Skip to main content

Stem Cell Biology of the Inner Ear and Potential Therapeutic Applications

  • Chapter
Adult Stem Cells

Abstract

The mammalian inner ear is composed of two sensory receptor areas: the cochlea, responsible for translating auditory stimuli, and the vestibule, responsible for a sense of balance. The bilateral inner ears of mammals develop from a pair of thickened branchial ectodermal placodes that invaginate for sequential formation of otic pits, otocysts, and then complete membranous labyrinths (1). During development of inner ear sensory epithelium, several phenotypes of sensory and nonsensory cells differentiate (i.e., hair cells, support cells, glia, and neurons).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sher, A. E. (1971). The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Supp1285, 1–77.

    Google Scholar 

  2. Torres, M., and Giraldez, F. (1998). The development of the vertebrate inner ear. Mech Dev 71, 5–21.

    Article  PubMed  CAS  Google Scholar 

  3. Represa, J., Frenz, D. A., and Van De Water, T. R. (2000). Genetic patterning of embryonic inner ear development. Acta Otolaryngol 120, 5–10.

    PubMed  CAS  Google Scholar 

  4. Fekete, D. M., and Wu, D. K. (2002). Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12, 35–42.

    Article  PubMed  CAS  Google Scholar 

  5. Stemple, D. L., and Anderson, D. J. (1992). Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985.

    Article  PubMed  CAS  Google Scholar 

  6. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992). A multipotent EGFresponsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 4565–4574.

    PubMed  CAS  Google Scholar 

  7. Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  8. Svendsen, C. N., and Smith, A. G. (1999). New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 22, 357–364.

    Article  PubMed  CAS  Google Scholar 

  9. Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  10. Malgrange, B., Belachew, S., Thiry, M., et al. (2002). Proliferative generation of mammalian auditory hair cells in culture. Mech Dev 112, 79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Barald, K. F., Lindberg, K. H., Hardiman, K., et al. (1997) Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear. Int J Dev Neurosci 15, 523–540.

    Article  PubMed  CAS  Google Scholar 

  12. Holley, M. C., Nishida, Y., and Grix, N. (1997). Conditional immortalization of hair cells from the inner ear. Int J Dev Neurosci 15, 541–552.

    Article  PubMed  CAS  Google Scholar 

  13. Rivolta, M. N., Grix, N., Lawlor, P., Ashmore, J. F., Jagger, D. J., and Holley, M. C. (1998). Auditory hair cell precursors immortalized from the mammalian inner ear. Proc R Soc Lond B Biol Sci 265, 1595–1603.

    Article  CAS  Google Scholar 

  14. Zheng, J. L., Lewis, A. K., and Gao, W. Q. (1998). Establishment of conditionally immortalized rat utricular epithelial cell lines using a retrovirus-mediated gene transfer technique. Hear Res 117, 13–23.

    Article  PubMed  CAS  Google Scholar 

  15. Lawlor, P., Marcotti, W., Rivolta, M. N., Kros, C. J., and Holley, M. C. (1999). Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells. J Neurosci 21, 9445–9458.

    Google Scholar 

  16. Kalinec, F., Kalinec, G., Boukhvalova, M., and Kachar, B. (1999). Establishment and characterization of conditionally immortalized organ of Corti cell lines. Cell Biol Int 23, 175–184.

    Article  PubMed  CAS  Google Scholar 

  17. Freshney, R. I. (2000). Culture of Animal Cells. New York: Wiley-Liss.

    Google Scholar 

  18. Jat, P. S., and Sharp, P. A. (1989). Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol Cell Biol 9, 1672–1681.

    PubMed  CAS  Google Scholar 

  19. Noble, M., Groves, A. K., Ataliotis, P., and Jat, P. S. (1992). From chance to choice in the generation of neural cell lines. Brain Pathol 2, 39–46.

    PubMed  CAS  Google Scholar 

  20. Zheng, J. L., and Gao, W. Q. (1997). Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J Neurosci 17, 8270–8282.

    PubMed  CAS  Google Scholar 

  21. Pack, A. K., and Slepecky, N. B. (1995). Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 91, 119–135.

    Article  PubMed  CAS  Google Scholar 

  22. Erkman, L., McEvilly, R. J., Luo, L., et al. (1996). Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606.

    Article  PubMed  CAS  Google Scholar 

  23. Xiang, M., Gan, L., Li, D., et al. (1997). Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 94, 9445–9450.

    Article  PubMed  CAS  Google Scholar 

  24. Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E., and Heinemann, S. (1994). Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705–715.

    Article  PubMed  CAS  Google Scholar 

  25. Hasson, T., Gillespie, P. G., Garcia, J. A., et al. (1997). Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137, 1287–1307.

    Article  PubMed  CAS  Google Scholar 

  26. Lawoko-Kerali, G., Rivolta, M. N., and Holley, M. (2002). Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol 442, 378–391.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng, J. L., Shou, J., Guillemot, F., Kageyama, R., and Gao, W. Q. (2000). Hesi is a negative regulator of inner ear hair cell differentiation. Development 127, 4551–4560.

    PubMed  CAS  Google Scholar 

  28. Zine, A., Aubert, A., Qiu, J., et al. (2002). Hesl and Hess activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 21, 4712–4720.

    Google Scholar 

  29. Rau, A., Legan, P. K., and Richardson, G. P. (1999). Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol 405, 271–280.

    Article  PubMed  CAS  Google Scholar 

  30. Bermingham, N. A., Hassan, B. A., Price, S. D., et al. (1999). Mathl: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841.

    Article  PubMed  CAS  Google Scholar 

  31. Zheng, J. L., and Gao, W. Q. (2000). Overexpression of Mathl induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3, 580–586.

    Article  PubMed  CAS  Google Scholar 

  32. Lim, D. J., and Rueda, J. (1992). Structural development of the cochlea. In: Romand, R., ed., Development of Auditory and Vestibular System 2. New York: Elsevier, pp. 33–58.

    Google Scholar 

  33. Rivolta, M. N., and Holley, M. C. (2002). Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro. Brain Res Dev Brain Res 133, 49–59.

    Article  PubMed  CAS  Google Scholar 

  34. Chenn, A., and McConnell, S. K. (1995). Cleavage orientation and the asymmetric inheritance of notchl immunoreactivity in mammalian neurogenesis. Cell 82, 631–641.

    Article  PubMed  CAS  Google Scholar 

  35. Morrison, S. J., Shah, N. M., and Anderson, D. J. (1997). Regulatory mechanisms in stem cell biology. Cell 88, 287–298.

    Article  PubMed  CAS  Google Scholar 

  36. Yamashita, H., and Oesterle, E. C. (1995). Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc Natl Acad Sci USA 92, 3152–3155.

    Article  PubMed  CAS  Google Scholar 

  37. Zheng, J. L., Helbig, C., and Gao, W. Q. (1997). Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J Neurosci 17, 216–226.

    PubMed  CAS  Google Scholar 

  38. Chen, P., and Segil, N. (1999). p27(Kip1) links cell proliferation to morpho-genesis in the developing organ of Corti. Development 126, 1581–1590.

    Google Scholar 

  39. Fekete, D. M., Muthukumar, S., and Karagogeos, D. (1998). Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18, 7811–7821.

    PubMed  CAS  Google Scholar 

  40. Lang, H., and Fekete, D. M. (2001). Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. Dev Biol 234, 120–137.

    Article  PubMed  CAS  Google Scholar 

  41. Noden, D. M. (1983). The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissue. Dev Biol 96, 144–165.

    Article  PubMed  CAS  Google Scholar 

  42. Ruben, R. J. (1967). Development of the inner ear of the mouse: a radioautographic study of terminal mitosis. Acta Otolaryngol Stockh 220, 1–44.

    Google Scholar 

  43. Zhao, H. B. (2001). Long-term natural culture of cochlear sensory epithelia of guinea pigs. Neurosci Lett 315, 73–76.

    Article  PubMed  CAS  Google Scholar 

  44. Kuntz, A. L., and Oesterle, E. C. (1998). Transforming growth factor alpha with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. J Comp Neurol 399, 413–423.

    Article  PubMed  CAS  Google Scholar 

  45. Lefebvre, P. P., Malgrange, B., Staecker, H., Moonen, G., and Van De Water, T. R. (1993). Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science 260, 692–695.

    Article  PubMed  CAS  Google Scholar 

  46. Hartenstein, V., and Posakony, J. W. (1989). Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107, 389–405.

    PubMed  CAS  Google Scholar 

  47. Forge, A., Li, L., Corwin, J. T., and Nevill, G. (1993). Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259, 1616–1619.

    Article  PubMed  CAS  Google Scholar 

  48. Warchol, M. E., Lambert, P. R., Goldstein, B. J., Forge, A., and Corwin, J. T. (1993). Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259, 1619–1622.

    Article  PubMed  CAS  Google Scholar 

  49. Kopke, R. D., Jackson, R. L., Li, G., et al. (2001). Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function. Proc Natl Acad Sci USA 98, 5886–5891.

    Article  PubMed  CAS  Google Scholar 

  50. Ito, J. (2003) Recent advances in regenerative medicine in otology. Acta Otolaryngol Suppl., in press.

    Google Scholar 

  51. Kelley, M. W., Talreja, D. R., and Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of Corti from embryonic and neonatal mice. J Neurosci 15, 3013–3026.

    PubMed  CAS  Google Scholar 

  52. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  53. Ito, J., Kojima, K., and Kawaguchi, S. (2001). Survival of neural stem cells in the cochlea. Acta Otolaryngol 212, 140–142.

    Google Scholar 

  54. Nishida, A., Takahashi, M., Tanihara, H., et al. (2000). Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 41, 4268–4274.

    PubMed  CAS  Google Scholar 

  55. Tateya, I., Nakagawa, T., Iquchi, F., et al. (2003). Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport 14, 1667–1681.

    Google Scholar 

  56. Panchision, D. M., and Mckay, R. D. (2002). The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 12, 478–487.

    Article  PubMed  CAS  Google Scholar 

  57. Kruger, G. M., and Morrison, S. J. (2002). Brain repair by endogenous progenitors. Cell 110, 399–402.

    Article  PubMed  CAS  Google Scholar 

  58. Mehler, M. F., and Gokhan, S. (2001). Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog Neurobiol 63, 337–363.

    Article  PubMed  CAS  Google Scholar 

  59. Mehler, M. F., and Gokhan, S. (2000). Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci 23, 599–605.

    Article  PubMed  CAS  Google Scholar 

  60. Rietze, R., Poulin, P., and Weiss, S. (2000). Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 424, 397–408.

    Article  PubMed  CAS  Google Scholar 

  61. Gould, E., and Gross, C. G. (2002). Neurogenesis in adult mammals: some progress and problems. J Neurosci 22, 619–623.

    PubMed  CAS  Google Scholar 

  62. Yamamato, S., Yamamato, N., Kitamura, K., and Nakafuku, M. (2001). Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172, 115–127.

    Article  Google Scholar 

  63. Yamamato, S., Nagao, M., Sugimori, M., et al. (2001). Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21, 9814–9823.

    Google Scholar 

  64. Parent, J. M., Valentin, V. V., and Lowenstein, D. H. (2002). Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb. J Neurosci 22, 3174–3188.

    PubMed  CAS  Google Scholar 

  65. Brittis, P. A., and Flanagan, J. G. (2001). Nogo domain and a Nogo receptor: implications for axon regeneration. Neuron 30, 11–14.

    Article  PubMed  CAS  Google Scholar 

  66. Domeniconi, M., Cao, Z., Spencer, T., et al. (2002). Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290.

    Article  PubMed  CAS  Google Scholar 

  67. Wang, K. C., Koprivica, V., Kim, J. A., et al. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944.

    Article  PubMed  CAS  Google Scholar 

  68. Nakatomi, H., Kuriu, T., Okabe, S., et al. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441.

    Article  PubMed  CAS  Google Scholar 

  69. GrandPre, T., Li, S., and Strittmatter, S. M. (2002). Nogo-66 receptor anatagonist peptide promotes axonal regeneration. Nature 417, 547–551.

    Article  PubMed  CAS  Google Scholar 

  70. Gates, M. A., Fricker-Gates, R. A., and Macklis, J. D., (2000). Reconstruction of cortical circuitry. Prog Brain Res 127, 115–156.

    Article  PubMed  CAS  Google Scholar 

  71. Arlotta, P., Magari, S. S., and Maklis, J. D., (2003). Induction of adult neurogenesis: molecular manipulation of neural precursors in sity. Ann NY Acad Sci 991, 229–236.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van De Water, T.R. et al. (2004). Stem Cell Biology of the Inner Ear and Potential Therapeutic Applications. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics