Skip to main content

Does Apoptosis Contribute to Tumor Cell Sensitivity to Anticancer Agents?

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The widely held view that tumor cells treated with anticancer agents die from apoptosis, and that cells resistant to apoptosis are resistant to cancer treatment, is incorrect. Two principal factors have given rise to this dogma. First, cell killing has often been assessed in short-term assays that are influenced more by the rate, than the overall level, of cell death. Second, conclusions have been extrapolated from normal cells transformed with dominant oncogenes to tumor cells, without taking into account that tumor cells have invariably undergone selection to an apoptotically resistant phenotype. If clonogenic survival is used to assess cell killing, and real tumor cells are used, then apoptosis, and the genes controlling it, such as p53 and bel-2, play little or no role in the sensitivity of tumor cells of nonhematological origin to anticancer drugs and radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elledge RM, Green S, Howes L, Clark GM, Berardo M, Allred DC, et al. bc1–2, p53, and response to tamoxifen in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group study. J Clin Oncol 1997; 15: 1916–1922.

    PubMed  CAS  Google Scholar 

  2. Weinberg RA. How cancer arises. Sci Am 1996; 275: 62–70.

    Article  PubMed  CAS  Google Scholar 

  3. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.

    Article  PubMed  CAS  Google Scholar 

  4. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  PubMed  CAS  Google Scholar 

  5. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace M, Jr., Kohn KW, et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997; 275: 343–349.

    Article  PubMed  CAS  Google Scholar 

  6. Aldridge DR, Arends MJ, Radford IR. Increasing the susceptibility of therat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clono-genic survival dose-response. Brit J Cancer 1995; 71: 571–577.

    Article  PubMed  CAS  Google Scholar 

  7. Han JW, Dionne CA, Kedersha NL, Goldmacher VS. p53 status affects the rate of the onset but not the overall extent of doxorubicin-induced cell death in rat-1 fibroblasts constitutively expressing c-Myc. Cancer Res 1997; 57: 176–182.

    PubMed  CAS  Google Scholar 

  8. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J. Cell-cycle arrest versus cell death in cancer therapy. Nature Med 1997; 3: 1034–1036.

    Article  PubMed  CAS  Google Scholar 

  9. Wouters BG, Giaccia Ai, Denko NC, Brown JM. Loss of p21Wafl/Cipl sensitizes tumors to radiation by an apoptosis-independent. Cancer Res 1997; 57: 4703–4706.

    PubMed  CAS  Google Scholar 

  10. Baxendine-Jones J, Campbell I, Ellison D. p53 status has no prognostic significance in glioblastomas treated with radiotherapy. Clin Neuropathol 1997; 16: 332–336.

    PubMed  CAS  Google Scholar 

  11. Thompson LH, Suit HD. Proliferation kinetics of x-irradiated mouse L cells studied with time-lapse photography. II. Int J Radiat Biol Related Stud Phys Chem Med 1969; 15: 347–362.

    Article  CAS  Google Scholar 

  12. Schneiderman MH, Hofer KG, Schneiderman GS. An in vitro 125IUdR-release assay for measuring the kinetics of cell death. Int J Radiat Biol 1991; 59: 397–408.

    Article  PubMed  CAS  Google Scholar 

  13. Puck TT, Markus PI. Action of x-rays on mammalian cells. J Exper Med 1956; 103: 653–666.

    Article  CAS  Google Scholar 

  14. Durand RE. Cure, regression and cell survival: a comparison of common radio-biological endpoints using an in vitro tumour model. Br J Radiol 1975; 48: 556–571.

    Article  PubMed  CAS  Google Scholar 

  15. Reinhold HS, De Bree C. Tumour cure rate and cell survival of a transplantable rat rhabdomyosarcoma following x-irradiation. Eur J Cancer 1968; 4: 367–374.

    PubMed  CAS  Google Scholar 

  16. Skipper HE, Schabel FM, Wilcox WS. Experimental evaluation of potential anticancer agents, XIII. On the criteria and kinetics associated with “curability” of experimental leukemias. Cancer Chemother Rep 1964; 35: 1–111.

    PubMed  CAS  Google Scholar 

  17. Lamb JR, Friend SH. Which guesstimate is the best guesstimate? Predicting chemotherapeutic outcomes. Nature Med 1997; 3: 962, 963.

    Google Scholar 

  18. Gura T. Cancer models: systems for identifying new drugs are often faulty. Science 1997; 278: 1041, 1042.

    Google Scholar 

  19. Tannock IF. Biological properties of anticancer drugs. In: Basic Science of Oncology, Tannock IF, Hill RP, eds. 2nd ed., McGraw-Hill: New York. 1992; pp. 302–316.

    Google Scholar 

  20. Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bd-2 to inhibit apoptosis without affecting clono-genic survival. Cancer Res 1996; 56: 4006–4012.

    PubMed  CAS  Google Scholar 

  21. Yin DX, Schimke RT. BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res 1995; 55: 4922–4928.

    PubMed  CAS  Google Scholar 

  22. Gallardo D, Drazan KE, McBride WH. Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res 1996; 56: 4891–4893.

    PubMed  CAS  Google Scholar 

  23. Gjerset RA, Sobel RE. Treatment resistance, apoptosis, and p53 tumor suppressor gene therapy. In: Encyclopedia of Cancer, Bertino JR, ed. Academic Press: San Diego. 1997; pp. 1785–1791.

    Google Scholar 

  24. Peacock J, Chung S, Benchimol S, Hill RP. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16–E7 and/or activated H-ras. Oncogene 1994; 9: 1527–1536.

    PubMed  Google Scholar 

  25. Mcllwrath M, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 1994; 54: 3718–3722.

    Google Scholar 

  26. Siles E, Villalobos M, Valenzuela MT, Nunez MI, Gordon A, McMillan TJ, Pedraza V, Ruiz de Almodovar JM. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer 1996; 73: 581–588.

    Article  PubMed  CAS  Google Scholar 

  27. Zaffaroni N, Benini E, Gornati D, Bearzatto A, Silvestrini R. Lack of a correlation between p53 protein expression and radiation response in human tumor primary cultures. Stem Cells 1995; 13: 77–85.

    Article  PubMed  CAS  Google Scholar 

  28. Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 1993; 53: 3667–3669.

    PubMed  CAS  Google Scholar 

  29. Jung M, Notano V, Dritschilo A. Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcinoma cells. Cancer Res 1992; 52: 6390–3693.

    PubMed  CAS  Google Scholar 

  30. Ribeiro JC, Barnetson AR, Fisher RJ, Mameghan H, Russell PJ. Relationship between radiation response and p53 status in human bladder cancer cells. Int J Radiat Biol 1997; 72: 11–20.

    Article  PubMed  CAS  Google Scholar 

  31. Zolzer F, Hillebrandt S, Streffer C. Radiation induced G1-block and p53 status in six human cell lines. Radiother Oncol 1995; 37: 20–28.

    Article  PubMed  CAS  Google Scholar 

  32. Biard DS, Martin M, Rhun YL, Duthu A, Lefaix JL, May E, May P. Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res 1994; 54: 3361–3364.

    PubMed  CAS  Google Scholar 

  33. Servomaa K, Kiuru A, Grenman R, Pekkola-Heino K, Pulkkinen JO, Rytomaa T. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif 1996; 29: 219–230.

    Article  PubMed  CAS  Google Scholar 

  34. Pardo FS, Su M, Borek C, Preffer F, Dombkowski D, Gerweck L, Schmidt EV. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat Res 1994; 140: 180–185.

    Article  PubMed  CAS  Google Scholar 

  35. Gupta N, Vij R, Haas-Kogan DA, Israel MA, Deen DF, Morgan WF. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Radiat Res 1996; 145: 289–298.

    Article  PubMed  CAS  Google Scholar 

  36. Bristow RG, Jang A, Peacock J, Chung S, Benchimol S, Hill RP. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16–E7 and/or activated H-ras. Oncogene 1994; 9: 1527–1536.

    PubMed  CAS  Google Scholar 

  37. Yount GL, Haas-Kogan DA, Vidair CA, Haas M, Dewey WC, Israel MA. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res 1996; 56: 500–506.

    PubMed  CAS  Google Scholar 

  38. Tsang NM, Nagasawa H, Li C, Little JB. Abrogation of p53 function by transfection of HPV 16 E6 gene enhances the resistance of human diploid fibroblasts to ionizing radiation. Oncogene 1995; 10: 2403–2408.

    PubMed  CAS  Google Scholar 

  39. DeWeese TL, Walsh JC, Dillehay LE, Kessis TD, Hedrick L, Cho KR, Nelson WG. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation. Int J Radiat Oncol Biol Phys 1997; 37: 145–154.

    Article  PubMed  CAS  Google Scholar 

  40. Hendry JH, Adeeko A, Potten CS, Morris ID. p53 deficiency produces fewer regenerating spermatogenic tubules after irradiation. Mt J Radiat Biol 1996; 70: 677–682.

    Article  CAS  Google Scholar 

  41. Hendry JH, Cai WB, Roberts SA, Potten CS. p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat Res 1997; 148: 254–259.

    Article  PubMed  CAS  Google Scholar 

  42. Huang H, Li CY, Little JB. Abrogation of P53 function by transfection of HPV 16 E6 gene does not enhance resistance of human tumour cells to ionizing radiation. Int J Radiat Biol 1996; 70: 151–160.

    Article  PubMed  CAS  Google Scholar 

  43. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 1993; 53: 4164–4168.

    PubMed  CAS  Google Scholar 

  44. Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet 1997; 16: 397–401.

    Article  PubMed  CAS  Google Scholar 

  45. Zellars RC, Naida JD, Davis MA, Lawrence TS. Effect of p53 overexpression on radiation sensitivity of human colon cancer cells. Radiat Oncol Investig 1997; 5: 43–49.

    Article  PubMed  CAS  Google Scholar 

  46. Merritt AJ, Allen TD, Potten CS, Hickman JA. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/Massociated cell death after gamma-irradiation. Oncogene 1997; 14: 2759–2766.

    Article  PubMed  CAS  Google Scholar 

  47. Kawashima K, Mihara K, Usuki H, Shimizu N, Namba M. Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int J Cancer 1995; 61: 76–79.

    Article  PubMed  CAS  Google Scholar 

  48. Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci USA 1996; 93: 15209–15214.

    Article  PubMed  CAS  Google Scholar 

  49. Fan S, Chang JK, Smith ML, Duba D, Fornace AJ, Jr., O’Connor PM. Cells lacking CIP1IWAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 1997; 14: 2127–2136.

    Article  PubMed  CAS  Google Scholar 

  50. Stephens LC, Schultheiss TE, Price RE, Ang KK, Peters Li. Radiation apoptosis of serous acinar cells of salivary and lacrimal glands. Cancer 1991; 67: 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  51. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  52. Brown JM. NCI’s anticancer drug screening program may not be selecting for clinically active compounds. Oncol Res 1997; 9: 213–215.

    PubMed  CAS  Google Scholar 

  53. Rupnow BA, Murtha AD, Alarcon RM, Giaccia AJ, Knox SJ. Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy. Cancer Res 1998; 58: 1779–1784.

    PubMed  CAS  Google Scholar 

  54. Guo M, Chen C, Vidair C, Marino S, Dewey WC, Ling CC. Characterization of radiation-induced apoptosis in rodent cell lines. Radial Res 1997; 147: 295–303.

    Article  CAS  Google Scholar 

  55. Ling CC, Guo M, Chen CH, Deloherey T. Radiation-induced apoptosis: effects of cell age and dose fractionation. Cancer Res 1995; 55: 5207–5212.

    PubMed  CAS  Google Scholar 

  56. Lowe SW, Jacks T, Housman DE, Ruley HE. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 1994; 91: 2026–2030.

    Article  PubMed  CAS  Google Scholar 

  57. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119–128.

    Article  PubMed  CAS  Google Scholar 

  58. Pan H, Griep AE. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Devel 1994; 8: 1285–1299.

    Article  PubMed  CAS  Google Scholar 

  59. Hermeking H, Eick D. Mediation of c-myc-induced apoptosis by p53. Nature 1994; 265: 2091–2093.

    CAS  Google Scholar 

  60. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bc1–2. Nature 1992; 359: 552–554.

    Article  PubMed  CAS  Google Scholar 

  61. Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bc1–2 proto-oncogenes. Nature 1992; 359: 554–556.

    Article  PubMed  CAS  Google Scholar 

  62. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379: 88–91.

    Article  PubMed  CAS  Google Scholar 

  63. McGill G, Shimamura A, Bates RC, Savage RE, Fisher DE. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts. J Cell Biol 1997; 138: 901–911.

    Article  PubMed  CAS  Google Scholar 

  64. Nikiforov MA, Hagen K, Ossovskaya VS, Connor TM, Lowe SW, Deichman GI, Gudkov AV. p53 modulation of anchorage independent growth and experimental metastasis. Oncogene 1996; 13: 1709–1719.

    PubMed  CAS  Google Scholar 

  65. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996; 381: 713–716.

    Article  PubMed  CAS  Google Scholar 

  66. Kyprianou N, King ED, Bradbury D, Rhee JG. bc1–2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 1997; 70: 341–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, J.M., Wouters, B.G. (1999). Does Apoptosis Contribute to Tumor Cell Sensitivity to Anticancer Agents?. In: Hickman, J.A., Dive, C. (eds) Apoptosis and Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-720-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-720-8_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-165-3

  • Online ISBN: 978-1-59259-720-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics