Skip to main content

Glycoprotein IIb-IIIa in Platelet Aggregation and Acute Arterial Thrombosis

  • Chapter
Platelet Glycoprotein IIb/IIIa Inhibitors in Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 54 Accesses

Abstract

Glycoprotein (GP) IIb-IIIa [αIIbβ3 in integrin nomenclature (1)], the most abundant protein on the platelet surface, is the primary receptor mediating platelet aggregation, a process central to acute arterial thrombosis and to hemostasis. Indeed, its central role in aggregation positions GP IIb-IIIa at the heart of thrombosis and has directed aggressive strategies into developing a new class of drugs, termed GP IIb-IIIa antagonists, which block the binding of adhesive proteins to GP IIb-IIIa thus preventing platelet aggregation. GP IIb-IIIa anatagonists have been shown to therapeutically regulate platelet function to prevent, for example, the thrombotic complications associated with coronary artery disease (2–4). The pivotal role that GP IIb-IIIa serves in platelet aggregation arises due to the dynamic nature of this receptor, which displays several functional activities that are important not only in understanding how this receptor is involved in platelet aggregation and thrombosis, but also, ultimately, for understanding how GP IIb-IIIa antagonists can be more effectively utilized to optimize their antithrombotic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  2. Coller BS. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest 1997; 99: 1467–1471.

    Article  PubMed  CAS  Google Scholar 

  3. Lefkovits J, Topol EJ. The clinical role of platelet glycoprotein IIb/IIIa receptor inhibitors in ischemic heart disease. Cleve Clin J Med 1996; 63: 181–189.

    PubMed  CAS  Google Scholar 

  4. Phillips DR, Scarborough RM. Clinical pharmacology of eptifibatide. Am J Cardiol 1997; 80: 11B - 20B.

    Article  PubMed  CAS  Google Scholar 

  5. Shattil S, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 1–14.

    Google Scholar 

  6. Mousa S, Bennett J. Platelets in health and disease: platelet GPIIb-IIIa structure and function: recent advances in antiplatelet therapy. Drugs Future 1996; 21: 1141–1154.

    CAS  Google Scholar 

  7. Phillips DR, Charo IF, Praise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood 1988; 71: 831–843.

    PubMed  CAS  Google Scholar 

  8. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GP IIb/Illa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88: 907–914.

    PubMed  CAS  Google Scholar 

  9. Youssefian T, Masse JM, Rendu F, Guichard J, Cramer EM. Platelet and megakaryocyte dense granules contain glycoproteins Ib and IIb-IIIa. Blood 1997; 89: 4047–4057.

    PubMed  CAS  Google Scholar 

  10. Shiba E, Lindon JN, Kushner L, Mat sueda GR, Hawiger J, Kloczewiak M, Kudryk B, Salzman EW. Antibody-detectable changes in fibrinogen adsorption affecting platelet activation on polymer surfaces. Am J Physiol 1991; 260: C965 - C974.

    PubMed  CAS  Google Scholar 

  11. Byzova TV, Plow EF. Networking in the hemostatic system. J Biol Chem 1997; 272:27, 183–27, 188.

    Google Scholar 

  12. Parise LV, Steiner B, Nannizzi L, Criss AB, Phillips DR. Evidence for novel binding sites on the platelet glycoprotein IIb and IIIa subunits and immobilized fibrinogen. Biochem J 1993; 289: 445–451.

    PubMed  CAS  Google Scholar 

  13. Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol 1986; 124: 324–334.

    PubMed  CAS  Google Scholar 

  14. Handagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet alpha-granules is mediated by alpha IIb beta 3 (glycoprotein IIb-IIIa). Blood 1993; 82: 135–138.

    PubMed  CAS  Google Scholar 

  15. Wencel-Drake JD, Frelinger ALD, Dieter MG, Lam SC. Arg-Gly-Asp-dependent occupancy of GPIIb/IIIa by applaggin: evidence for internalization and cycling of a platelet integrin. Blood 1993; 81: 62–69.

    PubMed  CAS  Google Scholar 

  16. Pike NB, Lumley P. Uptake of a fibrinogen receptor antagonist by human platelets appears dependent upon GPIIb/IIIa. Thromb Haemost 1995; 73: 1195.

    Google Scholar 

  17. Gawaz MP, Loftus JC, Bajt ML, Frojmovic MM, Plow EF, Ginsberg MH. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 1991; 88: 1128–1134.

    Article  PubMed  CAS  Google Scholar 

  18. Weber C, Springer T. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alIb133 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085–2093.

    Article  PubMed  CAS  Google Scholar 

  19. Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 1991; 88: 1568–1573.

    Article  PubMed  CAS  Google Scholar 

  20. Goto S, Ikeda Y, Saldivar E, Ruggeri Z. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 479–486.

    Article  PubMed  CAS  Google Scholar 

  21. Gralnick HR, Williams S, McKeown L, Connaghan G, Shafer B, Hansmann K, Vail M, Fenton J. Endogenous platelet fibrinogen surface expression on activated platelets. J Lab Clin Med 1991; 118:604–613.

    PubMed  CAS  Google Scholar 

  22. Legrand C, Dubernard V, Nurden AT. Studies on the mechanism of expression of secreted fibrinogen on the surface of activated human platelets. Blood 1989; 73: 1226–1234.

    PubMed  CAS  Google Scholar 

  23. Woods Jr VL, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem 1986; 261:15, 242–15, 251.

    Google Scholar 

  24. Kleiman NS, Raizner AE, Jordan R, Wang AL, Norton D, Mace KF, Joshi A, Coller BS, Weisman HF. Differential inhibition of platelet aggregation induced by adenosine diphosphate or a thrombin receptor-activating peptide in patients treated with bolus chimeric 7E3 Fab: implications for inhibition of the internal pool of GPIIb/IIIa receptors. J Am Coll Cardiol 1995; 26: 1665–1671.

    Article  PubMed  CAS  Google Scholar 

  25. Cook JJ Sitko GR, Holahan MA, Stranieri MT, Glass JD, Askew BC, McIntyre CJ, Claremon DA, Baldwin JJ, Hartman GD, Gould RJ, Lynch Jr JJ. Nonpeptide glycoprotein IIb/IIIa inhibitors. 15. Antithrombotic efficacy of L-738,167, a long-acting GPIIb/IIIa antagonist, correlates with inhibition of adenosine diphosphate-induced platelet aggregation but not with bleeding time prolongation. J Pharmacol Exp Ther 1997; 281:677–689.

    Google Scholar 

  26. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985; 101: 880–886.

    Article  PubMed  CAS  Google Scholar 

  27. Nurden AT, Macchi L, Bihour C, Durrieu C, Besse P, Nurden P. Markers of platelet activation in coronary heart disease patients. Eur J Clin Invest 1994; 24 Suppl 1: 42–45.

    Google Scholar 

  28. Carrell NA, Fitzgerald LA, Steiner B, Erickson HP, Phillips DR. Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy. J Biol Chem 1985; 260: 1743–1749.

    PubMed  CAS  Google Scholar 

  29. Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 1992; 267:16, 637–16, 643.

    Google Scholar 

  30. Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC. Ligand binding to integrin alphallbbeta3 is dependent on a MIDAS-like domain in the beta3 subunit. J Biol Chem 1996; 271:21, 978–21, 984.

    Google Scholar 

  31. Lee J-O, Rieu P, Arnaout MN, Lidington R. Crystal structure of the A domain from the subunit of integrin CR3 (CDllb/CD18). Cell 1995; 80: 631–638.

    Article  PubMed  CAS  Google Scholar 

  32. Lin ECK, Ratnikov BI, Tsai PM, Gonzalez ER, McDonald S, Pelletier AJ, Smith JW. Evidence that the integrin beta3 and betas subunits contain a metal ion-dependent adhesion site-like motif but lack an I domain. J Biol Chem 1997; 272:14, 236–14, 243.

    Google Scholar 

  33. Loftus JC, Smith, JW, Ginsberg MH. Integrin-mediated cell adhesion: the extracellular face. J Biol Chem 1994; 269:25, 235–25, 238.

    Google Scholar 

  34. Farrell DH, Thiagarajan P, Chung DW, Davie EW. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci USA 1992; 89:10, 729–10, 732.

    Google Scholar 

  35. Farrell DH, Thiagarajan P. Binding of recombinant fibrinogen mutants to platelets. J Biol Chem 1994; 269: 226–231.

    PubMed  CAS  Google Scholar 

  36. Kloczewiak M, Timmons S, Lukas T, Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. Biochemistry 1984; 23: 1767–1774.

    Article  PubMed  CAS  Google Scholar 

  37. Abrams CS, Ruggeri ZM, Taub R, Hoxie JA, Nagaswami C, Weisel JW, Shattil SJ. Anti-idotypic antibodies against an antibody to the platelet glycoprotein (GP) IIb-IIIa complex mimic GP IIb-IIIa by recognizing fibrinogen. J Biol Chem 1992; 267: 2775–2785.

    PubMed  CAS  Google Scholar 

  38. Holmback K, Danton MJ, Suh TT, Daugherty CC, Degen JL. Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin alpha IIb beta 3. EMBO J 1996; 15: 5760–5771.

    PubMed  CAS  Google Scholar 

  39. Steiner B, Cousot D, Trzeciak A, Gillessen D, Hadvary P. Cat+-dependent binding of a synthetic ArgGly-Asp (RGD) peptide to a single site on the purified platelet glycoprotein IIb-IIIa complex. J Biol Chem 1989; 264:13, 102–13, 108.

    Google Scholar 

  40. Mayo KH, Fan F, Beavers MP, Eckardt A, Keane P, Hoekstra WJ, Andrade-Gordon P. RGD induces conformational transition in purified platelet integrin GPIIb/IIIa-SDS system yielding multiple binding states for fibrinogen gamma-chain C-terminal peptide. FEBS Lett 1996; 378: 79–82.

    Article  PubMed  CAS  Google Scholar 

  41. Parise LV, Helgerson SL, Steiner B, Nannizi L, Phillips DR. Synthetic peptides derived from fibrinogen and fibronectin change the conformation of purified platelet glycoprotein IIb-IIIa. J Biol Chem 1987; 262:12, 597–12, 602.

    Google Scholar 

  42. Du XP, Plow EF, Frelinger ALD, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 1991; 65: 409–416.

    Article  PubMed  CAS  Google Scholar 

  43. Phillips DR, Charo IF, Scarborough RM. GPIIb-IIIa: the responsive integrin. Cell 1991; 65: 359–362.

    Article  PubMed  CAS  Google Scholar 

  44. Kouns WC, Kirchhofer D, Hadvary P, Edenhofer A, Weller T, Pfenninger G, Baumgartner HR, Jennings LK, Steiner B. Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 1992; 80: 2539–2547.

    PubMed  CAS  Google Scholar 

  45. Rooney MM, Parise LV, Lord ST. Dissecting clot retraction and platelet aggregation. Clot retraction does not require an intact fibrinogen g chain C terminus. J Biol Chem 1996; 271: 8553–8555.

    Article  PubMed  CAS  Google Scholar 

  46. Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 1991; 266: 9359–9362.

    PubMed  CAS  Google Scholar 

  47. Beacham D, Wise R, Turci S, Handin R. Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis. J Biol Chem 1992; 267: 3409–3415.

    PubMed  CAS  Google Scholar 

  48. Montgomery R, Coller B. von Willebrand Disease. In: Colman R, Hirsh J, Marder V, Salzman E, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. JB Lippincott, Philadelphia, PA, 1994, pp. 134–168.

    Google Scholar 

  49. Yuan Y, Dopheide SM, Ivanidis C, Salem HH, Jackson SP. Calpain regulation of cytoskeletal signaling complexes in von willebrand factor-stimulated platelets. Distinct roles for glycoprotein Ib-V-Ix and glycoprotein IIb-IIIa (integrin alphaIIbbeta3) in von willebrand factor-induced signal transduction. J Biol Chem 1997; 272:21, 847–21, 854.

    Google Scholar 

  50. Savage B, Saldivar E, Ruggeri Z. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289–297.

    Article  PubMed  CAS  Google Scholar 

  51. Chow TW, Hellums JD, Moake JL, Kroll MH. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 1992; 80: 113–120.

    PubMed  CAS  Google Scholar 

  52. Hartman G, Egbertson M, Halczenko W, Laswell W, Duggan M, Smith R, Naylor A, Manno P, Lynch R, Zhang G, Chang C-C, Gould R. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem 1992; 35: 4640–4642.

    Article  PubMed  CAS  Google Scholar 

  53. Zablocki JA, Miyano M, Rao SN, Panzer-Knodle S, Nicholson N, Feigen L. Potent inhibitors of platelet aggregation based upon the Arg-Gly-Asp-Phe sequence of fibrinogen. A proposal on the nature of the binding interaction between the Asp-carboxylate of RGDX mimetics and the platelet GP IIb-IIIa receptor. J Med Chem 1992; 35: 4914–4917.

    Article  PubMed  CAS  Google Scholar 

  54. Niewiarowski S, McLane MA, Kloczewiak M, Stewart GJ. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol 1994; 31: 289–300.

    PubMed  CAS  Google Scholar 

  55. Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 1993; 268: 1058–1065.

    PubMed  CAS  Google Scholar 

  56. Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem 1993; 268: 1066–1073.

    PubMed  CAS  Google Scholar 

  57. Rivas GA, Gonzalez-Rodriguez J. Calcium binding to human platelet integrin GPIIb/IIIa and to its constituent glycoproteins. Effects of lipids and temperature. Biochem J 1991; 276: 35–40.

    PubMed  CAS  Google Scholar 

  58. Cierniewski CS, Haas TA, Smith JW, Plow EF. Characterization of cation-binding sequences in the platelet integrin GPIIb-IIIa (alpha IIb beta 3) by terbium luminescence. Biochemistry 1994; 33:12, 238–12, 246.

    Google Scholar 

  59. Marguerie GA, Edgington TS, Plow EF. Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 1980; 255: 154–161.

    PubMed  CAS  Google Scholar 

  60. Fitzgerald LA, Phillips DR. Calcium regulation of the platelet membrane glycoprotein IIb-IIIa complex. J Biol Chem 1985; 260:11, 366–11, 374.

    Google Scholar 

  61. Fujimura K, Phillips DR. Calcium cation regulation of glycoprotein IIb-IIIa complex formation in platelet plasma membranes. J Biol Chem 1983; 258:10, 247–10, 252.

    Google Scholar 

  62. Hu DD, Barbas CF, Smith JW. An allosteric Cat+ binding site on the beta3-integrins that regulates the dissociation rate for RGD ligands. J Biol Chem 1996; 271:21, 745–21, 751.

    Google Scholar 

  63. Phillips DR, Teng W, Arfsten A, Nannizzi-Alaimo L, White MM, Longhurst C, Shattil SJ, Randolph A, Jakubowski JA, Jennings LK, Scarborough RM. Effect of Ca’ on GP IIb-IIIa interactions with integrilin: enhanced GP IIb-lila binding and inhibition of platelet aggregation by reductions in the concentration of ionized calcium in plasma anticoagulated with citrate. Circulation 1997; 96: 1488–1494.

    Article  PubMed  CAS  Google Scholar 

  64. Cohen D, Lu HR, Stassen JM, Vreys I, Yasuda T, Bunting S, Gold HK. Antithrombotic effects and bleeding time prolongation with synthetic platelet GPIIb/IIIa inhibitors in animal models of platelet-mediated thrombosis. Thromb Haemost 1994; 71: 95–102.

    Google Scholar 

  65. Kouns WC, Wall CD, White MM, Fox CF, Jennings LK. A conformation-dependent epitope of human platelet glycoprotein IIIa. J Biol Chem 1990; 265:20, 594–20, 601.

    Google Scholar 

  66. Frelinger ALD, Cohen I, Plow EF, Smith MA, Roberts J, Lam SC, Ginsberg MH. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 1990; 265: 6346–6352.

    PubMed  CAS  Google Scholar 

  67. Honda S, Tomiyama Y, Pelletier AJ, Annis D, Honda Y, Orchekowski R, Ruggeri Z, Kunicki TJ. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (AP5) at the amino terminus, of the human integrin beta 3 subunit. J Biol Chem 1995; 270:11, 947–11, 954.

    Google Scholar 

  68. Abraham DG, Nutt EM, Bednar RA, Bednar B, Gould RJ, Duong LT. Arginine-glycine-aspartic acid mimics can identify a transitional activation state of recombinant alphalIb beta3 in human embryonic kidney 293 cells. Mol Pharmacol 1997; 52: 227–236.

    PubMed  CAS  Google Scholar 

  69. Kouns W, Weller T, Hadvary P, Jennings L, Steiner B. Identification of a peptidomimetic inhibitor with minimal effects on the conformation of GPIIb-IIIa. Blood 1992; (suppl)80:165a [Abst 6501.

    Google Scholar 

  70. McQueney P, Bollag D, Egbertson M, Hartmen G, Gould R, Bednar B. RGD ligands induce a common neo-epitpoe upon binding to allbb3 on platelets. Mol Biol Cel 7 1996; (suppl): 247a [Abst 1436 ].

    Google Scholar 

  71. Ferrari E, Thiry M, Touati C, Gibelin P, Baudouy M. Acute profound thrombocytopenia after c7E3 Fab therapy. Circulation 1997; 96: 3809–3810.

    PubMed  CAS  Google Scholar 

  72. Simpfendorfer C, Kottke-Marchant K, Lowrie M, Anders R, Burns D, Miller D, Cove C, DeFranco A, Ellis S, Moliterno D, Raymond R, Sutton J, Topol E. First chronic platelet glycoprotein IIb/IIIa integrin blockade. A randomized, placebo-controlled pilot study of Xemlifoban in unstable angina with percutaneous coronary interventions. Circulation 1997; 96: 76–81.

    Article  PubMed  CAS  Google Scholar 

  73. Cannon C, McCabe C, Borzak S, Henry T, Tischler M, Mueller H, Feldman R, Palmeri S, Ault K, Hamilton S, Rothman J, Novotny W, Braunwald E. Randomized trial of an oral platelet glycoprotein IIb/IIIa antagonist, sibrafiban, in patients after an acute coronary syndrome. Circulation 1998; 97: 340–349.

    Article  PubMed  CAS  Google Scholar 

  74. Bednar B, Bednar R, Cook J, Booag D, Chang C, Gaul S, McQueney P, Egbertson M, Hartman G, Holahan MA. Drug-dependent antibodies against GPIIb/IIIa induce thrombocytopenia. Circulation 1996; 94: 1–99.

    Article  Google Scholar 

  75. Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994; 6: 695–704.

    Article  PubMed  CAS  Google Scholar 

  76. Daniel J, Dangelmaier C, Jin J, Ashby B, Smith J, Kunapuli S. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 1998; 273: 2024–2029.

    Article  PubMed  CAS  Google Scholar 

  77. Jin J, Daniel J, Kumapuli S. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998; 273: 2030–2034.

    Article  PubMed  CAS  Google Scholar 

  78. Mills DCB. ADP receptors on platelets. Thromb Haemost 1996; 76: 835–856.

    PubMed  CAS  Google Scholar 

  79. Kahmann RD, Donohue JM, Bradford DS, White JG, Rao GH. Platelet function in adolescent idiopathic scoliosis. Spine 1992; 17: 145–148.

    Article  PubMed  CAS  Google Scholar 

  80. Keely PJ, Parise LV. The alpha2betal integrin is a necessary coreceptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase Cgamma2 in platelets. J Biol Chem 1996; 271:26, 668–26, 676.

    Google Scholar 

  81. Ishibashi T, Ichinohe T, Sugiyama T, Takayama H, Titani K, Okuma M. Functional significance of platelet membrane glycoprotein p62 (GP VI), a putative collagen receptor. Int J Hematol 1995; 62: 107–111.

    Article  PubMed  CAS  Google Scholar 

  82. Sugiyama T, Okuma M, Ushikubi F, Sensaki S, Kanaji K, Uchino H. A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood 1987; 69: 1712–1720.

    PubMed  CAS  Google Scholar 

  83. Coller B, Beer J, Scudder L, Steinberg M. Collagen-platelet interactions: evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins. Blood 1989; 74: 182–192.

    PubMed  CAS  Google Scholar 

  84. Handa M, Watanabe K, Kawai Y, Kamata T, Koyama T, Nagai H, Ikeda Y. Platelet unresponsiveness to collagen: involvement of glycoprotein la-IIa (alpha 2 beta 1 integrin) deficiency associated with a myeloproliferative disorder. Thromb Haemost 1995; 73: 521–528.

    PubMed  CAS  Google Scholar 

  85. Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995; 89: 124–130.

    Article  PubMed  CAS  Google Scholar 

  86. Ichinohe T, Takayama H, Ezumi Y, Arai M, Yamamoto N, Takahashi H, Okuma M. Collagen-stimulated activation of Syk but not c-Src is severely compromised in human platelets lacking membrane glycoprotein VI. J Biol Chem 1997; 272: 63–68.

    Article  PubMed  CAS  Google Scholar 

  87. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  88. Cook JJ, Sitko GR, Bednar B, Condra C, Mellott MJ, Feng DM, Nutt RF, Shafter JA, Gould RJ, Connolly TM. An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African green monkey. Circulation 1995; 91: 2961–2971.

    Article  PubMed  CAS  Google Scholar 

  89. Henriksen RA, Samokhin GP, Tracy PB. Thrombin-induced thromboxane synthesis by human platelets. Properties of anion binding exosite I-independent receptor. Arterioscler Thromb Vasc Biol 1997; 17: 3519–3526.

    Article  PubMed  CAS  Google Scholar 

  90. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 1997; 386: 502–506.

    Article  PubMed  CAS  Google Scholar 

  91. Clemetson K. Platelet activation: signal transduction via membrane receptors. Thromb Haemost 1995; 74: 111–116.

    PubMed  CAS  Google Scholar 

  92. Andrews R, Harris S, McNally T, Berndt M. Binding of the purified 14–3–3Ç signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib–IX–V complex. Biochemistry 1998; 37: 638 – 647.

    Article  PubMed  CAS  Google Scholar 

  93. Neer E. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995; 80: 249–257.

    Article  PubMed  CAS  Google Scholar 

  94. Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in G alpha(q)-deficient mice. Nature 1997; 389: 183–186.

    Article  PubMed  CAS  Google Scholar 

  95. Gabbeta J, Yang X, Kowalska MA, Sun L, Dhanasekaran N, Rao AK. Platelet signal transduction defect with Ga subunit dysfunction and diminished Gaq in a patient with abnormal platelet responses. Proc Natl Acad Sci USA 1997; 94: 8750–8755.

    Article  PubMed  CAS  Google Scholar 

  96. Tsuji M, Ezumi Y, Arai M, Takayama H. A novel association of Fc receptor gamma-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J Biol Chem 1997; 272:23, 528–23, 531.

    Google Scholar 

  97. Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16: 2333–2341.

    Article  PubMed  CAS  Google Scholar 

  98. Asazuma N, Ozaki Y, Satoh K, Yatomi Y, Handa M, Fujimura Y, Miura S, Kume S. Glycoprotein Ib-von Willebrand factor interactions activate tyrosine kinases in human platelets. Blood 1997; 90: 4789–4798.

    PubMed  CAS  Google Scholar 

  99. Du X, Harris SJ, Tetaz TJ, Ginsberg MH, Berndt MC. Association of a phospholipase A2 (14–3–3 protein) with the platelet glycoprotein Ib–IX complex. J Biol Chem 1994; 269:18, 287–18, 290.

    Google Scholar 

  100. Calverley D, Kavanagh T, Roth G. Human signaling protein 14–3-g interacts with platelet glycoprotein Ib subunits Iba and Iba. Blood 1998; 91: 1295–1303.

    PubMed  CAS  Google Scholar 

  101. Dubois T, Howell S, Arness B, Kerai P, Learmouth M, Madrazo J, Chaudhri M, Rittinger K, Scarabel M, Soneji Y, Aitken A. Structure and sites of phosphorylation of 14–3–3 protein: role in coordinating signal transduction pathways. J Protein Chem 1997; 16: 513 – 522.

    Article  PubMed  CAS  Google Scholar 

  102. Missiaen L, Taylor CW, Berridge MJ. Spontaneous calcium release from inositol trisphosphatesensitive calcium stores. Nature 1991; 352: 241–244.

    Article  PubMed  CAS  Google Scholar 

  103. Lages, B, Weiss H. Evidence for a role of Glycoprotein IIb-IIIa, distinct from its ability to support aggregation, in platelet activation by ionophores in the presence of extracellular divalent cations. Blood 1994; 83: 2549–2559.

    PubMed  CAS  Google Scholar 

  104. Puri R, Colman R. Thrombin-and cathepsin G-induced platelet aggregation: effect of protein kinase C inhibitors. Anal Biochem 1993; 210: 50–57.

    Article  PubMed  CAS  Google Scholar 

  105. Mustard JF, Kinlough-Rathbone RL, Packham MA. Aspirin in the treatment of cardiovascular disease: a review. Am J Med 1983; 74: 43–49.

    Article  PubMed  CAS  Google Scholar 

  106. Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, Ginsberg MH. Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit. J Cell Biol 1995; 131: 807–816.

    Article  PubMed  CAS  Google Scholar 

  107. Naik UP, Patel PM, Parise LV. Identification of a novel calcium-binding protein that interacts with the integrin alphallb cytoplasmic domain. J Biol Chem 1997; 272: 4651–4654.

    Article  PubMed  CAS  Google Scholar 

  108. Brisson C, Azorsa DO, Jennings LK, Moog S, Cazenave JP, Lanza F. Co-localization of CD9 and GPIIb-IIIa (alpha IIb beta 3 integrin) on activated platelet pseudopods and alpha-granule membranes. Histochem J 1997; 29: 153–165.

    Article  PubMed  CAS  Google Scholar 

  109. Indig FE, Diaz-Gonzalez F, Ginsberg MH. Analysis of the tetraspanin CD9-integrin alphaIIbbeta3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem J 1997; 327: 291–298.

    PubMed  CAS  Google Scholar 

  110. Chung J, Gao AG, Frazier WA. Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 1997; 272:14, 740–14, 746.

    Google Scholar 

  111. Fenczik CA, Sethi T, Ramos JW, Hughes PE, Ginsberg MH. Complementation of dominant suppression implicates CD98 in integrin activation. Nature 1997; 390: 81–88.

    Article  PubMed  CAS  Google Scholar 

  112. Sims PJ, Ginsberg MH, Plow EF, Shattil SJ. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem 1991; 266: 7345–7352.

    PubMed  CAS  Google Scholar 

  113. Keiffer N, Fitzgerald LA, Wolf D, Cheresh DA, Phillips DR. Adhesive properties of the beta 3 integrins: comparison of GP IIb-IIIa and the vitronectin receptor individually expressed in human melanoma cells. J Cell Biol 1991; 113: 451–461.

    Article  Google Scholar 

  114. Uthoff K, Zehr KJ, Geerling R, Herskowitz A, Cameron DE, Reitz BA. Inhibition of platelet adhesion during cardiopulmonary bypass reduces postoperative bleeding. Circulation 1994; 90:1I269–11274.

    Google Scholar 

  115. Carroll R, Wang X-F, Lanza F, Steiner B, Kouns W. Blocking platelet aggregation inhibits thromboxane A2 formation by low dose agonists but does not inhibit phosphorylation and activation of cytosolic phospholipase A2. Thromb. Res. 1997; 88: 109–125.

    Article  PubMed  CAS  Google Scholar 

  116. Tsao P, Forsythe M, Mousa S. Dissociation between the anti-aggregatory and anti-secretory effects of platelet integrin allbb3 (GPIIb/IIIa) antagonists, c7E3 and DMP728. Thromb Res 1997; 88: 137–146.

    Article  PubMed  CAS  Google Scholar 

  117. Marcus A, Broekman M, Drosopoulos J, Islam N, Alyonycheva T, Safier L, Hajjar K, Posnett D, Schoenborn M, Schooley K, Gayle R, Maliszewski C. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997; 99: 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  118. Esmon N, Carroll R, Esmon C. Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 1983; 258:12, 238–12, 242.

    Google Scholar 

  119. Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 1996; 271:10, 811–10, 815.

    Google Scholar 

  120. van der Geer P, Wiley S, Lai VK-M, Olivier JP, Gish GD, Stephens R, Kaplan D, Shoelson S, Pawson T. A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr Biol 1995; 5: 404–412.

    Article  PubMed  Google Scholar 

  121. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of SOS Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993; 363: 45–51.

    Article  PubMed  CAS  Google Scholar 

  122. Liu KY, Timmons S, Lin YZ, Hawiger J. Identification of a functionally important sequence in the cytoplasmic tail of integrin beta 3 by using cell-permeable peptide analogs. Proc Natl Acad Sci USA 1996; 93:11, 819–11, 824.

    Google Scholar 

  123. Nannizzi-Alaimo L, Jenkins AL, Law DA, Eigenthaler M, Ginsberg MH, Phillips DR. The tyrosine residues within (33 are phosphorylated only upon platelet aggregation and are required for 03-dependent clot retraction in CHO cells. Blood 1997; 90: 426a [Abstr 1892].

    Google Scholar 

  124. Blystone SD, Williams MP, Slater SE, Brown EJ. Requirement of integrin beta3 tyrosine 747 for beta3 tyrosine phosphorylation and regulation of alphavbeta3 avidity. J Biol Chem 1997; 272:28, 757–28, 761.

    Google Scholar 

  125. Shattil SJ, Brugge JS. Protein tyrosine phosphorylation and the adhesive functions of platelets. Curr Opin Cell Biol 1991; 3: 869–879.

    Article  PubMed  CAS  Google Scholar 

  126. Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci 1994; 19: 464–469.

    Article  PubMed  CAS  Google Scholar 

  127. Dillon AMR, Heath MF. The effects of tyrphostins B42 and B46 on equine platelet function and protein tyrosine phosphorylation. Biochem Biophy Res Commun 1995; 212: 595–601.

    Article  CAS  Google Scholar 

  128. Salari H, Duronio V, Howard SL, Demos M, Jones K, Reany A, Hudson AT, Pelech SL. Erbstatin blocks platelet activating factor-induced protein-tyrosine phosphorylation, polyphosphoinositide hydrolysis, protein kinase C activation, serotonin secretion and aggregation of rabbit platelets. FEBS Lett 1990; 263: 104–108.

    Article  PubMed  CAS  Google Scholar 

  129. Hargreaves PG, Licking EF, Sargeant P, Sage SO, Barnes MJ, Farndale RW. The tyrosine kinase inhibitors, Genistein, and Methyl 2,5-dihydroxycinnamate, inhibit the release of (3H)Arachidonate from human platelets stimulated by thrombin or collagen. Thromb Haemost 1994; 72: 634–642.

    PubMed  CAS  Google Scholar 

  130. Law DA, Nannizzi-Alaimo L, Ministri K, Hughes P, Forsyth J, Turner M, Shattil SJ, Ginsberg MH, Tybulewicz V, Phillips DR. Genetic and pharmacological analyses of Syk function in alpha IIb beta III signaling in platelets. Blood 1999; in press.

    Google Scholar 

  131. Dorahy DJ, Berndt MC, Burns GF. Capture by chemical crosslinkers provides evidence that integrin alpha IIb beta 3 forms a complex with protein tyrosine kinases in intact platelets. Biochem J 1995; 309: 481–490.

    PubMed  CAS  Google Scholar 

  132. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    Article  PubMed  CAS  Google Scholar 

  133. Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, Brugge JS. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 1994; 269:14, 738–14, 745.

    Google Scholar 

  134. Eide BL, Turck CW, Escobedo JA. Identification of Tyr-397 as the primary site of tyrosine phosphorylation and pp60src association in the focal adhesion kinase, pp125FAK. Mol Cell Biol 1995; 15: 2819–2827.

    PubMed  CAS  Google Scholar 

  135. Zhang J, Zhang J, Shattil SJ, Cunningham MC, Rittenhouse SE. Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or betaphorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J Biol Chem 1996; 271: 6265–6272.

    Article  PubMed  CAS  Google Scholar 

  136. Hartwig JH, Kung S, Kovacsovics T, Janmey PA, Cantley LC, Stossel TP, Toker A. D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate. J Biol Chem 1996; 271:32, 986–32, 993.

    Google Scholar 

  137. Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H. Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase. J Cell Biol 1995; 129: 831–842.

    Article  PubMed  CAS  Google Scholar 

  138. Kovacsovics TJ, Bachelot C, Toker A, V1ahos CJ, Duckworth B, Cantley LC, Hartwig JH. Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets but reverses platelet aggregation. J Biol Chem 1995; 270:11, 358–11, 366.

    Google Scholar 

  139. Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P, Erneux C, Chap H. Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 1997; 272:26, 857–26, 863.

    Google Scholar 

  140. Du X, Saido TC, Tsubuki S, Indig FE, Williams MJ, Ginsberg MH. Calpain cleavage of the cytoplasmic domain of the integrin beta 3 subunit. J Biol Chem 1995; 270:26, 146–26, 151.

    Google Scholar 

  141. Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbbeta3 (platelet glycoprotein IIb/ IIIa) and the cellular retraction of fibrin clots. J Biol Chem 1997; 272: 1694–1702.

    Article  PubMed  CAS  Google Scholar 

  142. Dash D, Aepfelbacher M, Siess W. Integrin alpha IIb beta 3-mediated translocation of CDC42Hs to the cytoskeleton in stimulated human platelets. J Biol Chem 1995; 270:17, 321–17, 326.

    Google Scholar 

  143. Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86–92.

    Article  PubMed  CAS  Google Scholar 

  144. Dedhar S, Hannigan GE. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 1996; 8: 657–669.

    Article  PubMed  CAS  Google Scholar 

  145. Phillips DR, Jennings LK, Edwards HH. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol 1980; 86: 77–86.

    Article  PubMed  CAS  Google Scholar 

  146. Fox JE, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP Hb-IIIa, pp60c-src, pp62c-yes, and the p2lras GTPase-activating protein with the membrane skeleton. J Biol Chem 1993; 268:25, 973–25, 984.

    Google Scholar 

  147. Jenkins A, Nannizzi-Alaimo L, Silver D, Sellers J, Ginsberg M, Law D, Phillips D. Tyrosine phosphorylation of the [33 ctyoplasmic domain mediates integrin-cytoskeletal interactions. J Biol Chem 1998; 273:13, 878–13, 885.

    Google Scholar 

  148. Simmons SR, Albrecht RM. Self-association of bound fibrinogen on platelet surfaces. J Lab Clin Med 1997; 128: 39–50.

    Article  Google Scholar 

  149. Coller B, Kutok J, Scudder L, Galanakis D, West S, Rudomen G, Springer K. Studies of activated GP IIb/IIIa receptors on the luminal surface of adherent platelets. J Clin Invest 1993; 92: 2796–2806.

    Article  PubMed  CAS  Google Scholar 

  150. Knezevic I, Leisner TM, Lam SCT. Direct binding of the platelet integrin alphaIIbbeeta3 (GPIIbIIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphallb and beta3. J Biol Chem 1996; 271:16, 416–16, 421.

    Google Scholar 

  151. Otey CA, Pavalko FM, Burridge K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol 1990; 111: 721–729.

    Article  PubMed  CAS  Google Scholar 

  152. Reddy KB, Gascard P, Price MG, Fox JE. Identification and characterization of a specific interaction between skelemin and beta integrin cytoplasmic tails. Circulation 1996; (suppl) I 94:1–98 [Abstr. 0562].

    Google Scholar 

  153. Chen YP, O’Toole TE, Ylanne J, Rosa JP, Ginsberg MH. A point mutation in the integrin beta 3 cytoplasmic domain (S752->P) impairs bidirectional signaling through alpha IIb beta 3 (platelet glycoprotein IIb-IIIa). Blood 1994; 84: 1857–1865.

    PubMed  CAS  Google Scholar 

  154. Schoenwaelder SM, Jackson SP, Yuan Y, Teasdale MS, Salem HH, Mitchell CA. Tyrosine kinases regulate the cytoskeletal attachment of integrin alpha IIb beta 3 (platelet glycoprotein lib/IIIa) and the cellular retraction of fibrin polymers. J Biol Chem 1994; 269:32, 479–32, 487.

    Google Scholar 

  155. Newman P, Poncz M. Inherited disorders in platelets. In: Scriver C, Beaudet W, Sly W, Valle D, eds. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York, 1995, pp. 3335–3366.

    Google Scholar 

  156. Djaffar I, Rosa JP. A second case of variant of Glanzmann’s thrombasthenia due to substitution of platelet GPIIIa (integrin beta 3) Arg214 by Trp. Hum Mol Genet 1993; 2: 2179–2180.

    Article  PubMed  CAS  Google Scholar 

  157. Kato A, Yamamoto K, Miyazaki S, Jung S, Moroi M, Aoki N. Molecular basis for Glanzmann’s thrombasthenia (GT) in a compound heterozygote with glycoprotein IIb gene: a proposal for the classification of GT based on the biosynthetic pathway of glycoprotein IIb-IIIa complex. Blood 1992; 79: 3212–3218.

    PubMed  CAS  Google Scholar 

  158. Djaffar I, Caen JP, Rosa JP. A large alteration in the human platelet glycoprotein IIIa (integrin beta 3) gene associated with Glanzmann’s thrombasthenia. Hum Mol Genet 1993; 2: 2183–2185.

    Article  PubMed  CAS  Google Scholar 

  159. Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser-752-Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89:10, 169–10, 173.

    Google Scholar 

  160. Baker EK, Tozer EC, Pfaff M, Shattil SJ, Loftus JC, Ginsberg MH. A genetic analysis of integrin function: Glanzmann thrombasthenia in vitro. Proc Natl Acad Sci USA 1997; 94: 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  161. Newman P, Derbes R, Aster R. The human platelet alloantigens, PIA 1 and PIA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J Clin Invest 1989; 83: 1778–1781.

    Article  PubMed  CAS  Google Scholar 

  162. Weiss E, Bray P, Tayback M, Schulman S, Kickler T, Becker L, Weiss J, Gerstenblith G, Goldschmidt-Clermont P. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996; 334: 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  163. Walter D, Schachinger V, Elsner M, Dimmeler S, Zeiher A. Platelet glycoprotein III polymorphisms and risk of coronary stent thrombosis. Lancet 1997; 350: 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  164. Carter A, Ossei-Gernig N, Wilson I, Grant P. Association of the platelet PIA polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bb 448 polymorphism with myocardial infarction and extent of coronary disease. Circulation 1997; 96: 1424–1431.

    Article  PubMed  CAS  Google Scholar 

  165. Hermann SM, Poirier O, Marques-Vidal P, Evans A, Arveiler D, Luc G, Emmerich J, Cambien F. The Leu33/Pro polymorphism (PIAl/PIA2) of the glycoprotein IIIa (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Etude Cas-Temoins de I’Infarctus du Myocarde. Thromb Haemost 1997; 77: 1179–1181.

    Google Scholar 

  166. Samani NJ, Lodwick D. Glycoprotein IIIa polymorphism and risk of myocardial infarction. Cardiovasc Res 1997; 33: 693–697.

    Article  PubMed  CAS  Google Scholar 

  167. de Maat MPM, Bladbjerg EM, Johansen LG, Bentzen J, Jesperson J. PIal/a2 polymorphism of platelet glycoprotein IIIa and risk of cardiovascular disease. Lancet [Letter] 1997; 349: 1099–1100.

    Article  Google Scholar 

  168. Feng D, Lindpainter K, Larson M, O’Donnell C, Lipinska I, Schimitz C, Sutherland P, Muller J, Levy D, Tofler G. Increased platelet aggregability associated with platelet GPIIIa PLA2 polymorphism. Circulation 1997; 96a: 1–412 [Abst 2301].

    Google Scholar 

  169. Murata M, Matsubara Y, Kawano K, Zama T, Aoki N, Yoshino H, Watanabe G, Ishikawa K, Ikeda Y. Coronary artery disease and polymorphisms in a receptor mediating shear stress-dependent platelet activation. Circulation 1997; 96: 3281–3286.

    Article  PubMed  CAS  Google Scholar 

  170. Reverter J, Beguin S, Kessels R, Hemker H, Coller B. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. J Clin Invest 1996; 98: 863–874.

    Article  PubMed  CAS  Google Scholar 

  171. Herault J, Payrou V, Savi P, Bernat A, Herbert J. Effect of SR121566A, a potent GP IIb-IIIa antiagonist on platelet-mediated thrombin generation in vitro and in vivo.

    Google Scholar 

  172. van’t Meer C, DiLorenzo M, Lock J, Mann K. Effect of platelet inhibitors on thrombin generation. Blood 1997; 90 (suppl):29a [Abstr 114].

    Google Scholar 

  173. Moliterno DJ, Califf RM, Aguirre FV, Anderson K, Sigmon KN, Weisman HF, Topol EJ. Effect of platelet glycoprotein IIb/IIIa integrin blockade on activated clotting time during percutaneous transluminal coronary angioplasty or directional atherectomy (the EPIC trial). Evaluation of c7E3 Fab in the Prevention of Ischemic Complications trial. Am J Cardiol 1995; 75: 559–562.

    Article  PubMed  CAS  Google Scholar 

  174. Swords N, Tracy P, Mann K. Intact platelet membranes, not platelet-released microvesicles, support the procoagulant activity of adherent platelets. Arterioscler Thromb 1993; 13: 1613–1622.

    Article  PubMed  CAS  Google Scholar 

  175. Basic-Micic M, Roman C, Herpel U, Kling E, Scholz B, Breddin H. Platelet-induced thrombin generation time: a new sensitive global assay for platelet function and coagulation. Method and first results. Haemostasis 1992; 22: 309–321.

    PubMed  CAS  Google Scholar 

  176. Henn V, Slupsky J, Grafe M, Anagnostopoulos I, Forste RR, Muller-Berghause G, Kroczek R. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591–594.

    Article  PubMed  CAS  Google Scholar 

  177. Mach F, Schonbeck U, Bonnefoy J-Y, Pober J, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40. Circulation 1997; 96: 396–399.

    Article  PubMed  CAS  Google Scholar 

  178. Schini-Kerth V, Bassus S, Fisslthaler B, Kirchmaier C, Busse R. Aggregating human platelets stimulate the expression of thrombin receptors in cultured vascular smooth muscle cells via the release of transforming growth factor-beta-1 and platelet-derived growth factor AB. Circulation 1997; 96: 3888–3896.

    Article  PubMed  CAS  Google Scholar 

  179. Gillis S, Furie B, Furie B. Interactions of neutrophils and coagulation proteins. Seminars Hemat 1997; 34: 336–342.

    CAS  Google Scholar 

  180. Ross R, Masuda J, Raines E, Gown A, Katsuda S, Sasahara M, Malden L, Masuko H, Sato H. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 1990; 248: 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  181. Kraiss L, Raines E, Wilcox J, Seifert R, Barrett T, Kirkham T, Hart C, Bowen-Pope D, Ross R, Clowes A. Regional expression of the platelet-derived growth factor and its receptors in a primate graft model of vessel wall assembly. J Clin Invest 1993; 92: 338–348.

    Article  PubMed  CAS  Google Scholar 

  182. The EPILOG Investigators. Platelet glycoprotein GP IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. N Engl J Med 1997; 336: 1689–1696.

    Article  Google Scholar 

  183. IMPACT-II Investigators. Randomised placebo-controlled trial of eptifibatide on complications of percutaneous coronary intervention: IMPACT-II. Lancet 1997; 349: 1422–1428.

    Article  Google Scholar 

  184. The RESTORE Investigators. Effects of platelet glycoprotein IIb/IIIa blockade with tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty. Randomized Efficacy Study of Tirofiban for Outcomes and Restenosis. Circulation 1997; 96: 1445–1453.

    Article  Google Scholar 

  185. Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet 1994; 343: 881–886.

    Article  PubMed  CAS  Google Scholar 

  186. Strauss B, Robinson R, Batchelor W, Chisholm R, Ravi G, Natarajan M, Logan R, Mehta S, Levy D, Ezrin A, Keeley F. In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res 1996; 79: 541–550.

    Article  PubMed  CAS  Google Scholar 

  187. Bendeck M, Regenass S, Tom W, Giachelli C, Schwartz S, Hart C, Reidy M. Differential expression of al type VIII collagen in injured platelet-derived growth factor-BB-stimulated rat carotid arteries. Circ Res 1996; 79: 524–531.

    Article  PubMed  CAS  Google Scholar 

  188. Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM. Inhibition of fibrinogen binding to GP IIb-IIIa by a GP IIIa peptide. J Biol Chem 1991; 266: 1415–1421.

    PubMed  CAS  Google Scholar 

  189. Bajt ML, Ginsberg MH, Frelinger ALD, Berndt MC, Loftus JC. A spontaneous mutation of integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267: 3789–3794.

    PubMed  CAS  Google Scholar 

  190. D’Souza SE, Ginsberg MH, Burke TA, Plow EF. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit. J Biol Chem 1990; 265: 3440–3446.

    PubMed  Google Scholar 

  191. Niewiarowska J, Swiderska M, Majewksi T, Cierniewski CS. Peptide-specific antibodies as probes of the topography of the Cat+-binding motifs in allb133. Thromb Haemost 1997; 78: 1510–1515.

    PubMed  CAS  Google Scholar 

  192. Loftus JC, Plow EF, Frelinger ALD, D’Souza SE, Dixon D, Lacy J, Sorge J, Ginsberg MH. Molecular cloning and chemical synthesis of a region of platelet glycoprotein IIb involved in adhesive function. Proc Natl Acad Sci USA 1987; 84: 7114–7118.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Law, D.A., Phillips, D.R. (1999). Glycoprotein IIb-IIIa in Platelet Aggregation and Acute Arterial Thrombosis. In: Lincoff, A.M., Topol, E.J. (eds) Platelet Glycoprotein IIb/IIIa Inhibitors in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-724-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-724-6_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6202-0

  • Online ISBN: 978-1-59259-724-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics