Skip to main content

Stem Cells As Common Ancestors

Somatic Cell Phylogenies From Somatic Sequence Alterations

  • Chapter
  • 134 Accesses

Abstract

Stem cell definitions vary and often reflect how their properties are measured (1–4). Here, it is illustrated that stem cells can also be defined phylogenetically as common ancestors or “mothers” of cell groups. This approach is essentially fate mapping, but uses sequences instead of histologically visible markers to trace ancestry. An advantage of using sequences to trace somatic cell fates is the lack of a requirement for prior experimental intervention. Unlike definitions based on potential stem cell behaviors in experimental settings, a phylogenetic approach reconstructs how stem cells behave in unmanipulated intact organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potten, C. S., and Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls, and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    Google Scholar 

  2. Watt, F. M., and Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  3. Slack, J. M. (2000). Stem cells in epithelial tissues. Science 287, 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  4. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98–104.

    Article  PubMed  CAS  Google Scholar 

  5. Yatabe, Y., Tavare, S., and Shibata, D. (2001). Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A 98, 10,839–10, 844.

    Google Scholar 

  6. Loeb, L. A. (1991). Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51, 3075–3079.

    PubMed  CAS  Google Scholar 

  7. Cross, S. H., and Bird, A. P. (1995). CpG islands and genes. Curr Opin Genet Dey 5, 309–314.

    Article  CAS  Google Scholar 

  8. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 6, 6–21.

    Article  Google Scholar 

  9. Hsieh, C. L. (2000). Dynamics of DNA methylation pattern. Curr Opin Genet Dev 10, 224–228.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M., and Riggs, A. D. (1990). Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci U S A 87, 8252–8256.

    Google Scholar 

  11. Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  12. Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., and Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58, 5489–5494.

    PubMed  CAS  Google Scholar 

  13. Issa, J. P. (2000). CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249, 101–118.

    Article  PubMed  CAS  Google Scholar 

  14. Booth, C., and Potten, C. S. (2000). Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105, 1493–1499.

    Article  PubMed  CAS  Google Scholar 

  15. Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A., and Wilson, G. D. (1992). Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut 33, 71–78.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng, H., Bjerknes, M., and Amar, J. (1984). Methods for the determination of epithelial cell kinetic parameters of human colonic epithelium isolated from surgical and biopsy specimens. Gastroenterology 86, 78–85.

    PubMed  CAS  Google Scholar 

  17. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994). High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22, 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, E. D., Lowes, A. P., Williams, D., and Williams, G. T. (1992). A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am J Pathol 141, 773–776.

    PubMed  CAS  Google Scholar 

  19. Park, H. S., Goodlad, R. A., and Wright, N. A. (1995). Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 147, 1416 1427.

    Google Scholar 

  20. Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature 255, 197–200.

    Article  PubMed  CAS  Google Scholar 

  21. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science 194, 23–28.

    Article  PubMed  CAS  Google Scholar 

  22. Muller, H. J. (1964). The relation of recombination to mutational advance. Mutat Res 1, 2–9.

    Article  Google Scholar 

  23. Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics 78, 737–756.

    PubMed  CAS  Google Scholar 

  24. Smith, J. M., and Nee, S. (1990). Clicking into decline? Nature 348, 391–392.

    Article  Google Scholar 

  25. Chao, L. (1997). Evolution of sex and the molecular clock in RNA viruses. Gene 205, 301–308.

    Article  PubMed  CAS  Google Scholar 

  26. Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature 348, 454–455.

    Article  PubMed  CAS  Google Scholar 

  27. Campbell, F., Williams, G. T., Appleton, M. A., Dixon, M. F., Harris, M., and Williams, E. D. (1996). Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut 39, 569–573.

    Article  PubMed  CAS  Google Scholar 

  28. Ro, S., and Rannala, B. (2001). Methylation patterns and mathematical models reveal dynamics of stem cell turnover in the human colon. Proc Natl Acad Sci USA 98, 10,519–10, 521.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shibata, D. (2004). Stem Cells As Common Ancestors. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics