Skip to main content

From Marrow to Brain

  • Chapter
Adult Stem Cells
  • 130 Accesses

Abstract

All organisms originate from a single totipotent cell. During development, the progeny of this cell become increasingly restricted in their differentiation potential. Nevertheless, most cells retain an intact genome, and the selective expression or repression of genes determines specific properties. In recent years, it has become evident that adult cells can thus be reprogrammed back to totipotency (1). Moreover, stem cells that reside in adult tissues have the capacity to self-renew and to generate several types of differentiated progeny. These stem cells do not appear to be restricted to generating only cells of their original tissue, but show remarkable plasticity when exposed to an environment that they usually would not encounter. It has thus been suggested that a stem cell is not necessarily a specific cellular entity, but rather a function that can be assumed by numerous diverse cell types (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.

    Article  PubMed  CAS  Google Scholar 

  2. Blau, H. M., Brazelton, T. R., and Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  3. Eglitis, M. A., and Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94, 4080–4085.

    Article  PubMed  CAS  Google Scholar 

  4. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  5. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  6. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  7. Priller, J., Persons, D. A., Klett, F. F., Kempermann, G., Kreutzberg, G. W., and Dirnagl, U. (2001). Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 155, 733–738.

    Article  PubMed  CAS  Google Scholar 

  8. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  9. Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H., and Shine, H. D. (2002). Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297, 1299.

    Article  PubMed  CAS  Google Scholar 

  10. Wagers, A. J., Sherwood, R. I., Christensen, J. L., and Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259.

    Article  PubMed  CAS  Google Scholar 

  11. Fibbe, W. E., Mark, J., Zijlmans, J. M., and Willemze, R. (1996). Stem cells with short-term and long-term repopulating ability in the mouse. Ann Oncol 7 (Suppl. 2), 15–18.

    Article  PubMed  Google Scholar 

  12. Minguell, J. J., Erices, A., and Conget, P. (2001). Mesenchymal stem cells. Exp Biol Med (Maywood) 226, 507–520.

    CAS  Google Scholar 

  13. Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967.

    Article  PubMed  CAS  Google Scholar 

  14. Orkin, S. H., and Zon, L. I. (2002). Hematopoiesis and stem cells: plasticity vs developmental heterogeneity. Nat Immunol 3, 323–328.

    Article  PubMed  CAS  Google Scholar 

  15. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., and Dick, J. E. (1998). A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  16. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7, 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  18. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi, T., Kalka, C., Masuda, H., et al. (1999). Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5, 434–438.

    Article  PubMed  CAS  Google Scholar 

  20. Asahara, T., Takahashi, T., Masuda, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18, 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  21. Dimmeler, S., Aicher, A., Vasa, M., et al. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108, 391–397.

    PubMed  CAS  Google Scholar 

  22. Fernandez Pujol, B., Lucibello, F. C., Gehling, U. M., et al. (2000). Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65, 287–300.

    Article  Google Scholar 

  23. Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19, 312–318.

    Article  PubMed  CAS  Google Scholar 

  24. Graeber, M. B., Streit, W. J., and Kreutzberg, G. W. (1989). Identity of ED2positive perivascular cells in rat brain. J Neurosci Res 22, 103–106.

    Article  PubMed  CAS  Google Scholar 

  25. Ford, A. L., Goodsall, A. L., Hickey, W. F., and Sedgwick, J. D. (1995). Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypicdifferences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154, 4309–4321.

    PubMed  CAS  Google Scholar 

  26. Raivich, G., Bohatschek, M., Kloss, C. U., Werner, A., Jones, L. L., and Kreutzberg, G. W. (1999). Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30, 77–105.

    Article  PubMed  CAS  Google Scholar 

  27. Kaur, C., Hao, A. J., Wu, C. H., and Ling, E. A. (2001). Origin of microglia. Microsc Res Tech 54, 2–9.

    Article  PubMed  CAS  Google Scholar 

  28. Imamoto, K., and Leblond, C. P. (1978). Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol 180, 139–163.

    Article  PubMed  CAS  Google Scholar 

  29. Ling, E. A., Penney, D., and Leblond, C. P. (1980). Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the “ameboid cells” present in the corpus callosum of postnatal rats. J Comp Neurol 193, 631–657.

    Article  PubMed  CAS  Google Scholar 

  30. Kitamura, T., Miyake, T., and Fujita, S. (1984). Genesis of resting microglia in the gray matter of mouse hippocampus. J Comp Neurol 226, 421–433.

    Article  PubMed  CAS  Google Scholar 

  31. Fedoroff, S., Zhai, R., and Novak, J. P. (1997). Microglia and astroglia have a common progenitor cell. J Neurosci Res 50, 477–486.

    Article  PubMed  CAS  Google Scholar 

  32. Hickey, W. F., and Kimura, H. (1988). Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292.

    Article  PubMed  CAS  Google Scholar 

  33. Lassmann, H., Schmied, M., Vass, K., and Hickey, W. F. (1993). Bone marrow derived elements and resident microglia in brain inflammation. Glia 7, 19–24.

    Article  PubMed  CAS  Google Scholar 

  34. Priller, J., Flügel, A., Wehner, T., et al. (2001). Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7, 1356–1361.

    Article  PubMed  CAS  Google Scholar 

  35. Nakano, K., Migita, M., Mochizuki, H., and Shimada, T. (2001). Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation 71, 1735–1740.

    Article  PubMed  CAS  Google Scholar 

  36. Bechmann, 1., Priller, J., Kovac, A., et al. (2001). Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14, 1651–1658.

    Article  PubMed  CAS  Google Scholar 

  37. de Groot, C. J., Huppes, W., Sminia, T., Kraal, G., and Dijkstra, C. D. (1992). Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6, 301–309.

    Article  PubMed  Google Scholar 

  38. Kennedy, D. W., and Abkowitz, J. L. (1997). Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993.

    PubMed  CAS  Google Scholar 

  39. Lawson, L. J., Perry, V. H., and Gordon, S. (1992). Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405–415.

    Article  PubMed  CAS  Google Scholar 

  40. Kennedy, D. W., and Abkowitz, J. L. (1998). Mature monocytic cells enter tissues and engraft. Proc Natl Acad Sci U S A 95, 14,944–14, 949.

    Google Scholar 

  41. Sievers, J., Schmidtmayer, J., and Parwaresch, R. (1994). Blood monocytes and spleen macrophages differentiate into microglia-like cells when cultured on astrocytes. Anat Anz 176, 45–51.

    Article  CAS  Google Scholar 

  42. Flügel, A., Bradl, M., Kreutzberg, G. W., and Graeber, M. B. (2001). Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 66, 74–82.

    Article  PubMed  Google Scholar 

  43. Wu, Y. P., McMahon, E., Kraine, M. R., et al. (2000). Distribution and characterization of GFP(+) donor hematogenous cells in Twitcher mice after bone marrow transplantation. Am J Pathol 156, 1849–1854.

    Article  PubMed  CAS  Google Scholar 

  44. Oya, Y., Proia, R. L., Norflus, F., Tifft, C. J., Langaman, C., and Suzuki, K. (2000). Distribution of enzyme-bearing cells in GM2 gangliosidosis mice: regionally specific pattern of cellular infiltration following bone marrow transplantation. Acta Neuropathol (Berl) 99, 161–168.

    Article  CAS  Google Scholar 

  45. Krall, W. J., Challita, P. M., Perlmutter, L. S., Skelton, D. C., and Kohn, D. B. (1994). Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 83, 2737–2748.

    PubMed  CAS  Google Scholar 

  46. McMahon, E. J., Suzuki, K., and Matsushima, G. K. (2002). Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood-brain barrier. J Neuroimmunol 130, 32–45.

    Article  PubMed  CAS  Google Scholar 

  47. Pringle, N. P., Guthrie, S., Lumsden, A., and Richardson, W. D. (1998). Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883–893.

    Article  PubMed  CAS  Google Scholar 

  48. Mehler, M. F., and Gokhan, S. (1999). Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies. Brain Pathol 9, 515–526.

    Article  PubMed  CAS  Google Scholar 

  49. Pekny, M., Leveen, P., Pekna, M., et al. (1995). Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14, 1590–1598.

    PubMed  CAS  Google Scholar 

  50. Kimelberg, H. K., and Norenberg, M. D. (1989). Astrocytes. Sci Am 260, 6672, 74, 76.

    Google Scholar 

  51. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001). Control of synapse number by glia. Science 291, 657–661.

    Article  PubMed  CAS  Google Scholar 

  52. Song, H., Stevens, C. F., and Gage, F. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44.

    Article  PubMed  CAS  Google Scholar 

  53. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  54. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21, 7153–7160.

    PubMed  CAS  Google Scholar 

  55. Heins, N., Malatesta, P., Cecconi, F., et al. (2002). Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5, 308–315.

    Article  PubMed  CAS  Google Scholar 

  56. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96, 10,711–10, 716.

    Google Scholar 

  57. Hess, D. C., Hill, W. D., Martin-Studdard, A., Carroll, J., Brailer, J., and Carothers, J. (2002). Bone marrow as a source of endothelial cells and NeuNexpressing cells after stroke. Stroke 33, 1362–1368.

    Article  PubMed  Google Scholar 

  58. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

  59. Kohyama, J., Abe, H., Shimazaki, T., et al. (2001). Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68, 235–244.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  61. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 361 370.

    Google Scholar 

  62. Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282, 148–152.

    Article  PubMed  CAS  Google Scholar 

  63. Eddleston, M., and Mucke, L. (1993). Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54, 15–36.

    Article  PubMed  CAS  Google Scholar 

  64. Eglitis, M. A., Dawson, D., Park, K. W., and Mouradian, M. M. (1999). Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreport 10, 1289–1292.

    Article  PubMed  CAS  Google Scholar 

  65. Li, Y., Chopp, M., Chen, J., et al. (2000). Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20, 1311–1319.

    Article  PubMed  CAS  Google Scholar 

  66. Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., and Low, W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174, 11–20.

    Article  PubMed  Google Scholar 

  67. Chen, J., Li, Y., Wang, L., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  68. Hofstetter, C. P., Schwarz, E. J., Hess, D., et al. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Nati Acad Sci U S A 99, 2199–2204.

    Article  CAS  Google Scholar 

  69. Mahmood, A., Lu, D., Wang, L., Li, Y., Lu, M., and Chopp, M. (2001). Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49, 1196–1203.

    PubMed  CAS  Google Scholar 

  70. Timsit, S., Martinez, S., Ailinquant, B., Peyron, F., Puelles, L., and Zalc, B. (1995). Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15, 1012–1024.

    PubMed  CAS  Google Scholar 

  71. Fujita, S. (1965). An autoradiographic study on the origin and fate of subpial glioblasts in the embryonic chick spinal cord. J Comp Neurol 124, 51–60.

    Article  PubMed  CAS  Google Scholar 

  72. Warrington, A. E., Barbarese, E., and Pfeiffer, S. E. (1993). Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res 34, 1–13.

    Article  PubMed  CAS  Google Scholar 

  73. Wolswijk, G. (1998). Oligodendrocyte regeneration in the adult rodent CNS and the failure of this process in multiple sclerosis. Prog Brain Res 117, 233–247.

    Article  PubMed  CAS  Google Scholar 

  74. Bonilla, S., Alarcon, P., Villaverde, R., Aparicio, P., Silva, A., and Martinez, S. (2002). Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatalmouse brain. Eur J Neurosci 15, 575–582.

    Article  PubMed  Google Scholar 

  75. Akiyama, Y., Radtke, C., and Kocsis, J. D. (2002). Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22, 6623–6630.

    PubMed  CAS  Google Scholar 

  76. Dezawa, M., Takahashi, I., Esaki, M., Takano, M., and Sawada, H. (2001). Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14, 1771–1776.

    Article  PubMed  CAS  Google Scholar 

  77. Pardanaud, L., Luton, D., Prigent, M., Bourcheix, L. M., Catala, M., and Dieterlen-Lievre, F. (1996). Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371.

    PubMed  CAS  Google Scholar 

  78. Carmeliet, P., and Luttun, A. (2001). The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 86, 289–297.

    PubMed  CAS  Google Scholar 

  79. Zhang, Z. G., Zhang, L., Jiang, Q., and Chopp, M. (2002). Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90, 284–288.

    Article  PubMed  CAS  Google Scholar 

  80. Werner, N., Priller, J., Laufs, U., et al. (2002). Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  81. Chang, C., and Hemmati-Brivanlou, A. (1998). Cell fate determination in embryonic ectoderm. J Neurobiol 36, 128–151.

    Article  PubMed  CAS  Google Scholar 

  82. Gould, E., Reeves, A. J., Graziano, M. S., and Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science 286, 548–552.

    Article  PubMed  CAS  Google Scholar 

  83. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., and Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034.

    Article  PubMed  Google Scholar 

  84. Corti, S., Locatelli, F., Donadoni, C., et al. (2002). Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J Neurosci Res 70, 721–733.

    Article  PubMed  CAS  Google Scholar 

  85. Keshet, G. I., Brazelton, T., Weimann, J. M., and Blau, H. M. (2002). From marrow to brain. Paper presented at WS 7–2, Seventh European Congress of Neuropathology, Helsinki, Finland.

    Google Scholar 

  86. Terada, N., Hamazaki, T., Oka, M., et al. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.

    Article  PubMed  CAS  Google Scholar 

  87. Li, Y., Chen, J., Wang, L., Lu, M., and Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56, 1666–1672.

    Article  PubMed  CAS  Google Scholar 

  88. Li, Y., Chen, J., Wang, L., Zhang, L., Lu, M., and Chopp, M. (2001). Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 316, 67–70.

    Article  PubMed  CAS  Google Scholar 

  89. Akiyama, Y., Radtke, C., Honmou, O., and Kocsis, J. D. (2002). Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39, 229–236.

    Article  PubMed  Google Scholar 

  90. Jin, H. K., Carter, J. E., Huntley, G. W., and Schuchman, E. H. (2002). Intra-cerebral transplantation of mesenchymal stem cells into acid sphingomyelinasedeficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 109, 1183–1191.

    PubMed  CAS  Google Scholar 

  91. Li, Y., Chen, J., Chen, X. G., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59, 514–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Priller, J. (2004). From Marrow to Brain. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics