Skip to main content

Mechanism of Action of the Proapoptotic Gene Bak

  • Chapter
Book cover Apoptosis and Cancer Chemotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 187 Accesses

Abstract

The mechanism of action of the proapoptotic gene bak has so far proved to be elusive. Early molecular clues suggested that bak functioned as a competitive inhibitor of protective members of the bc1-2 family. Although this might still be an explanation for the apoptosis induced by overexpression of bak in cells, more recent data suggests that bak may have a role distinct from the other proapoptotic gene, bax. Important questions remain to be answered for bak. In particular, different subcellular compartments are occupied in different cells, suggesting that a general bak function might disrupt the integrity of a number of key organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hengartner MO. Death cycle and Swiss army knives. Nature 1998; 391: 441–442.

    Article  PubMed  CAS  Google Scholar 

  2. McCall K, Steller H. Facing death in the fly: genetic analysis of apoptosis in Drosophila. Trends Genet 1997; 13: 222–226.

    Article  PubMed  CAS  Google Scholar 

  3. Keifer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tornei LD, Barr PJ. Modulation of apoptosis by the widely distributed bc1–2 homologue Bak. Nature 1995; 374: 736–739.

    Article  Google Scholar 

  4. Yin X-M, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of bd-2 are required for inhibition of apoptosis and heterodimerisation with bax. Nature 1994; 369: 321–323.

    Article  PubMed  CAS  Google Scholar 

  5. Zha H, Aime-Sempe C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bc1–2 and homodimerizes with Bax via novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996; 271: 7440–7444.

    Article  PubMed  CAS  Google Scholar 

  6. Chittenden T, Remington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ. Conserved domain in bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 1995; 14: 5589–5596

    PubMed  CAS  Google Scholar 

  7. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, et al. X-ray and NMR structure of human bcl-XL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  8. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    Article  PubMed  CAS  Google Scholar 

  9. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC. Channel formation by antiapoptotic protein Bc1–2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    Article  PubMed  CAS  Google Scholar 

  10. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, et al. Inhibition of Bax channel-forming activity by Bd-2. Science 1997; 277: 370–372.

    Article  PubMed  CAS  Google Scholar 

  11. Xie Z, Schendel S, Matsuyama S, Reed IC. Acidic pH promotes dimerization of Bc1–2 family proteins. Biochemistry 1998; 37: 6410–6418.

    Article  PubMed  CAS  Google Scholar 

  12. Huang DCS, Adams JM, Cory S. Conserved N-terminal BH4 domain of bc1–2 is essential fo inhibition of apoptosis and interaction with ced-4. EMBO J 1998; 17: 1029–1039.

    Article  PubMed  CAS  Google Scholar 

  13. Zou H, Henzel WI, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4 participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.

    Article  PubMed  CAS  Google Scholar 

  14. Wu D, Wallen HD, Nunez G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 1997; 275: 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  15. Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997; 275: 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  16. Seshagiri S, Miller LK. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol 1997; 7: 455–460.

    Article  PubMed  CAS  Google Scholar 

  17. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    PubMed  CAS  Google Scholar 

  18. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16: 2794–2804.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan J. Transducing signals of life and death. Curr Opin Cell Biol 1997; 9: 247–251.

    Article  PubMed  CAS  Google Scholar 

  20. Ng FWH, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC. p28 Bap31, a bc1–2/bc1-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 1997; 139: 327–338.

    Article  PubMed  CAS  Google Scholar 

  21. Ng FWH, Shore GC. Bel-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum dependent on Procaspase-8 and ced-4 adaptor. J Biol Chem 1998; 273: 3140–3143.

    Article  PubMed  CAS  Google Scholar 

  22. Rao L, Modha D, White E: The E1B 19K protein associates with lamins in vivo and its proper localization is required for inhibition of apoptosis. Oncogene 1997; 15: 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  23. Torgler CN, deTiani M, Raven MTE, Aubry J-P, Brown R, Meldrum E. Expression of bak in S. pombe results in a lethality mediated through interaction with the calnexin homologue cnxl. Cell Death Differ 1997; 4: 263–271.

    Article  PubMed  CAS  Google Scholar 

  24. Xu Q, Reed JC. Mol Cell 1: 337–346.

    Google Scholar 

  25. Liu H, Bowes RC, van der Walter B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca’ disturbances, and cell death in renal epithelial cells. J Biol Chem 1997; 272: 21, 751–21, 759.

    Google Scholar 

  26. Hamman BD, Hendershot LM, Johnson AE. BiP maintains the permeability barrier of the endoplasmic reticulum membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 1998; 92: 747–758.

    Article  PubMed  CAS  Google Scholar 

  27. McCormick TS, McColl KS, Distelhorst CW. Mouse lymphoma cells destined to undergo apoptosis in response to thapsigargin treatment fail to generate a calcium-mediated grp78/grp94 stress response. J Biol Chem 1997; 272: 6087–6092.

    Article  PubMed  CAS  Google Scholar 

  28. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992; 6: 439–453.

    Article  PubMed  CAS  Google Scholar 

  29. Wang X-Z, Lawson B, Brewer JW, Zinszer H, Sanjay A, Mi L-J, et al. Signals from the stressed endoplasmic reticulum induce C/EBP-Homologous protein (CHOP/GADD153). Mol Cell Biol 1996; 16: 4273–4280.

    PubMed  CAS  Google Scholar 

  30. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bc1–2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  31. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bc1–2 regulation of apoptosis. Science 1997; 275: 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  32. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91: 627–637.

    Article  PubMed  CAS  Google Scholar 

  33. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  34. Lithgow T, van Driel R, Bertram JF, Strasser A. The protein product of the oncogene bc1–2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ 1994; 5: 411–417.

    PubMed  CAS  Google Scholar 

  35. Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y. Multiple subcellular localization of bc1–2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondria) membranes. Cancer Res 1994; 54: 2468–2471.

    PubMed  CAS  Google Scholar 

  36. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW. Bc1–2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 1996; 15: 4130–4141.

    PubMed  CAS  Google Scholar 

  37. Brewer JW, Cleveland JK, Hendershot LM. A pathway distinct from the mammalian unfolded protein response regulates expression of endoplasmic reticulum chaperones in non-stressed cells. EMBO J 1997; 16: 7207–7216.

    Article  PubMed  CAS  Google Scholar 

  38. Welihinda AA, Tirasophon W, Green SR, Kaufman RJ. Gene induction in response to unfolded protein in the endoplasmic reticulum is mediated through Irelp kinase interaction with a transcriptional coactivator complex containing Ada5p. Proc Natl Acad Sci USA 1997; 94: 4289–4294.

    Article  PubMed  CAS  Google Scholar 

  39. Sidrauski C, Walter P. Transmembrane kinase Irelp is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90: 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  40. Liu H, Bowes RC, van der Walter B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca’ disturbances, and cell death in renal epithelial cells. J Biol Chem 1997; 272: 21, 751–21, 759.

    Google Scholar 

  41. Lam M, Dubyak G, Chien L, Nunez G, Miesfield RL, Distelhorst CW. Evidence that bd-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca’ fluxes. Proc Nat Acad Sci USA 1994; 91: 6569–6573.

    Article  PubMed  CAS  Google Scholar 

  42. He H, Lam M, McCormick TS, Distelhorst CW. Maintenance of calcium homeostasis in the endoplasmic reticulum by bc1–2. J Cell Biol 1997; 138: 1219–1228.

    Article  PubMed  CAS  Google Scholar 

  43. Orth K, Dixit VM. Bik and bak induce apoptosis downstream of CrmA but upstream of inhibitor of apoptosis. J Bio Chem 1997; 272: 8841–8844.

    Article  CAS  Google Scholar 

  44. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-l-dependent caspase-9 activation. Proc Natl Acad Sci USA 1998; 95: 4386–4391.

    Article  PubMed  CAS  Google Scholar 

  45. Pan G, O’Rourke K, Dixit VM. Caspase-9, Bel-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998; 273: 5841–5845.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, R. (1999). Mechanism of Action of the Proapoptotic Gene Bak . In: Hickman, J.A., Dive, C. (eds) Apoptosis and Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-720-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-720-8_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-165-3

  • Online ISBN: 978-1-59259-720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics