Skip to main content

Stem Cells in Skeletal Muscle

  • Chapter
Adult Stem Cells

Abstract

Skeletal muscle is responsible for movement in animals. Pathologies of muscle tissue have serious consequences for the patient, such as decreased mobility, paralysis, and, in extreme cases, death. Often, those conditions are refractory to conventional medical treatments. This explains why much effort in fundamental research is directed toward understanding the complex physiology of skeletal muscle, particularly the means of maintenance and repair of this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huxley, A. F. (2000). Cross-bridge action: present views, prospects, and unknowns. J Biomech 33, 1189–1195.

    Article  PubMed  CAS  Google Scholar 

  2. Huxley, A. F. (2000). Mechanics and models of the myosin motor. Philos Trans R Soc Lond B Biol Sci 355, 433–440.

    Article  PubMed  CAS  Google Scholar 

  3. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495.

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff, R. (1990). Interaction between satellite cells and skeletal muscle fibers. Development 109, 943–952.

    PubMed  CAS  Google Scholar 

  5. Bischoff, R. and Heintz, C. (1994). Enhancement of skeletal muscle regeneration. Dev Dyn 201, 41–54.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz, E. (1989). Satellite cell behavior during skeletal muscle growth and regeneration. Med Sci Sports Exerc 21 (5 Suppl.), S181 - S186.

    PubMed  CAS  Google Scholar 

  7. Grounds, M. D. (1998). Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854, 78–91.

    Article  PubMed  CAS  Google Scholar 

  8. Gibson, M. C. and Schultz, E. (1983). Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6, 574–580.

    Article  PubMed  CAS  Google Scholar 

  9. Emery, A. E. (1998). The muscular dystrophies. BMJ 317, 991–995.

    Article  PubMed  CAS  Google Scholar 

  10. Seale, P. and Rudnicki, M. A. (2000). A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218, 115–124.

    Article  PubMed  CAS  Google Scholar 

  11. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  12. Gage, F. H., Ray, J., and Fisher, L. J. (1995). Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18, 159–192.

    Article  PubMed  CAS  Google Scholar 

  13. Ray, J., Raymon, H. K., and Gage, F. H. (1995). Generation and culturing of precursor cells and neuroblasts from embryonic and adult central nervous system. Methods Enzymol 254, 20–37.

    Article  PubMed  CAS  Google Scholar 

  14. Toma, J. G., Akhavan, H., Fernandes, K. S., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778–784.

    Article  PubMed  CAS  Google Scholar 

  15. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  16. Jackson, K. A., Mi, T., and Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 96, 14,482–14, 486.

    Google Scholar 

  17. Seale, P., Asakura, A., and Rudnicki, M. A. (2001). The potential of muscle stem cells. Dev Cell 1, 333–342.

    Article  PubMed  CAS  Google Scholar 

  18. Megeney, L. A. and Rudnicki, M. A. (1995). Determination vs differentiation and the MyoD family of transcription factors. Biochem Cell Biol 73, 723–732.

    Article  PubMed  CAS  Google Scholar 

  19. Cornelison, D. D. and Wold, B. J. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191, 270–283.

    Article  PubMed  CAS  Google Scholar 

  20. Sabourin, L. A. and Rudnicki, M. A. (2000). The molecular regulation of myogenesis. Clin Genet 57, 16–25.

    Article  PubMed  CAS  Google Scholar 

  21. Rudnicki, M. A., Braun, T., Hinuma, S., and Jachisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383–390.

    Article  PubMed  CAS  Google Scholar 

  22. Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E., and Rudnicki, M. A. (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10, 1173–1183.

    Article  PubMed  CAS  Google Scholar 

  23. Bailey, P., Holowacz, T., and Lassar, A. B. (2001). The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13, 679–689.

    Article  PubMed  CAS  Google Scholar 

  24. Borycki, A. G., Mendham, L., and Emerson, C. P., Jr. (1998). Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 125, 777–790.

    PubMed  CAS  Google Scholar 

  25. Borycki, A. G., Brunk, B., Tajbakhsh, S., et al. (1999). Sonic hedgehog controls epaxial muscle determination through MyfS activation. Development 126, 4053–4063.

    PubMed  CAS  Google Scholar 

  26. Kruger, M., Mennerich, D., Fees, S., et al. (2001). Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128, 743–752.

    PubMed  CAS  Google Scholar 

  27. Cossu, G., and Borello, U. (1999). Wnt signaling and the activation of myogenesis in mammals. Embo J 18, 6867–6872.

    Article  PubMed  CAS  Google Scholar 

  28. De Angelis, L., Berghella, L., Colletta, M., et al. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147, 869–878.

    Article  PubMed  Google Scholar 

  29. Amthor, H., Christ, B., and Patel, K. (1999). A molecular mechanism enabling continuous embryonic muscle growth-a balance between proliferation and differentiation. Development 126, 1041–1053.

    PubMed  CAS  Google Scholar 

  30. Macleod, K. F., Sherry N., Hannon, G., et al. (1995). p53-dependent and inde-

    Google Scholar 

  31. pendent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9, 935–944.

    Google Scholar 

  32. Borycki, A. G., Li, J., Jin, F., Emerson, C. P., and Epstein, J. A. (1999). Pax3 functions in cell survival and in pax? regulation. Development 126, 1665–1674.

    PubMed  CAS  Google Scholar 

  33. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., et al. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  35. Galli, R., Borello, U., Gritti, A., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3, 986–991.

    Article  PubMed  CAS  Google Scholar 

  36. Rietze, R. L., Valcanis, H., Brooker, G. F., et al. (2001). Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739.

    Article  PubMed  CAS  Google Scholar 

  37. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  38. Petersen, B. E., Bouen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  39. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L., et al. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  40. Morshead, C. M., Benveniste, P., Iscove, N. N., and van Der Kooy, D., et al. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  41. Uchida, N., Jerabek, L., and Weissman, I. L. (1996). Searching for hematopoietic stem cells. II. The heterogeneity of Thy-1.1(lo)Lin(-/lo)Sca-1+ mouse hematopoietic stem cells separated by counterflow centrifugal elutriation. Exp Hematol 24, 649–659.

    PubMed  CAS  Google Scholar 

  42. Orkin, S. H. and Zon, L. I. (2002). Hematopoiesis and stem cells: plasticity vs developmental heterogeneity. Nat Immunol 3, 323–328.

    Article  PubMed  CAS  Google Scholar 

  43. Cossu, G., De Angelis, L., Borello, U., et al. (2000). Determination, diversification and multipotency of mammalian myogenic cells. Int J Dev Biol 44, 699–706.

    PubMed  CAS  Google Scholar 

  44. Sata, M., Saiura, A., Kunisato, A., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8, 403–409.

    Article  PubMed  CAS  Google Scholar 

  45. Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., and Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144, 631–643.

    Article  PubMed  CAS  Google Scholar 

  46. Odelberg, S. J., Kollhoff, A., and Keating, M. T. (2000). Dedifferentiation of mammalian myotubes induced by msxl. Cell 103, 1099–1109.

    Article  PubMed  CAS  Google Scholar 

  47. McGann, C. J., Odelberg, S. J., and Keating, M. T. (2001). Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci U S A 98, 13,699–13, 704.

    Google Scholar 

  48. Borycki, A. G. and Emerson, C. P. (1997). Muscle determination: another key player in myogenesis? Curr Biol 7, R620 - R623.

    Article  PubMed  CAS  Google Scholar 

  49. Borycki, A. G., Strunk, K. E., Savary, R., and Emerson, C. P. Jr. (1997). Distinct signal/response mechanisms regulate pax 1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites. Dev Biol 185, 185–200.

    Article  PubMed  CAS  Google Scholar 

  50. Ozawa, E., Noguchi, S., Mizuno, Y., Hagiwara, Y., and Yoshida, M., et al. (1998). From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21, 421–438.

    Article  PubMed  CAS  Google Scholar 

  51. Partridge, T. (2000). The current status of myoblast transfer. Neurol Sci 21, S939 — S942.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, J. Y., Qu-Petersen, Z., Cao, B., et al. (2000). Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150, 1085–1100.

    Article  PubMed  CAS  Google Scholar 

  53. Torrente, Y., Tremblay, J. P., Pisati, F., et al. (2001). Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152, 335–348.

    Article  PubMed  CAS  Google Scholar 

  54. Bhardwaj, G., Murdoch, B., Wu, D., et al. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2, 172–180.

    Article  PubMed  CAS  Google Scholar 

  55. Ross, S. E., Hemati, N., Longo, K. A., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polesskaya, A., Rudnicki, M. (2004). Stem Cells in Skeletal Muscle. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics