58, 243–254.

    Article  PubMed  CAS  Google Scholar 

  64. Rodewald, H. R. (1996). Reconstitution of selective hematopoietic lineages and hematopoietic environments in vivo. In: ( Drews, J. and Ryser, S., eds.), Human Disease-From Genetic Cause to Biochemical Effects. Proceedings of the Symposium “The Genetic Basis of Human Disease.” Basel, Switzerland: Blackwell Science, pp. 51–57.

    Google Scholar 

  65. Gill, J., Malin, M., Hollander, G. A., and Boyd, R. (2002). Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3, 635–642.

    Article  PubMed  CAS  Google Scholar 

  66. Bennett, A. R., Farley, A., Blair, N. F., Gordon, J., Sharp, L., and Blackburn, C. C. (2002). Identification and characterization of thymic epithelial progenitor cells Immunity 16, 803–814.

    CAS  Google Scholar 

  67. Kontgen, F., Suss, G., Stewart, C., Steinmetz, M., and Bluethmann, H. (1993). Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 5, 957–964.

    Article  PubMed  CAS  Google Scholar 

  68. Grusby, M. J., Johnson, R. S., Papaioannou, V. E., and Glimcher, L. H. (1991). Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science 253, 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  69. Gosgrove, D., Gray, D., Dierich, A., et al. (1991). Mice lacking MHC class II molecules. Cell 66, 1051–1066.

    Article  Google Scholar 

  70. Till, J. E., and McCullouch, E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14, 213–222.

    Article  PubMed  CAS  Google Scholar 

  71. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 242, 58–62.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodewald, HR. (2004). Epithelial Stem/Progenitor Cells in Thymus Organogenesis. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics