Skip to main content

Engineering the In Vitro Cellular Microenvironment for the Control and Manipulation of Adult Stem Cell Responses

  • Chapter
Adult Stem Cells

Abstract

Stem cells have generated a great deal of excitement as a potential source of cells for transplantation because of their ability to self-renew and differentiate into functional cells of various tissues (1–3). Stem cells can be derived from multiple stages of development as well as numerous adult tissues. Adult tissues are an attractive and readily accepted source of stem cells because such cells have demonstrated efficacy in multiple types of cellular therapeutics (4,5) and can be directly obtained from individual patients, thereby eliminating the difficulties associated with tissue rejection. Despite this enormous potential, the use of adult stem cells has been limited, primarily because of the inability to identify these rare cells from the heterogeneous tissue populations (6) and to expand populations of cells that retain stem cell properties in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuchs, E., and Segre, J. A. (2000). Stem cells: a new lease on life. Cell 100, 143–155.

    Article  PubMed  CAS  Google Scholar 

  2. Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168.

    Article  PubMed  CAS  Google Scholar 

  3. Watt, F. M., and Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  4. Barrett, A. J., and Treleaven, J. (1998). The Clinical Practice of Stem-Cell Transplantation. Oxford, UK: Isis Medical Media, Mosby-Year Book.

    Google Scholar 

  5. Green, H. (1989). Regeneration of the skin after grafting of epidermal cultures. Lab Invest 60, 583–584.

    PubMed  CAS  Google Scholar 

  6. Nordon, R., and Schindhelm, K. (1999). Ex Vivo Cell Therapy. San Diego, CA: Academic Press.

    Google Scholar 

  7. Michalopoulos, G. K., and DeFrances, M. C. (1997). Liver regeneration. Science 276, 60–66.

    Article  PubMed  CAS  Google Scholar 

  8. Sell, S. (1978). Distribution of alpha-fetoprotein-and albumin-containing cells in the livers of Fischer rats fed four cycles of N-2-fluorenylacetamide. Cancer Res 38, 3107–3113.

    PubMed  CAS  Google Scholar 

  9. Thorgeirsson, S. S. (1996). Hepatic stem cells in liver regeneration. FASEB J 10, 1249–1256.

    CAS  Google Scholar 

  10. Potten, C. S., and Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    Google Scholar 

  11. Tropepe, V., Coles, B. L., Chiasson, B. J., et al. (2000). Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  12. Watt, F. M. (1998). Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353, 831–837.

    Article  PubMed  CAS  Google Scholar 

  13. Seale, P., and Rudnicki, M. A. (2000). A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218, 115–124.

    Article  PubMed  CAS  Google Scholar 

  14. Gage, F. H. (2000). Mammalian neural stem cells. Science 287 (5457), 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  15. Ormerod, E. J., and Rudland, P. S. (1986). Regeneration of mammary glands in vivo from isolated mammary ducts. J Embryol Exp Morphol 96, 229–243.

    PubMed  CAS  Google Scholar 

  16. Potten, C. S., Martin, K., and Kirkwood, T. B. (2001). Ageing of murine small intestinal stem cells. Novartis Found Symp 235, 66–79; discussion 79–84, 101–104.

    Google Scholar 

  17. De Haan, G., and Van Zant, G. (1999). Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J 13, 707–713.

    Google Scholar 

  18. Zandstra, P. W., Conneally, E., Piret, J. M., and Eaves, C. J. (1998). Ontogeny-associated changes in the cytokine responses of primitive human haemopoietic cells. Br J Haematol 101, 770–778.

    Article  PubMed  CAS  Google Scholar 

  19. Rufer, N., Brummendorf, T. H., Kolvraa, S., et al. (1999). Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190, 157–167.

    Article  PubMed  CAS  Google Scholar 

  20. Peters, A. H., O’Carroll, D., Scherthan, H., et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.

    Article  PubMed  CAS  Google Scholar 

  21. Phillips, R. L., Ernst, R. E., Brunk, B., et al. (2000). The genetic program of hematopoietic stem cells. Science 288, 1635–1640.

    Article  PubMed  CAS  Google Scholar 

  22. Danet, G. H., Lee, H. W., Luongo, J. L., Simon, M. C., and Bonnet, D. A. (2001). Dissociation between stem cell phenotype and NOD/SCID repopulat-ing activity in human peripheral blood CD34(+) cells after ex vivo expansion. Exp Hematol 29, 1465–1473.

    Article  PubMed  CAS  Google Scholar 

  23. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., and Eaves, C. J. (1990). Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87, 8736–8740.

    Article  PubMed  CAS  Google Scholar 

  24. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., and Bernstein, A. (1985). Introduction of a selectable gene into primitive stem cells capable of longterm reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79.

    Article  PubMed  CAS  Google Scholar 

  25. Keller, G., and Snodgrass, R. (1990). Life span of multipotential hematopoietic stem cells in vivo. J Exp Med 171, 1407–1418.

    Article  PubMed  CAS  Google Scholar 

  26. Lemischka, I R, Raulet, D. H., and Mulligan, R. C. (1986). Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927.

    Article  PubMed  CAS  Google Scholar 

  27. Iscove, N. N., and Nawa, K. (1997). Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 7, 805–808.

    Article  PubMed  CAS  Google Scholar 

  28. Wakitani, S., Saito, T., and Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  29. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103, 697–705.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998). Muscle regenera-tion by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  31. Bittner, R. E., Schofer, C., Weipoltshammer, K., et al. (1999). Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199, 391–396.

    Article  CAS  Google Scholar 

  32. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  33. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  34. Theise, N. D., Badve, S., Saxena, R., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240.

    Article  PubMed  CAS  Google Scholar 

  35. Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000). Hepatocytes from non-hepatic adult stem cells. Nature 406, 257.

    Article  PubMed  CAS  Google Scholar 

  36. Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000). Liver from bone marrow in humans. Hepatology 32, 11–16.

    Article  PubMed  CAS  Google Scholar 

  37. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6, 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  38. Pereira, R. F., Halford, K. W., O’Hara, M. D., et al. (1995). Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 92, 4857–4861.

    Article  PubMed  CAS  Google Scholar 

  39. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  40. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  41. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

  42. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 364–370.

    Article  PubMed  CAS  Google Scholar 

  43. Eglitis, M. A., and Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94, 4080–4085.

    Article  PubMed  CAS  Google Scholar 

  44. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96, 10,711–10, 716.

    Google Scholar 

  45. Krause, D. S., Theise, N. D., Collector, M. I., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  46. Galli, R., Borello, U., Gritti, A., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3, 986–991.

    Article  PubMed  CAS  Google Scholar 

  47. Jackson, K. A., Mi, T., and Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 96, 14,482–14, 486.

    Google Scholar 

  48. Ferrari, G., Stornaiuolo, A., and Mavilio, F. (2001). Bone-marrow transplantation failure to correct murine muscular dystrophy. Nature 411, 1014–1015.

    Article  PubMed  CAS  Google Scholar 

  49. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  50. Terada, N., Hamazaki, T., Oka, M., et al. (2002). Bone marrow cell adopt the phenotype of other cells by spontaneous cell fusion [advance on-line publication]. Nature.

    Google Scholar 

  51. Ying, Q., Nichols, J., Evans, E. P., and Smith, A. G. (2002). Changing potency spontaneous fusion [advance on-line publication]. Nature.

    Google Scholar 

  52. Koller, M. R., Manchel, I., and Palsson, B. O. (1997). Importance of parenchymal:stromal cell ratio for the ex vivo reconstitution of human hematopoiesis. Stem Cells 15, 305–313.

    Article  PubMed  CAS  Google Scholar 

  53. Koller, M. R., Bender, J. G., Miller, W. M., and Papoutsakis, E. T. (1993). Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Biotechnology (N Y) 11, 358–363.

    Article  CAS  Google Scholar 

  54. Zandstra, P. W., Jervis, E., Haynes, C. A., Kilburn, D. G., Eaves, C. J., and Piret, J. M. (1999). Concentration-dependent internalization of a cytokine/cytokine receptor complex in human hematopoietic cells. Biotechnol Bioeng 63, 493–501.

    Article  PubMed  CAS  Google Scholar 

  55. Zandstra, P. W., Lauffenburger, D. A., and Eaves, C. J. (2000). A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood 96 (4), 1215–1222.

    PubMed  CAS  Google Scholar 

  56. Zandstra, P. W., Conneally, E., Petzer, A. L., Piret, J. M., and Eaves, C. J. (1997). Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci U S A 94, 4698–4703.

    Article  PubMed  CAS  Google Scholar 

  57. Koller, M. R., Oxender, M., Brott, D. A., and Palsson, B. O. (1996). flt-3 ligand is more potent than c-kit ligand for the synergistic stimulation of ex vivo hema-topoietic cell expansion. J Hematother 5, 449–459.

    Google Scholar 

  58. Audet, J., Miller, C. L., Rose-John, S., Piret, J. M., and Eaves, C. J. (2001). Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci U S A 98, 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  59. Petzer, A. L., Hogge, D. E., Landsdorp, P. M., Reid, D. S., and Eaves, C. J. (1996). Self-renewal of primitive human hematopoietic cells (long-termculture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci U S A 93, 1470–1474.

    Article  PubMed  CAS  Google Scholar 

  60. Madlambayan, G. J., Rogers, I., Casper, R. F., and Zandstra, P. W. (2001). Controlling culture dynamics for the expansion of hematopoietic stem cells. J Hematother Stem Cell Res 10 (4), 481–492.

    Article  PubMed  CAS  Google Scholar 

  61. Audet, J., Zandstra, P. W., Eaves, C. J., and Piret, J. M. (1998). Advances in hematopoietic stem cell culture. Curr Opin Biotechnol 9, 146–151.

    Article  PubMed  CAS  Google Scholar 

  62. Yagi, M., Ritchie, K. A., Sitnicka, E., Storey, C., Roth, G. J., and Bartelmez, S. (1999). Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin. Proc Natl Acad Sci U S A 96, 8126–8131.

    Article  PubMed  CAS  Google Scholar 

  63. Bodine, D. M., Seidel, N. E., Zsebo, K. M., and Orlic, D. (1993). In vivo admin-istration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells. Blood 82, 445–455.

    PubMed  CAS  Google Scholar 

  64. Li, C. L., and Johnson, G. R. (1994). Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood 84, 408–414.

    PubMed  CAS  Google Scholar 

  65. Petzer, A. L., Zandstra, P. W., Piret, J. M., and Eaves, C. J. (1996). Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med 183(6), 25512558.

    Google Scholar 

  66. Audet, J., Miller, C. L., Rose-John, S., Piret, J. M., and Eaves, C. J. (2001). Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci.0 S A 98, 1757–1762.

    Article  CAS  Google Scholar 

  67. Gritti, A., Parati, E. A., Cova, L., et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  68. Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  69. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992). A multipotent EGFresponsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 4565–4574.

    Google Scholar 

  70. Gensburger, C., Labourdette, G., and Sensenbrenner, M. (1987). Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett 217, 1–5.

    Article  PubMed  CAS  Google Scholar 

  71. Richards, L. J., Kilpatrick, T. J., and Bartlett, P. F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A 89, 8591–8595.

    Article  PubMed  CAS  Google Scholar 

  72. Ray, J., Peterson, D. A., Schinstine, M., and Gage, F. H. (1993). Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A 90, 3602–3606.

    Article  PubMed  CAS  Google Scholar 

  73. Kallos, M. S., and Behie, L. A. (1999). Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng 63, 473–483.

    Article  PubMed  CAS  Google Scholar 

  74. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778–784.

    Article  PubMed  CAS  Google Scholar 

  75. Carpenter, M. K., Cui, X., Hu, Z. Y., et al. (1999). In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158, 265–278.

    Article  PubMed  CAS  Google Scholar 

  76. Rathjen, P. D., Toth, S., Willis, A., Heath, J. K., and Smith, A. G. (1990). Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62, 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  77. Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., et al. (2002). Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20, 467–472.

    Article  PubMed  CAS  Google Scholar 

  78. Fambrough, D., McClure, K., Kazlauskas, A., and Lander, E. S. (1999). Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741.

    Article  PubMed  CAS  Google Scholar 

  79. Billia, F., Barbara, M., McEwen, J., Trevisan, M., and Iscove, N. N. (2001). Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood 97, 2257–2268.

    Article  PubMed  CAS  Google Scholar 

  80. Brail, L. H., Jang, A., Billia, F., Iscove, N. N., Klamut, H. J., and Hill, R. P. (1999). Gene expression in individual cells: analysis using global single cell reverse transcription polymerase chain reaction ( GSC RT-PCR ). Mutat Res 406, 45–54.

    Google Scholar 

  81. Lauffenburger, D. A., and Linderman, J. J. (1996). Receptors: Models for Binding, Trafficking, and Signaling. New York: Oxford University Press.

    Google Scholar 

  82. Starr, R., Willson, T. A., Viney, E. M., et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921.

    Article  PubMed  CAS  Google Scholar 

  83. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  84. Pluen, A., Boucher, Y., Ramanujan, S., et al. (2001). Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs subcutaneous tumors. Proc Natl Acad Sci U S A 98, 4628–4633.

    Article  PubMed  CAS  Google Scholar 

  85. Wittrup, K. D. (2001). Protein engineering by cell-surface display. Curr Opin Biotechnol 12, 395–399.

    Article  PubMed  CAS  Google Scholar 

  86. Saga, T., Neumann, R. D., Heya, T., et al. (1995). Targeting cancer micro-metastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci U S A 92, 8999–9003.

    Article  PubMed  CAS  Google Scholar 

  87. Fallon, E. M., Liparoto, S. F., Lee, K. J., Ciardelli, T. L., and Lauffenburger, D. A. (2000). Increased endosomal sorting of ligand to recycling enhances potency of an interleukin-2 analog. J Biol Chem 275, 6790–6797.

    Article  PubMed  CAS  Google Scholar 

  88. Zandstra, P. W., Le, H. V., Daley, G. Q., Griffith, L. G., and Lauffenburger, D. A. (2000). Leukemia inhibitory factor ( LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol Bioeng 69, 607–617.

    Google Scholar 

  89. Lauffenburger, D. A., Fallon, E. M., and Haugh, J. M. (1998). Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem Biol 5, R257 - R263.

    Article  PubMed  CAS  Google Scholar 

  90. Fallon, E. M., and Lauffenburger, D. A. (2000). Computational model for effects of ligand/receptor binding properties on interleukin-2 trafficking dynamics and T cell proliferation response. Biotechnol Prog 16, 905–916.

    Article  PubMed  CAS  Google Scholar 

  91. Maynard, J., and Georgiou, G. (2000). Antibody engineering. Annu Rev Biomed Eng 2, 339–376.

    Article  PubMed  CAS  Google Scholar 

  92. Chirumamilla, R. R., Muralidhar, R., Marchant, R., and Nigam, P. (2001). Improving the quality of industrially important enzymes by directed evolution. Mol Cell Biochem 224, 159–168.

    Article  PubMed  CAS  Google Scholar 

  93. French, A. R., Tadaki, D. K., Niyogi, S. K., and Lauffenburger, D. A. (1995). Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem 270, 4334–4340.

    Article  PubMed  CAS  Google Scholar 

  94. MacBeath, G., and Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  95. Kuhl, P. R., and Griffith-Cima, L. G. (1996). Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 2, 1022–1027.

    Article  PubMed  CAS  Google Scholar 

  96. Wehrle-Haller, B., and Weston, J. A. (1995). Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742.

    PubMed  CAS  Google Scholar 

  97. Kurosawa, K., Miyazawa, K., Gotoh, A., et al. (1996) Immobilized anti-KIT monoclonal antibody induces ligand-independent dimerization and activation of Steel factor receptor: biologic similarity with membrane-bound form of Steel factor rather than its soluble form. Blood 87, 2235–2243.

    PubMed  CAS  Google Scholar 

  98. Miyazawa, K., Williams, D. A., Gotoh, A., Nishimaki, J., Broxmeyer, H. E., and Toyama, K. (1995). Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85, 641–649.

    PubMed  CAS  Google Scholar 

  99. Doheny, J. G., Jervis, E. J., Guarna, M. M., Humphries, R. K., Warren, R. A., and Kilburn, D. G. (1999). Cellulose as an inert matrix for presenting cytokines to target cells: production and properties of a stem cell factor-cellulose-binding domain fusion protein. Biochem J 339 (Pt. 2), 429–434.

    Article  PubMed  CAS  Google Scholar 

  100. Nakashima, T., Kobayashi, Y., Yamasaki, S., et al. (2000). Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275, 768–775.

    Article  PubMed  CAS  Google Scholar 

  101. Barille, S., Collette, M., Thabard, W., Bleunven, C., Bataille, R., and Amiot, M. (2000). Soluble IL-6R alpha upregulated IL-6, MMP-1 and MMP-2 secretion in bone marrow stromal cells. Cytokine 12, 1426–1429.

    Article  PubMed  CAS  Google Scholar 

  102. Slater, M. (1996). Dynamic interactions of the extracellular matrix. Histol Histopathol 11, 175–180.

    PubMed  CAS  Google Scholar 

  103. Flaumenhaft, R., and Rifkin, D. B. (1991). Extracellular matrix regulation of growth factor and protease activity. Curr Opin Cell Biol 3, 817–823.

    Article  PubMed  CAS  Google Scholar 

  104. Rafii, S., Mohle, R., Shapiro, F., Frey, B. M., and Moore, M. A. (1997). Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27, 375–386.

    PubMed  CAS  Google Scholar 

  105. Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4, 267–274.

    PubMed  CAS  Google Scholar 

  106. Prosper, F., and Verfaillie, C. M. (2001). Regulation of hematopoiesis through adhesion receptors. J Leukoc Biol 69, 307–316.

    PubMed  CAS  Google Scholar 

  107. Ploemacher, R. E., Mayen, A. E., De Koning, A. E., Krenacs, T., and Rosendaal, M. (2000). Hematopoiesis: gap junction intercellular communication is likely to be involved in regulation of stroma-dependent proliferation of hemopoietic stem cells. Hematology 5, 133–147.

    PubMed  CAS  Google Scholar 

  108. Potten, C. S., and Loeffler, M. (1987). A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J Theor Biol 127, 381–391.

    Article  PubMed  CAS  Google Scholar 

  109. Potten, C. S. (1998). Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353, 821–830.

    Article  PubMed  CAS  Google Scholar 

  110. Evans, G. S., and Potten, C. S. (1991). Stem cells and the elixir of life. Bioessays 13, 135–138.

    Article  PubMed  CAS  Google Scholar 

  111. Potten, C. S. (1991). The role of stem cells in the regeneration of intestinal crypts after cytotoxic exposure. Prog Clin Biol Res 369, 155–171.

    PubMed  CAS  Google Scholar 

  112. Paulus, U., Potten, C. S., and Loeffler, M. (1992). A model of the control of cellular regeneration in the intestinal crypt after perturbation based solely on local stem cell regulation. Cell Prolif 25, 559–578.

    Article  PubMed  CAS  Google Scholar 

  113. Li, Y. Q., Roberts, S. A., Paulus, U., Loeffler, M., and Potten, C. S. (1994). The crypt cycle in mouse small intestinal epithelium. J Cell Sci 107 (Pt 12), 3271–3279.

    PubMed  CAS  Google Scholar 

  114. Potten, C. S. (1986). Cell cycles in cell hierarchies. Int J Radiat Biol Relat Stud Phys Chem Med 49, 257–278.

    Article  PubMed  CAS  Google Scholar 

  115. Loeffler, M., Birke, A., Winton, D., and Potten, C. (1993). Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt. J Theor Biol 160, 471–491.

    Article  PubMed  CAS  Google Scholar 

  116. Marshman, E., Booth, C., and Potten, C. S. (2002). The intestinal epithelial stem cell. Bioessays 24, 91–98.

    Article  PubMed  Google Scholar 

  117. Simmons, P. J., Levesque, J. P., and Zannettino, A. C. (1997). Adhesion molecules in haemopoiesis. Baillieres Clin Haematol 10, 485–505.

    Article  PubMed  CAS  Google Scholar 

  118. Gassmann, M., Fandrey, J., Bichet, S., et al. (1996). Oxygen supply and oxygen-dependent gene expression in differentiating embryonic stem cells. Proc Natl Acad Sci U S A 93, 2867–2872.

    Article  PubMed  CAS  Google Scholar 

  119. Sauer, H., Rahimi, G., Hescheler, J., and Wartenberg, M. (2000). Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476, 218–223.

    Article  PubMed  CAS  Google Scholar 

  120. McAdams, T. A., Miller, W. M., and Papoutsakis, E. T. (1997). Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. Br J Haematol 97, 889–895.

    Article  PubMed  CAS  Google Scholar 

  121. Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995). Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A 92, 5510–5514.

    Article  PubMed  CAS  Google Scholar 

  122. Broxmeyer, H. E., Cooper, S., Lu, L., Miller, M. E., Langefeld, C. D., and Ralph, P. (1990). Enhanced stimulation of human bone marrow macrophage colony formation in vitro by recombinant human macrophage colony-stimulating factor in agarose medium and at low oxygen tension. Blood 76, 323–329.

    PubMed  CAS  Google Scholar 

  123. Bradley, T. R., Hodgson, G. S., and Rosendaal, M. (1978). The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 97, 517–522.

    Article  PubMed  CAS  Google Scholar 

  124. Cipolleschi, M. G., Dello Sbarba, P., and Olivotto, M. (1993). The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82, 2031–2037.

    PubMed  CAS  Google Scholar 

  125. Ivanovic, Z., Belloc, F., Faucher, J. L., Cipolleschi, M. G., Praloran, V., and Dello Sbarba, P. (2002). Hypoxia maintains and interleukin-3 reduces the precolony-forming cell potential of dividing CD34(+) murine bone marrow cells. Exp Hematol 30, 67–73.

    Article  PubMed  CAS  Google Scholar 

  126. Koller, M. R., Emerson, S. G., and Palsson, B. O. (1993). Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82, 378–384.

    PubMed  CAS  Google Scholar 

  127. Palsson, B. O., Paek, S. H., Schwartz, R. M., et al. (1993). Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Biotechnology (N Y) 11, 368–372.

    Article  CAS  Google Scholar 

  128. Csete, M., Walikonis, J., Slawny, N., et al. (2001). Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189, 189–196.

    Article  PubMed  CAS  Google Scholar 

  129. Lennon, D. P., Edmison, J. M., and Caplan, A. I. (2001). Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187, 345–355.

    Article  PubMed  CAS  Google Scholar 

  130. Li, C., and Xu, Q. (2000). Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12, 435–445.

    Article  PubMed  CAS  Google Scholar 

  131. Burger, E. H., and Klein-Nulen, J. (1999). Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13, 93–98.

    Article  PubMed  CAS  Google Scholar 

  132. Fisher, A. B., Chien, S., Barakat, A. I., and Nerem, R. M. (2001). Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281, L529 - L533.

    PubMed  CAS  Google Scholar 

  133. Ingber, D. E. (1997). Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 10, 49–55.

    PubMed  CAS  Google Scholar 

  134. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  135. Till, J. E., McCulloch, E. A., and Siminovitch, L. (1964). A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci U S A 51, 29.

    Article  PubMed  CAS  Google Scholar 

  136. Viswanathan, S., Benatar, T., Rose-John, S., Lauffenburger, D. A., and Zandstra, P. W. (2002). Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6. Stem Cells 20, 119–138.

    Article  PubMed  CAS  Google Scholar 

  137. Mayani, H., Dragowska, W., and Lansdorp, P. M. (1993). Cytokine-induced selective expansion and maturation of erythroid vs myeloid progenitors from purified cord blood precursor cells. Blood 81, 3252–3258.

    PubMed  CAS  Google Scholar 

  138. Fairbairn, L. J., Cowling, G. J., Reipert, B. M., and Dexter, T. M. (1993). Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74, 823–832.

    Article  PubMed  CAS  Google Scholar 

  139. Hu, M., Krause, D., Greaves, M., et al. (1997). Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11, 774–785.

    Article  PubMed  CAS  Google Scholar 

  140. Liu, L., and Roberts, R. M. (1996). Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem 271, 16,683–16, 689.

    Google Scholar 

  141. Enver, T., and Greaves, M. (1998). Loops, lineage, and leukemia. Cell 94, 9–12.

    Article  PubMed  CAS  Google Scholar 

  142. Madras, N., Gibbs, A. L., Zhou, H., Zandstra, P. W., and Aubin, J. E. (2002). Modeling stem cell development by retrospective analysis of gene expression profiles in single progenitor-derived colonies. Stem Cells, 20 (3), 230–240.

    Article  PubMed  CAS  Google Scholar 

  143. Mayani, H., Dragowska, W., and Lansdorp, P. M. (1993). Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J Cell Physiol 157, 579–586.

    Article  PubMed  CAS  Google Scholar 

  144. Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.

    PubMed  CAS  Google Scholar 

  145. Humphries, R. K., Eaves, A. C., and Eaves, C. J. (1981). Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc Natl Acad Sci U S A 78, 3629–3633.

    Article  PubMed  CAS  Google Scholar 

  146. Kimmel, M., and Axelrod, D. E. (1991). Unequal cell division, growth regulation and colony size of mammalian cells: a mathematical model and analysis of experimental data. J Theor Biol 153, 157–180.

    Article  PubMed  CAS  Google Scholar 

  147. Lemischka, I. (2001). Stem cell dogmas in the genomics era. Rev Clin Exp Hematol 5, 15–25.

    Article  PubMed  CAS  Google Scholar 

  148. Francis, G. E., and Leaning, M. S. (1985). Stochastic model of human granulocyte-macrophage progenitor cell proliferation and differentiation. I. Setting up the model. Exp Hematol 13, 92–98.

    Google Scholar 

  149. Nakahata, T., Gross, A. J., and Ogawa, M. (1982). A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 113, 455–458.

    Article  PubMed  CAS  Google Scholar 

  150. Le Douarin, N. M., and Dupin, E. (1993). Cell lineage analysis in neural crest ontogeny. J Neurobiol 24, 146–161.

    Article  PubMed  Google Scholar 

  151. Yakovlev, A. Y., Mayer-Proschel, M., and Noble, M. (1998). A stochastic model of brain cell differentiation in tissue culture. J Math Biol 37, 49–60.

    Article  PubMed  CAS  Google Scholar 

  152. Boucher, K., Yakovlev, A. Y., Mayer-Proschel, M., and Noble, M. (1999). A stochastic model of temporally regulated generation of oligodendrocytes in cell culture. Math Biosci 159, 47–78.

    Article  PubMed  CAS  Google Scholar 

  153. Fokas, A. S., Keller, J. B., and Clarkson, B. D. (1991). Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res 51, 2084–2091.

    PubMed  CAS  Google Scholar 

  154. Peng, C. A., Koller, M. R., and Palsson, B. O. (1996). Unilineage model of hematopoiesis predicts self-renewal of stem and progenitor cells based on ex vivo growth data. Biotechnol Bioeng 52, 24–33.

    Article  PubMed  CAS  Google Scholar 

  155. Milton, J. G., and Mackey, M. C. (1989). Periodic haematological diseases: mystical entities or dynamical disorders? J R Coll Physicians Lond 23, 236–241.

    PubMed  CAS  Google Scholar 

  156. Haurie, C., Dale, D. C., and Mackey, M. C. (1998). Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92, 2629–2640.

    PubMed  CAS  Google Scholar 

  157. Sherley, J. L., Stadler, P. B., and Stadler, J. S. (1995). A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells. Cell Prolif 28, 137–144.

    Article  PubMed  CAS  Google Scholar 

  158. Yakovlev, A. Y., Boucher, K., Mayer-Proschel, M., and Noble, M. (1998). Quantitative insight into proliferation and differentiation of oligodendrocyte type 2 astrocyte progenitor cells in vitro. Proc Natl Acad Sci U S A 95, 14,16414, 167.

    Google Scholar 

  159. Haugh, J. M., Schooler, K., Wells, A., Wiley, H. S., and Lauffenburger, D. A. (1999). Effect of epidermal growth factor receptor internalization on regulation of the phospholipase C-gammal signaling pathway. J Biol Chem 274, 8958–8965.

    Article  Google Scholar 

  160. Bhalla, U. S., and Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science 283, 381–387.

    Article  PubMed  CAS  Google Scholar 

  161. Weng, G., Bhalla, U. S., and Iyengar, R. (1999). Complexity in biological signaling systems. Science 284, 92–96.

    Article  PubMed  CAS  Google Scholar 

  162. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D., and Muller, G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20, 370–375.

    Article  PubMed  Google Scholar 

  163. Zandstra, P. W., and Nagy, A. (2001). Stem cell bioengineering. Annu Rev Biomed Eng 3, 275–305.

    Article  PubMed  CAS  Google Scholar 

  164. Zandstra, P. W., Eaves, C. J., and Piret, J. M. (1994). Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology (NY) 12 (9), 909–914.

    Article  CAS  Google Scholar 

  165. Baksh, D., Davies, J. E., and Zandstra, P. W. (2003). Adult human bone marrow-derived progenitor cells are capable of adhesion-independent survival and expansion. Exp Hematol 31 (8) 723–732.

    Article  PubMed  CAS  Google Scholar 

  166. Cashman, J. D., Clark-Lewis, I., Eaves, A. C., and Eaves, C. J. (1999). Differentiation stage-specific regulation of primitive human hematopoietic progenitor cycling by exogenous and endogenous inhibitors in an in vivo model. Blood 94, 3722–3729.

    PubMed  CAS  Google Scholar 

  167. Furusawa, C., and Kaneko, K. (2000). Origin of complexity in multicellular organisms. Phys Rev Lett 84, 6130–6133.

    Article  PubMed  CAS  Google Scholar 

  168. Sandstrom, C. E., Bender, J. G., Papoutsakis, E. T., and Miller, W. M. (1995). Effects of CD34+ cell selection and perfusion on ex vivo expansion of peripheral blood mononuclear cells. Blood 86, 958–970.

    PubMed  CAS  Google Scholar 

  169. Hammond, T. G., Lewis, F. C., Goodwin, T. J., et al. (1999). Gene expression in space. Nat Med 5, 359.

    Article  PubMed  CAS  Google Scholar 

  170. Molnar, G., Schroedl, N. A., Gonda, S. R., and Hartzell, C. R. (1997). Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim 33, 386–391.

    Google Scholar 

  171. Freed, L. E., Langer, R., Martin, I., Pellis, N. R., and Vunjak-Novakovic, G. (1997). Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94, 13,885–13, 890.

    Google Scholar 

  172. Ingram, M., Techy, G. B., Saroufeem, R., et al. (1997). Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev Biol Anim 33, 459–466.

    Google Scholar 

  173. Margolis, L., Hatfill, S., Chuaqui, R., et al. (1999). Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. J Urol 161, 290–297.

    Article  PubMed  CAS  Google Scholar 

  174. Mitteregger, R., Vogt, G., Rossmanith, E., and Falkenhagen, D. (1999). Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int J Artif Organs 22, 816–822.

    PubMed  CAS  Google Scholar 

  175. Bhatia, S. N., Toner, M., Tompkins, R. G., and Yarmush, M. L. (1994). Selective adhesion of hepatocytes on patterned surfaces. Ann N Y Acad Sci 745, 187–209.

    Article  PubMed  CAS  Google Scholar 

  176. Bhatia, S. N., Yarmush, M. L., and Toner, M. (1997). Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34, 189–199.

    Article  PubMed  CAS  Google Scholar 

  177. Bhatia, S. N., Balis, U. J., Yarmush, M. L., and Toner, M. (1998). Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog 14, 378–387.

    Article  PubMed  CAS  Google Scholar 

  178. Bhatia, S. N., Balis, U. J., Yarmush, M. L., and Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13, 1883–1900.

    CAS  Google Scholar 

  179. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., and Ingber, D. E. (2001). Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3, 335–373.

    Article  PubMed  CAS  Google Scholar 

  180. Folch, A., and Toner, M. (2000). Microengineering of cellular interactions. Annu Rev Biomed Eng 2, 227–256.

    Article  PubMed  CAS  Google Scholar 

  181. Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D. E., and Whitesides, G. M. (2001). Subcellular positioning of small molecules. Nature 411, 1016.

    Google Scholar 

  182. Powers, M. J., and Griffith, L. G. (1998). Adhesion-guided in vitro morpho-genesis in pure and mixed cell cultures. Microsc Res Tech 43, 379–384.

    Article  PubMed  CAS  Google Scholar 

  183. Griffith, L. G., Wu, B., Cima, M. J., Powers, M. J., Chaignaud, B., and Vacanti, J. P. (1997). In vitro organogenesis of liver tissue. Ann N Y Acad Sci 831, 382–397.

    Article  PubMed  CAS  Google Scholar 

  184. Hamazaki, T., Iiboshi, Y., Oka, M., et al. (2001). Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 497, 15–19.

    Article  PubMed  CAS  Google Scholar 

  185. Caldwell, J., Locey, B., Clarke, M. F., Emerson, S. G., and Palsson, B. O. (1991). Influence of medium exchange schedules on metabolic, growth, and GM-CSF secretion rates of genetically engineered NIH-3T3 cells. Biotechnol Prog 7, 1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khademhosseini, A., Zandstra, P.W. (2004). Engineering the In Vitro Cellular Microenvironment for the Control and Manipulation of Adult Stem Cell Responses. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics