Skip to main content

Adult Stem Cell Plasticity

  • Chapter
Adult Stem Cells

Abstract

Although modern medicine has provided the ability to cure infections and malignancy, the ability to repair damaged organs is less advanced. Solid organ transplantation has been performed successfully, but is fraught with problems such as rejection, infection, and secondary malignancy from immunosuppression. Organ shortages create ethical issues with respect to the equitable distribution of donated tissues. Regenerative medicine, the field devoted to rebuilding damaged organs from stem cells, may provide alternatives to solid organ transplantation. However, the field of regenerative medicine is in its infancy. The potential sources of the tissues to regenerate organs include cloned cells, embryonic or fetal stem cells, or adult stem cells. Although each of these sources of stem cells has potential biological advantages and disadvantages, ethical and legal concerns have been raised by cloning (1–4) and the use of embryonic and fetal stem cells (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smaglik, P. (2001). Fears of cults and kooks push Congress towards cloning ban. Nature 410, 617.

    Article  PubMed  CAS  Google Scholar 

  2. Morality, prejudice and cloning. Nature 2002, 415, 349.

    Google Scholar 

  3. Check, E. (2002). Cloning agenda “skewed” by media frenzy. Nature 415, 722.

    PubMed  Google Scholar 

  4. Beyond the cloning debate. Nature 2002, 416, 109.

    Google Scholar 

  5. Antoniou, M. (2001). Embryonic stem cell research. The case against. Nat Med 7, 397–399.

    Google Scholar 

  6. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999). Transplant-ability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5, 309–313.

    Article  PubMed  CAS  Google Scholar 

  7. Kaufman, C. L., and Ildstad, S. T. (1999). Leukodystrophy and bone marrow transplantation: role of mixed hematopoietic chimerism. Neurochem Res 24, 537–549.

    Article  PubMed  CAS  Google Scholar 

  8. Krivit, W., Peters, C., and Shapiro, E. G. (1999). Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 12, 167–176.

    Google Scholar 

  9. Alvarado, A. S. (2000). Regeneration in the metazoans: why does it happen? Bioessays 22, 578–590.

    Article  CAS  Google Scholar 

  10. Newmark, P. A., and Alvarado, A. S. (2000). Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220, 142–153.

    Article  PubMed  CAS  Google Scholar 

  11. Wei, G., Schubiger, G., Harder, F., and Muller, A. M. (2000). Stem cell plasticity in mammals and transdetermination in Drosophila: common themes? Stem Cells 18, 409–414.

    Article  PubMed  CAS  Google Scholar 

  12. Blau, H. M., Brazelton, T. R., and Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  13. Blau, H. M., Chiu, C. P., and Webster, C. (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  14. Blau, H. M., Pavlath, G. K., Hardeman, E. C., et al. (1985). Plasticity of the differentiated state. Science 230, 758–766.

    Article  PubMed  CAS  Google Scholar 

  15. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98–104.

    Article  PubMed  CAS  Google Scholar 

  16. Terskikh, A. V., Easterday, M. C., Li, L., et al. (2001). From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci U S A 98, 7934–7939.

    Article  PubMed  CAS  Google Scholar 

  17. Anderson, D. J., Gage, F. H., and Weissman, I. L. (2001). Can stem cells cross lineage boundaries? Nat Med 7, 393–395.

    Article  PubMed  CAS  Google Scholar 

  18. Wulf, G. G., Jackson, K. A., and Goodell, M. A. (2001). Somatic stem cell plasticity: current evidence and emerging concepts. Exp Hematol 29, 1361 1370.

    Google Scholar 

  19. Lemischka, I. (2001). Stem cell dogmas in the genomics era. Rev Clin Exp Hematol 5, 15–25.

    Article  PubMed  CAS  Google Scholar 

  20. Terada, N., Hamazaki, T., Oka, M., et al. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.

    Article  PubMed  CAS  Google Scholar 

  21. Ying, Q. L., Nichols, J., Evans, E. P., and Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature 416, 545–548.

    Article  PubMed  CAS  Google Scholar 

  22. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  23. Petersen, B. E. (2001). Hepatic “stem” cells: coming full circle. Blood Cells Mol Dis 27, 590–600.

    Article  PubMed  CAS  Google Scholar 

  24. Theise, N. D., Badve, S., Saxena, R., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240.

    Article  PubMed  CAS  Google Scholar 

  25. Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000). Liver from bone marrow in humans. Hepatology 32, 11–16.

    Article  PubMed  CAS  Google Scholar 

  26. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6, 12291234.

    Google Scholar 

  27. Wang, X., Willenbring, H., Akkari, Y., et al. (2003) Cell fusion is the principal source of bone marrow derived hepatocytes. Nature 422, 897–901.

    Article  PubMed  CAS  Google Scholar 

  28. Vassilopoulos, G., Wang, P. R., and Russell, D. W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.

    Article  PubMed  CAS  Google Scholar 

  29. Krause, D. S., Theise, N. D., Collector, M. I., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson, K. A., Mi, T., and Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 96, 14,482–14, 486.

    Google Scholar 

  31. Kawada, H., and Ogawa, M. (2001). Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 98, 2008–2013.

    Article  PubMed  CAS  Google Scholar 

  32. Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 15281530.

    Google Scholar 

  33. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394.

    PubMed  CAS  Google Scholar 

  34. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  35. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  36. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  37. Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  38. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and AlvarezBuylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  39. Scheffler, B., Horn, M., Blumcke, I., et al. (1999). Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 22, 348–357.

    Article  PubMed  CAS  Google Scholar 

  40. Clarke, D. L., Johansson, C. B., Wilbertz, J., et al. (2000). Generalized potential of adult neural stem cells. Science 288, 1660–1663.

    Article  PubMed  CAS  Google Scholar 

  41. Kondo, T., and Raff, M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754 1757.

    Google Scholar 

  42. Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  43. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  44. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  45. Eglitis, M. A., and Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94, 4080–4085.

    Article  PubMed  CAS  Google Scholar 

  46. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  47. Uchida, N., Buck, D. W., He, D., et al. (2000). Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97, 14,720–14, 725.

    Google Scholar 

  48. Morrison, S. J., White, P. M., Zock, C., and Anderson, D. J. (1999). Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    Article  PubMed  CAS  Google Scholar 

  49. Steindler, D. A., and Pincus, D. W. (2002). Stem cells and neuropoiesis in the adult human brain. Lancet 359, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  50. Shi, Q., Rafii, S., Wu, M. H., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367.

    PubMed  CAS  Google Scholar 

  51. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.

    PubMed  CAS  Google Scholar 

  52. Grant, M., May, W. S., Caballero, S., et al. (2002). Adult hematopoietic stem cells provide functional hemagioblast activity during retinal neovascularization. Nat Med, 8, 607–612.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slayton, W.B., Spangrude, G.J. (2004). Adult Stem Cell Plasticity. In: Turksen, K. (eds) Adult Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-732-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-732-1_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-392-3

  • Online ISBN: 978-1-59259-732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics