Advertisement

Myocardial Infarction in the Younger Patient

  • Jorge Plutzky
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

In discussing premature myocardial infarction (MI), it is important to begin with a simple fact: coronary atherosclerosis is quite common in younger patients (1,2). It is the clinical manifestations of coronary artery disease (CAD)—MI and angina pectoris—that may be less frequently encountered (3). The underlying disease process appears to be present in many, if not most, Americans by the age of 30 (4). Autopsy studies on casualties of both war and motor vehicle accidents reveal early signs of atherosclerosis in up to 70% of individuals 30 yr old or younger, with significant flow-limiting stenoses in 10% (5).

Keywords

Acute Coronary Syndrome Fabry Disease Homocysteine Level Polycythemia Vera Premature Coronary Artery Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yater W, Traum AH, Brown WB, Fitzgerald RP, Geisler MA, Wilcox BB. Coronary artery disease in men eighteen to thirty-nine years of age: Report of eight hundred sixty-six cases, four hundred fifty with necropsy examinations. Am Heart J 1948; 36: 334–337.PubMedCrossRefGoogle Scholar
  2. 2.
    National Health and Nutrition Examination Survey 1976–1980 (NHANES II). 1980.Google Scholar
  3. 3.
    Uhl GS, Farrel PW. Risk factors and natural history. In: Roskamm H, ed. Myocardial Infarction at Young Age. Springer-Verlag, Heidelberg, 1981, pp. 29–44.CrossRefGoogle Scholar
  4. 4.
    Enos W, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea. JAMA 1953; 152: 1090.CrossRefGoogle Scholar
  5. 5.
    Lamm G. The epidemiology of acute myocardial infarction in young age groups. In: Roskamm H, ed. Myocardial Infarction at Young Age. Springer-Verlag, Heidelberg, 1981, pp. 5–10.CrossRefGoogle Scholar
  6. 6.
    Chen L, Chester M, Kaski JC. Clinical factors and angiographic features associated with premature coronary artery disease. Chest 1995; 108: 364–369.PubMedCrossRefGoogle Scholar
  7. 7.
    Antman EM, Braunwald E. Acute myocardial infarction. In: Braunwald E, ed. Heart Disease. WB Saunders, Philadelphia, 1997, pp. 1184–1288.Google Scholar
  8. 8.
    Hamsten A. Myocardial infarction at a young age: mechanisms and management. Vasc Med Rev 1991; 2: 45–60.CrossRefGoogle Scholar
  9. 9.
    Hamsten A, de Faire U. Risk factors for coronary artery disease in families of young men with myocardial infarction. Am J Cardiol 1987; 59: 14–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Waller BF, Fry ET, Hermiller JB, Peters T, Slack JD. Nonatherosclerotic causes of coronary artery narrowing-Part III. Clin Cardiol 1996; 19: 656–661.PubMedCrossRefGoogle Scholar
  11. 11.
    Maseri AB, L’Abbatte A. Coronary vasopasm as a possible cause of myocardial infarction. N Engl J Med 1978; 299: 1271–1277.PubMedCrossRefGoogle Scholar
  12. 12.
    Hamsten A, Walldius G, Szamosi A, Dahlen G, de Faire U. Relationship of angiographically defined coronary artery disease to serum lipoproteins and apolipoproteins in young survivors of myocardial infarction. Circulation 1986; 73: 1097–1110.PubMedCrossRefGoogle Scholar
  13. 13.
    Pitts WR, Lange RA, Cigarroa JE, Hillis LD. Cocaine-induced myocardial ischemia and infarction: pathophysiology, recognition, and management. Prog Cardiovasc Dis 1997; 40: 65–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Hollander JE. Cocaine-associated myocardial infarction. J R Soc Med 1996; 89: 443–447.PubMedGoogle Scholar
  15. 15.
    Boghdadi MS, Henning RJ. Cocaine: pathophysiology and clinical toxicology. Heart Lung 1997;26: 466–483; 484–485.Google Scholar
  16. 16.
    Friedman W. Congenital heart disease in infancy and childhood. In: Braunwald E ed. Heart Disease. WB Saunders, Philadelphia, 1997.Google Scholar
  17. 17.
    Genest JJ, McNamara JR, Salem DN, Schaefer EJ. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol 1991; 67: 1185–1189.PubMedCrossRefGoogle Scholar
  18. 17a.
    Genest JJ, McNamara, Ordovas JM, et al. Lipoprotein cholesterol, apolipoprotein, A-1, B and Lp (a) abnormalities in men with premature coronary artery disease. J Am Coll Card 1992; 19: 792–802.CrossRefGoogle Scholar
  19. 18.
    PDAY Study Group. Relationship of atherosclerosis in young men to serum lipoprotein cholesterol concentrations and smoking. JAMA 1990; 264: 3018–3024.CrossRefGoogle Scholar
  20. 19.
    Klag MJ, Ford DE, Mead LA, He J, Whelton PK, Liang KY, and Levine DM. Serum cholesterol in young men and subsequent cardiovascular disease [see comments]. N Engl J Med 1993; 328: 313–318.PubMedCrossRefGoogle Scholar
  21. 20.
    Genest J Jr, Cohn JS. Clustering of cardiovascular risk factors: targeting high-risk individuals. Am J Cardiol 1995; 76: 8A - 20A.PubMedCrossRefGoogle Scholar
  22. 21.
    Franklin BA, Fletcher GF, Gordon NF, Noakes TD, Ades PA, Balady GJ. Cardiovascular evaluation of the athlete. Issues regarding performance, screening and sudden cardiac death. Sports Med 1997; 24: 97–119.PubMedCrossRefGoogle Scholar
  23. 22.
    Baseline risk factors and their association with outcome in the West of Scotland Coronary Prevention Study. The West of Scotland Coronary Prevention Study Group. Am J Cardiol 1997; 79: 756–762.CrossRefGoogle Scholar
  24. 23.
    McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Effects of serum lipoproteins and smoking on atherosclerosis in young men and women. The PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol 1997; 17: 95–106.PubMedCrossRefGoogle Scholar
  25. 24.
    Strong JP, Malcom GT, Oalmann MC. Environmental and genetic risk factors in early human atherogenesis: lessons from the PDAY study. Pathobiological Determinants of Atherosclerosis in Youth. Pathol Int 1995; 45: 403–408.PubMedCrossRefGoogle Scholar
  26. 25.
    Strong JP, Malcom GT, Oalmann MC, Wissler RW. The PDAY Study: natural history, risk factors, and pathobiology. Pathobiological Determinants of Atherosclerosis in Youth. Ann NY Acad Sci 1997;811: 226–235, 235–237.Google Scholar
  27. 26.
    Zahger D, Cercek B, Cannon CP, Jordan M, Davis V, Braunwald E, Shah PK. How do smokers differ from nonsmokers in their response to thrombolysis? (the TIMI-4 trial) [see comments]. Am J Cardiol 1995; 75: 232–236.PubMedCrossRefGoogle Scholar
  28. 27.
    Beigel Y, George J, Leibovici L, Mattityahu A, Sclarovsky S, Blieden L. Coronary risk factors in children of parents with premature coronary artery disease. Acta Paediatr 1993; 82: 162–165.PubMedCrossRefGoogle Scholar
  29. 28.
    Kontula K, Ehnholm C. Regulatory mutations in human lipoprotein disorders and atherosclerosis. Curr Opin Lipidol 1996; 7: 64–68.PubMedCrossRefGoogle Scholar
  30. 29.
    Fortmann SP, Marcovina SM. Lipoprotein(a), a clinically elusive lipoprotein particle [editorial; comment]. Circulation 1997; 95: 295–296.PubMedCrossRefGoogle Scholar
  31. 30.
    Valentine RJ, Grayburn PA, Vega GL, Grundy SM. Lp(a) lipoprotein is an independent, discriminating risk factor for premature peripheral atherosclerosis among white men. Arch Intern Med 1994; 154: 801–806.PubMedCrossRefGoogle Scholar
  32. 31.
    Wilcken DE, Wang XL, Greenwood J, Lynch J. Lipoprotein(a) and apolipoproteins B and A-1 in children and coronary vascular events in their grandparents [see comments]. J Pediatr 1993; 123: 519–526.PubMedCrossRefGoogle Scholar
  33. 32.
    Ridker PM, Hennekens CH. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA 1993; 270: 2195–2199.PubMedCrossRefGoogle Scholar
  34. 33.
    White AL, Lanford RE. Biosynthesis and metabolism of lipoprotein (a). Curr Opin Lipidol 1995; 6: 75–80.PubMedCrossRefGoogle Scholar
  35. 34.
    Scanu AM. Structural and functional polymorphism of lipoprotein(a): biological and clinical implications. Clin Chem 1995; 41: 170–172.PubMedGoogle Scholar
  36. 35.
    Shaukat N, de Bono DP, Jones DR. Like father like son? Sons of patients of European or Indian origin with coronary artery disease reflect their parents’ risk factor patterns. Br Heart J 1995; 74: 318–323.PubMedCrossRefGoogle Scholar
  37. 36.
    Enas EA, Dhawan J, Petkar S. Coronary artery disease in Asian Indians: lessons learnt and the role of lipoprotein(a). Indian Heart J 1997; 49: 25–34.PubMedGoogle Scholar
  38. 37.
    Angelin B. Therapy for lowering lipoprotein (a) levels. Curr Opin Lipidol 1997; 8: 337–341.PubMedCrossRefGoogle Scholar
  39. 38.
    Calabresi L, Franceschini G. High density lipoprotein and coronary heart disease: insights from mutations leading to low high density lipoprotein. Curr Opin Lipidol 1997; 8: 219–224.PubMedCrossRefGoogle Scholar
  40. 39.
    Vega GL, Grundy SM. Hypoalphalipoproteinemia (low high density lipoprotein) as a risk factor for coronary heart disease. Cuff Opin Lipidol 1996; 7: 209–216.CrossRefGoogle Scholar
  41. 40.
    Kwiterovich PO Jr. Diagnosis and management of familial dyslipoproteinemia in children and adolescents. Pediatr Clin North Am 1990; 37: 1489–1523.PubMedGoogle Scholar
  42. 41.
    Schaefer EJ. Familial lipoprotein disorders and premature coronary artery disease. Med Clin North Am 1994; 78: 21–39.PubMedGoogle Scholar
  43. 42.
    Austin MA, Hokanson JE. Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein(a) as risk factors for coronary heart disease. Med Clin North Am 1994; 78: 99–115.PubMedGoogle Scholar
  44. 43.
    Avogaro P, Ghiselli G, Soldan S, Bittolo Bon G. Relationship of triglycerides and HDL cholesterol in hypertriglyceridemia. Atherosclerosis 1992; 92: 79–86.PubMedCrossRefGoogle Scholar
  45. 44.
    De Man FH, Cabezas MC, Van Barlingen HH, Erkelens DW, de Bruin TW. Triglyceride-rich lipoproteins in non-insulin-dependent diabetes mellitus: post-prandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 1996; 26: 89–108.PubMedCrossRefGoogle Scholar
  46. 45.
    de Faire U, Ericsson CG, Grip L, Nilsson J, Svane B, Hamsten A. Secondary preventive potential of lipid-lowering drugs. The Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). Eur Heart J 1996; 17 (Suppl F): 37–42.PubMedCrossRefGoogle Scholar
  47. 46.
    Assmann G, von Eckardstein A, Funke H. High density lipoproteins, reverse transport of cholesterol, and coronary artery disease. Insights from mutations. Circulation 1993; 87: 11128–34.Google Scholar
  48. 47.
    Fontbonne AM, et al. Insulin and cardiovascular disease: Paris Prospective Study. Diabetes Care 1991; 14: 461–469.PubMedCrossRefGoogle Scholar
  49. 48.
    Genest JJ Jr, McNamara JR, Salem DN, Wilson PW, Schaefer EJ, Malinow MR. Plasma homocyst(e)ine levels in men with premature coronary artery disease. J Am Coll Cardiol 1990; 16: 1114–1119.PubMedCrossRefGoogle Scholar
  50. 49.
    Gallagher PM, Meleady R, Shields DC, Tan KS, McMaster D, Rozen R, et al. Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation 1996; 94: 2154–2158.PubMedCrossRefGoogle Scholar
  51. 50.
    Fowler B. Disorders of homocysteine metabolism. J Inherit Metab Dis 1997; 20: 270–285.PubMedCrossRefGoogle Scholar
  52. 51.
    Boers GH. Hyperhomocysteinemia as a risk factor for arterial and venous disease. A review of evidence and relevance. Thromb Haemost 1997; 78: 520–522.Google Scholar
  53. 52.
    Duell PB, Malinow MR. Homocyst(e)ine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol 1997; 8: 28–34.PubMedCrossRefGoogle Scholar
  54. 53.
    Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517–527.PubMedCrossRefGoogle Scholar
  55. 54.
    Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentrations and extracranial carotid artery stenosis. N Engl J Med 1995; 332: 286–291.PubMedCrossRefGoogle Scholar
  56. 55.
    Kang SS, Wong PWK, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 1992; 12: 279–298.PubMedCrossRefGoogle Scholar
  57. 56.
    Rallidis LS, Papageorgakis NH, Megalou AA, Anagnostou ED, Chatzidimitriou GI, Tsitouris GK. Fibrinogen in the offspring of men with premature coronary artery disease. Eur Heart J 1995; 16: 1814–1818.PubMedGoogle Scholar
  58. 57.
    Holvoet P, Collen D. Thrombosis and atherosclerosis. Curr Opin Lipidol 1997; 8: 320–328.PubMedCrossRefGoogle Scholar
  59. 58.
    Hamsten A, Blombock M, Wiman B, Svensson J, Szamosi A, de Faire U, Mettinger L. Haemostatic function in myocardial infarction. Br Heart J 1986; 55: 58–66.PubMedCrossRefGoogle Scholar
  60. 59.
    Negus BH, Willard JE, Glamann DB, Landau C, Snyder RW, Hillis LD, Lange RA. Coronary anatomy and prognosis of young, asymptomatic survivors of myocardial infarction. Am J Med 1994; 96: 354–358.PubMedCrossRefGoogle Scholar
  61. 60.
    Wolfe J, Vacek ML. Myocardial Infarction in the young: Angiographic features and risk factor analysis of patients with MI at or before the age of 35. Chest 1994; 94: 926–930.CrossRefGoogle Scholar
  62. 61.
    Zimmerman FH, Cameron A, Fisher LD, Ng G. Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). J Am Coll Cardiol 1995; 26: 654–661.PubMedCrossRefGoogle Scholar
  63. 62.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographie progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.PubMedCrossRefGoogle Scholar
  64. 63.
    Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease [see comments]. Circulation 1995; 92: 2333–2342.PubMedCrossRefGoogle Scholar
  65. 64.
    Corrado D, Basso C, Poletti A, Angelini A, Valente M, Thiene G. Sudden death in the young. Is acute coronary thrombosis the major precipitating factor ? Circulation 1994; 90: 2315–2323.PubMedCrossRefGoogle Scholar
  66. 65.
    Dollar AL, Kragel AH, Fernicola DJ, Waclawiw MA, Roberts WC. Composition of atherosclerotic plaques in coronary arteries in women less than 40 years of age with fatal coronary artery disease and implications for plaque reversibility. Am J Cardiol 1991; 67: 1223–1227.PubMedCrossRefGoogle Scholar
  67. 66.
    Corrado D, Thiene G, Pennelli N. Sudden death as the first manifestation of coronary artery disease in young people (less than or equal to 35 years). Eur Heart J 1988; 9 (Suppl N): 139–144.PubMedCrossRefGoogle Scholar
  68. 67.
    Berenson GS, Srinivasan SR, Nicklas TA, Johnson CC. Prevention of adult heart disease beginning in the pediatric age. Cardiovasc Clin 1990; 20: 21–45.PubMedGoogle Scholar
  69. 68.
    Starc TJ, Belamarich PF, Shea S, Dobrin-Seckler BE, Dell RB, Gersony WM, Deckelbaum RJ. Family history fails to identify many children with severe hypercholesterolemia. Am J Dis Child 1991; 145: 61–64.PubMedGoogle Scholar
  70. 69.
    Muhonen LE, Burns TL, Nelson RP, Lauer RM. Coronary risk factors in adolescents related to their knowledge of familial coronary heart disease and hypercholesterolemia: the Muscatine Study. Pediatrics 1994; 93: 444–451.PubMedGoogle Scholar
  71. 70.
    Zehr KJ, Lee PC, Poston RS, Gillinov AM, Greene PS, Cameron DE. Two decades of coronary artery bypass graft surgery in young adults. Circulation 1994;90: II: 133–139.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jorge Plutzky

There are no affiliations available

Personalised recommendations