Skip to main content

Drug Resistance and the Survival Niche

Survival Signals Combine to Suppress Drug-Induced Apoptosis in B-Lymphoma Cells

  • Chapter
Apoptosis and Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 184 Accesses

Abstract

Studies of tumor cell lines in vitro suggest that the suppression of drug-induced apoptosis may be an important drug-resistance mechanism applicable to all types of anticancer agents that are used in vivo. Drug-induced apoptosis may be suppressed by overexpression of antiapoptotic proteins such as Bd-2, and/or by survival signals in the tumor microenvironment. These signals include the action of growth factors, cell—cell interactions, and interactions of cells with extracellular matrix. In vivo, tumor cells are likely to receive a combination of these signals from within their microenvironment. These survival signals may be heterogeneously distributed, and some cells may therefore exist in what could be termed a survival niche; others may be more vulnerable to apoptosis, including that induced by anticancer agents. The emergence of a viable and drug-resistant subpopulation of tumor cells following drug treatment may therefore depend on the signals derived from within a particular survival niche. This chapter focuses on the survival niche, in which drug-resistant B-cell lymphomas may reside, and describes attempts to create this cellular environment in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raff MC. Social controls on cell survival and cell death. Nature (London) 1992; 356: 397–400.

    Article  CAS  Google Scholar 

  2. Harrington EA, Bennet MR, Fanidi A, Evan GI. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 1994; 13: 3286–3295.

    PubMed  CAS  Google Scholar 

  3. Collins MK, Marvel J, Malde P, Lopez-Rivas A. Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 1992; 176: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  4. Edwards SN, Buckmaster AE, Tolkovsky AM. Death programme in cultured sympathetic neurones can be suppressed at the post-translational level by nerve growth factor, cyclic AMP, and depolarisation. J Neurochem 1991; 57: 2140–2143.

    Article  PubMed  CAS  Google Scholar 

  5. MacLennan ICM, Liu Y-J, Johnson GD. Germinal centres in the immune response. Immunol Rev 1992; 126: 143–161.

    Article  PubMed  CAS  Google Scholar 

  6. Frische SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Article  Google Scholar 

  7. Pullan S, Wilson J, Metcalfe A, Edwards GM, Goberdhan N, Tilly J, et al. Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J Cell Sci 1996; 109: 631–642.

    PubMed  CAS  Google Scholar 

  8. Stein RS. Clinical features and evaluation. In: Cancer Treatment and Research, vol. 4, Lymphomas 1, Bennett JM, ed. Martinus Nijhoff: The Hague/Boston/ London. 1981; 150–157.

    Google Scholar 

  9. Rohatiner AZS, Lister TA. New approaches to treatment of follicular lymphoma. Br J Haematol 1991; 79: 349–354.

    Article  PubMed  CAS  Google Scholar 

  10. Horning SJ. Treatment approaches to the low-grade lymphomas. Blood 1994; 83: 881–884.

    PubMed  CAS  Google Scholar 

  11. Clark EA, Ledbetter JA. How B and T cells talk to each other. Nature (London) 1994; 367: 425–428.

    Article  CAS  Google Scholar 

  12. Dune FH, Foy TM, Masters SR, Laman JD, Noelle RJ. Role of CD40 in regulation of humoral and cell-mediated immunity. Immunol Today 1994; 11: 101–105.

    Google Scholar 

  13. Liu Y-J, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan ICM. Mechanisms of antigen driven selection in germinal centres. Nature (London) 1989; 342: 929–931.

    Article  CAS  Google Scholar 

  14. Paulie S, Rosen A, Ehlin-Henriksson B, Braesch-Andersen S, Jakoson E, Koho H, Perlmann P. Human B lymphocyte and carcinoma antigen CDw40 is a phosphoprotein involved in signal transduction. J Immunol 1989; 142: 590–595.

    PubMed  CAS  Google Scholar 

  15. Krammer PH, Dhein J, Walczak H, Berhmann I, Mariani S, Matiba B, et al. Role of APO-1-mediated apoptosis in the immune system. Immunol Rev 1994; 142: 175–191.

    Article  PubMed  CAS  Google Scholar 

  16. Smith CA, Farrah T, Goodwin RG. TF superfamily of cellular and viral proteins: activation, co-stimulation, and death. Cell 1994; 76: 959–962.

    Article  PubMed  CAS  Google Scholar 

  17. Nunez G, Merino R, Grillot D, Gonzalez-Garcia M. Bc1–2 and andl-X: regulatory switches for lymphoid death and survival. Immunol Today 1994; 15: 582–587.

    Article  PubMed  CAS  Google Scholar 

  18. Lagresle C, Bella C, Daniel PT, Krammer PH, DeFrance T. Regulation of GC B cell differentiation: Role of the human APO-1/ Fas (CD95) molecule. J Immunol 1995; 154: 5746–5756.

    PubMed  CAS  Google Scholar 

  19. Banchereau J, Depaoli P, Valle A, Garcia E, Rousset F. Long-term human B-Cell lines dependent on interleukin-4 and antibody to CD40. Science 1991; 251: 70–72.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson PWM, Watt SM, Betts DR, Davies D, Jordan S, Norton AJ, Lister TA. Isolated follicular lymphoma-cells are resistant to apoptosis and can be grown in-vitro in the CD40 stromal cell system. Blood 1993; 82: 1848–1857.

    PubMed  CAS  Google Scholar 

  21. Holder MJ, Wang H, Milner AE, Casamayor M, Armitage R, Spriggs MK, et al. Suppression of apoptosis in normal and neoplastic human B-lymphocytes by CD40 ligand is independent of Bc1–2 induction. Eur J Immunol 1993; 23: 2368–2371.

    Article  PubMed  CAS  Google Scholar 

  22. Mazzei GJ, Edgerton MD, Losberger C, Lecoanethenchoz S, Graber P, Durandy A, et al. Recombinant soluble trimeric CD40 ligand is biologically-active. J Biol Chem 1995; 270: 7025–7028.

    Article  PubMed  CAS  Google Scholar 

  23. Ruan YL, Rabizadeh S, Camerini D, Bredesen DE. Expression of CD40 induces neural apoptosis. J Neurosci Res 1997; 50: 383–390.

    Article  PubMed  CAS  Google Scholar 

  24. Hess S, Engelmann H Novel function of CD40—induction of cell-death in transformed cells. J Exp Med 1996; 183: 159–167.

    Article  PubMed  CAS  Google Scholar 

  25. Parry SL, Hasbold J, Holman M, Klaus GGB. Hypercross-linking surface IgM or IgD receptors on mature B-cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J Immunol 1994; 152: 2821–2829.

    PubMed  CAS  Google Scholar 

  26. Merino R, Grillot DAM, Simonian PL, Muthukkumar S, Fanslow WC, Bondada S, Nunez G. Modulation of anti-IgM-induced B-cell apoptosis by Bcl-X(L) and CD40 in WEHI-231 cells—dissociation from cell-cycle arrest and dependence on the avidity of the antibody-IgM receptor interaction. J Immunol 1995; 155: 3830–3838.

    PubMed  CAS  Google Scholar 

  27. Gregory CD, Dive C, Henderson S, Smith, CA, Williams GT, Gordon J, Rickinson AB. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature (London) 1991; 349: 612–614.

    Article  CAS  Google Scholar 

  28. An SK, Knox KA. Ligation of CD40 rescues Ramos-Burkitt lymphoma B-cells from calcium ionophore-triggered and antigen receptor-triggered apoptosis by inhibiting activation of the cysteine protease Cpp32/Yama and cleavage of its substrate Parp. Febs Lett 1996; 386: 115–122.

    Article  PubMed  CAS  Google Scholar 

  29. Milner AE, Grand RJA, Vaughan ATM, Armitage RJ, Gregory CD. Differential effects of BCL-2 on survival and proliferation of human B-lymphoma cells following gamma-irradiation. Oncogene 1997; 15: 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  30. Walker, A Taylor, ST, Hickman JA, Dive C: Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma cells. Cancer Res 1997; 57: 1939–1945.

    PubMed  CAS  Google Scholar 

  31. Liu YJ, Mason DY, Johnson GD, Abbot S, Gregory CD, Hardie DL, Gordon J, MacLennan ICM. Germinal center cells express Bc1–2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol 1991; 21: 1905–1910.

    Article  PubMed  CAS  Google Scholar 

  32. Choi MSK, Boise LH, Gottschalk AR, Quintans J, Thompson CB, Klaus GGB. Role of Bcl-X(L) in CD40-mediated rescue from anti-Mu-induced apoptosis in WEHI-231 B-lymphoma-cells. Eur J Immunol 1995; 25: 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  33. Wang ZH, Karras JG, Howard RG, Rothstein TL. Induction of Bcl-X by CD40 engagement rescues slg-induced apoptosis in murine B-cells. J Immunol 1995; 155: 3722–3725.

    PubMed  CAS  Google Scholar 

  34. Sato T, Irie S, Reed JC. A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. Febs Lett 1995; 358: 113–118.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng GH, Cleary AM, Ye ZS, Hong DI, Lederman S, Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 1995; 267: 1494–1498.

    Article  PubMed  CAS  Google Scholar 

  36. Tewari M, Dixit VM. Recent advances in tumor-necrosis-factor and CD40 signaling. Curr Opin Genet Dev 1996; 6: 39–44.

    Article  PubMed  CAS  Google Scholar 

  37. Fans M, Fu SM. CD40 signal-transduction—association of CD40 with Lyn, PI3k, Gap, and PLC-gamma. Clin Res 1994; 42: A206 - A206.

    Google Scholar 

  38. Ren CL, Morio T, Fu SM, Geha RS. Signal-transduction via CD40 involves activation of Lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C-gamma-2. J Exp Med 1994; 179: 673–680.

    Article  PubMed  CAS  Google Scholar 

  39. Knox, KA, Gordon, J. Protein-tyrosine phosphorylation is mandatory for CD40mediated rescue of germinal center B-cells from apoptosis. Eur J Immunol 1993; 23: 2578–2584.

    Article  PubMed  CAS  Google Scholar 

  40. Knox KA, Johnson GD, Gordon J. Distribution of cAMP in secondary follicles and its expression in B-cell apoptosis and CD40-mediated survival. Int Immunol 1993; 5: 1085–1091.

    Article  PubMed  CAS  Google Scholar 

  41. Uckun FM, Schieven GL, Dibirdik I, Chandanlanglie M, Tuelahlgren L, Ledbetter JA. Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine threonine-specific protein-kinases by the pan-B-cell receptor CD40Bp50 at discrete developmental stages of human B-cell ontogeny. J Biol Chem 1991; 266: 17, 478–17, 485.

    Google Scholar 

  42. Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B-cells rapidly activates nuclear factor-kappa-B. J Immunol 1994; 153: 4357–4366.

    PubMed  CAS  Google Scholar 

  43. Schieven GL, Kirihara JM, Burg DL, Geahlen RL, Ledbetter JA. P72syk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Ca’ signals. J Biol Chem 1993; 268: 16688–16692.

    PubMed  CAS  Google Scholar 

  44. Baichwal VR, Baeuerle PA. Apoptosis: activate NF-kappa B or die? Curr Biol 1997; 7: R94 - R96.

    Article  PubMed  CAS  Google Scholar 

  45. Sarma V, Lin ZW, Clark L, Rust BM, Tewari M, Noelle RJ, Dixit VM. Activation of the B-cell surface-receptor CD40 induces A20, a novel zinc-finger protein that inhibits apoptosis. J Biol Chem 1995; 270: 12343–12346.

    Article  PubMed  CAS  Google Scholar 

  46. Tewari M, Wolf FW, Seldin MF, O’Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor programmed cell death. J Immunol 1995; 154: 1699–1706.

    PubMed  CAS  Google Scholar 

  47. Rebollo A, Gomez J, Martinez-A C. Lessons from the immunological, biochemical, and molecular pathways of the activation mediated by IL-2 and IL-4. Adv Immunol 1996; 63: 127–196.

    Article  PubMed  CAS  Google Scholar 

  48. Ning ZQ, Norton JD, Li J, Murphy JJ. Distinct mechanisms for rescue from apoptosis in Ramos human B-cells by signaling through CD40 and interleukin4 receptor—role for inhibition of an early response gene, Berg36. Eur J Immunol 1996; 26: 2356–2363.

    Article  PubMed  CAS  Google Scholar 

  49. Koopman G, Keehnen RMJ, Lindhout E, Newman W, Shimizu Y, van Seventer GA, de Groot C, Pals ST. Adhesion through the LFA-1 (CD1 1 a/CD18)-ICAM1 (CD54) and the VLA (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal centre B cells. J Immunol 1994; 152: 3760–3767.

    PubMed  CAS  Google Scholar 

  50. Giancotti FG. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997; 9: 691–700.

    Article  PubMed  CAS  Google Scholar 

  51. Kolanus W, Seed B. Integrins and inside-out signal transduction: converging signals from PKC and PIPS. Curr Opin Cell Biol 1997; 9: 725–731.

    Article  PubMed  CAS  Google Scholar 

  52. Meredith Jr JE, Schwartz MA. Integrins, adhesion and apoptosis. Trends Biosci 1997; 7: 146–150.

    CAS  Google Scholar 

  53. Singh S, Natarajan K, Aggarwal BB: Capsaicin (8-Methyl-N-Vanillyl-6-Nonenamide) is a potent inhibitor of nuclear transcription factor-KB activation by diverse agents. J Immunol 1996; 157: 4412–4420.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, S.T., Dive, C. (1999). Drug Resistance and the Survival Niche. In: Hickman, J.A., Dive, C. (eds) Apoptosis and Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-720-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-720-8_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-165-3

  • Online ISBN: 978-1-59259-720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics