Skip to main content

Bax, a Death Effector Molecule

Its Role in Development and Oncogenesis

  • Chapter
Apoptosis and Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 186 Accesses

Abstract

Bax is a member of the Bcl-2 family that regulates apoptosis by promoting cell death. Abnormal expression of this protein has been linked to pathological features such as colorectal cancer, enhanced tumorigenesis, and male sterility. Currently, the molecular mechanism by which Bax regulates apoptosis is unknown, despite intensive investigation of a variety of proposed models. Emerging evidence suggests that Bax can undergo differential conformational changes, and that its site of action appears to reside in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bc1–2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  2. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the Bc1–2 family and cell death. Blood 1996; 88: 386–401.

    PubMed  CAS  Google Scholar 

  3. Apte SS, Mattei MG, Olsen BR. Mapping of the human Bax gene to chromosome 19g13.3-g13.4. Genomics 1995; 26: 592–594.

    Article  PubMed  CAS  Google Scholar 

  4. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bd-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–1805.

    PubMed  CAS  Google Scholar 

  5. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  6. Han J, Sabbatini P, Perez D, Rao L, Modha D, White E. E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Gene Dey 1996; 461–477.

    Google Scholar 

  7. Zha H., Aime-Sempe C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996; 271: 7440–7444.

    Article  PubMed  CAS  Google Scholar 

  8. Zha H, Fisk HA, Yaffe MP, Mahajan N, Herman B, Reed JC. Structure—function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol 1996; 16: 6494–6508.

    PubMed  CAS  Google Scholar 

  9. Simonian PL, Grillot DAM, Merino R, Nunez G. Bax can antagonize Bel-XL during etoposide and cisplatin-induced cell death independently of its heterodimerization with Bc1-XL. J Biol Chem 1996; 271: 22764–22772.

    Article  PubMed  CAS  Google Scholar 

  10. Simonian PL, Grillot DAM, Andrews DW, Leber B, Nunez G. Bax homodimerization is not required for Bax to accelerate chemotherapy-induced cell death. J Biol Chem 1996; 271: 32073–32077.

    Article  PubMed  CAS  Google Scholar 

  11. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bel-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  PubMed  CAS  Google Scholar 

  12. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton F, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 53: 4701–4714.

    PubMed  CAS  Google Scholar 

  13. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 1994; 145: 1323–1336.

    PubMed  CAS  Google Scholar 

  14. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. Baxdeficient mice with lymphoic hyperplasia and male germ cell death. Science 1995; 270: 96–99.

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. Early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 1997; 16: 2262–2270.

    Article  PubMed  CAS  Google Scholar 

  16. Perez GI, Knudson MC, Leykin L, Korsmeyer SJ, Tilly JL. Chemotherapy-mediated female germ cell destruction. Nat Med 1997; 3: 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  17. White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 1998; 18: 1428–1439.

    PubMed  CAS  Google Scholar 

  18. Shindler KS, Latham CB, Roth KA. Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J Neurosci 1997; 17: 3112–3119.

    PubMed  CAS  Google Scholar 

  19. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosomes breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  20. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ. Cloning of the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906.

    Article  PubMed  CAS  Google Scholar 

  21. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs from bc1–2 and the hybrid bcl-2/immunoglobulin transcript resulting from the (14;18) translocation. Cell 1986; 47: 19–28.

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto H, Sawai H, Perucho M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 1997; 57: 4420 1426.

    Google Scholar 

  23. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967–969.

    Article  PubMed  CAS  Google Scholar 

  24. Yagi OK, Akiyama Y, Nomizu T, Iwama T, Endo M, Yuasa Y. Proapoptotic gene Bax is frequently mutated in hereditary nonpolyposis colorectal cancers but not in adenomas. Gastroenterol 1998; 114: 268–274.

    Article  CAS  Google Scholar 

  25. Yin C, Knudson CM, Korsmeyer SJ, Dyke TV. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 1997; 385: 637–640.

    Article  PubMed  CAS  Google Scholar 

  26. Hsu Y-T, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and 13c1-XL during apoptosis. Proc Natl Acad Sci USA 1997; 94: 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  27. Hsu Y-T, Youle RJ. Nonionic detergents induce dimerization among members of the Bc1–2 family. J Biol Chem 1997; 272: 13, 829–13, 834.

    Google Scholar 

  28. Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi X-G, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  29. Shibasaki F, Kondo E, Akagi T, McKeon F. Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bc1–2. Nature 1997; 386: 728–731.

    Article  PubMed  CAS  Google Scholar 

  30. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C. Bc1–2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391: 496–499.

    Article  PubMed  CAS  Google Scholar 

  31. Otter I, Conus S, Ravn U, Rager M, Olivier R, Monney L, Fabbro D, Borner C. Binding properties and biological activities of Bc1–2 and Bax in cells exposed to apoptotic stimuli. J Biol Chem 1998; 273: 6110–6120.

    Article  PubMed  CAS  Google Scholar 

  32. Kitanaka C, Namiki T, Noguchi K, Mochizuki T, Kagaya S, Chi S, et al. Caspasedependent apoptosis of COS-7 cells induced by Bax overexpression: differential effects of Bc1–2 and Bel-XL on Bax-induced caspase activation and apoptosis. Oncogene 1997; 15: 1763–1772.

    Article  PubMed  CAS  Google Scholar 

  33. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, et al. Interactions among members of the Bc1–2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 1994; 91: 9238–9242.

    Article  PubMed  CAS  Google Scholar 

  34. Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ. Multiple Bd-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA 1995; 92: 7834–7838.

    Article  PubMed  CAS  Google Scholar 

  35. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng EH-Y, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bc1-X. Nature 1996; 379: 554–556.

    Article  PubMed  CAS  Google Scholar 

  37. Knudson MC, Korsmeyer SJ. Bc1–2 and Bax function independently to regulate cell death. Nat Genet 1997; 16: 358–363.

    Article  PubMed  CAS  Google Scholar 

  38. Zha H, Reed JC. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bc1–2 in yeast and mammalian cells. J Biol Chem 1997; 272: 31482–31488.

    Article  PubMed  CAS  Google Scholar 

  39. Clair EGS, Anderson SJ, Oltvai ZN. Bc1–2 counters apoptosis by Bax heterodimerization-dependent and -independent mechanisms in the T-cell lineage. J Biol Chem 1997; 272: 29347–29355.

    Article  Google Scholar 

  40. Hsu Y-T, Youle RY. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 1998; 273: 10777–10783.

    Article  PubMed  CAS  Google Scholar 

  41. Xu Q, Reed JC. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1: 337–346.

    Article  PubMed  CAS  Google Scholar 

  42. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, et al. X-ray and NMR structure of human Bc1-XL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  43. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. Bc1-XL forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    Article  PubMed  CAS  Google Scholar 

  44. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, et al. Inhibition of Bax channel-forming activity by Bd-2. Science 1997; 277: 370–372.

    Article  PubMed  CAS  Google Scholar 

  45. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC. Channel formation by antiapoptotic protein Bc1–2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    Article  PubMed  CAS  Google Scholar 

  46. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ. Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bc1–2. Proc Natl Acad Sci USA 1997; 94: 11357–11362.

    Article  PubMed  CAS  Google Scholar 

  47. Xiang J, Chao DT, Korsmeyer SJ. Bax-induced cell death may not be required interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14559–14563.

    Article  PubMed  CAS  Google Scholar 

  48. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  49. Pastorino JG, Chen S-T, Tafani M, Snyder JW, Farber JL. Overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 1998; 273: 7770–7775.

    Article  PubMed  CAS  Google Scholar 

  50. Matsuyama S, Xu Q, Velours J, Reed JC. Mitochondrial Fo/F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1998; 1: 327–336.

    Article  PubMed  CAS  Google Scholar 

  51. Manon S, Chaudhuri B, Guerin M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-XL. FEBS Left 1997; 415: 29–32.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hsu, YT., Youle, R. (1999). Bax, a Death Effector Molecule. In: Hickman, J.A., Dive, C. (eds) Apoptosis and Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-720-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-720-8_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-165-3

  • Online ISBN: 978-1-59259-720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics