Skip to main content

Sequence-Selective Groove Binders

  • Chapter
Book cover Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A large number of agents are known to bind to DNA, interfering with multiple DNA functions in living cells. Their ability to interact with DNA is associated with several biological effects, including antiviral, antibacterial, antiprotozoal, and antitumor activities. Their biological activities are probably related to different effects on cellular targets. From the pharmacological point of view, the most relevant DNA binding agents are antitumor drugs. They exert their cytotoxic effect principally as a consequence of the lack of selectivity by damaging cellular DNA. Cytotoxic and antiproliferative drugs have played and will likely continue to play a major role in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmer C, Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Bio! 1986; 47: 31–112.

    Article  CAS  Google Scholar 

  2. Hurley LH, Boyd FL. Approaches towards the design of sequence specific drugs for DNA. Annu Rep Med Chem 1987; 22: 259–268.

    Article  CAS  Google Scholar 

  3. Smets LA. Programmed cell death (apoptosis) and response to anti-cancer drugs. Anticancer Drugs 1994; 5: 3–9.

    Article  PubMed  CAS  Google Scholar 

  4. Neidle S, Pearl LH, Skelly JV. DNA structure and perturbation by drug binding. Biochem J 1987; 243: 1–13.

    PubMed  CAS  Google Scholar 

  5. Hurley LH. DNA and associated targets for drug design. J Med Chem 1989; 32: 2027–2033.

    Article  PubMed  CAS  Google Scholar 

  6. Warpehoski MA, Hurley LH. Sequence selectivity of DNA covalent modification. Chem Res Toxicol 1988; 1: 315–333.

    Article  PubMed  CAS  Google Scholar 

  7. D’Incalci M, Broggini M, Hartley JA. Sequence and gene-specific drugs. In: Workman P, ed. New Approaches in Cancer Pharmacology: Drug Design and Development. Berlin: Springer Verlag, 1992: 5–11.

    Chapter  Google Scholar 

  8. Pullman A, Pullman B. Molecular electrostatic potential of the nucleic acids. Q Rev Biophys 1981; 14: 289–380.

    Article  PubMed  CAS  Google Scholar 

  9. Farrell N, Qu Y, Feng L, Van Houten B. Comparison of the chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry 1990; 29: 9522–9531.

    Article  PubMed  CAS  Google Scholar 

  10. Broggini M, D’Incalci M. Modulation of transcription factor-DNA interactions by anticancer drugs. Anticancer Drug Design 1994; 9: 373–387.

    CAS  Google Scholar 

  11. Hamilton TC, Johnson SW, Godwin AK, Bookman MA, O’Dwyer PJ, Hamaguchi K, Jackson K, Ozols RF. Drug resistance in ovarian cancer and potential for its reversal. In: Sharp F, Mason P, Blackett T, Berek J, eds. Ovarian Cancer 3. Chapman and Hall Medical, 1994: 203–213.

    Google Scholar 

  12. Zhen WP, Link CJ, O’Connor PM. Increased gene-specific repair of cisplatin interstrand cross-links in cisplatin-resistant human ovarian cancer cell lines. Mol Ce!! Bio! 1992; 12: 3689–3698.

    CAS  Google Scholar 

  13. Zunino F, Capranico G. DNA topoisomerase II as the primary target of antitumor anthracydines. Anticancer Drug Design 1990; 5: 307–317.

    CAS  Google Scholar 

  14. Capranico G, Zunino F. DNA topoisomerase-trapping antitumour drugs. Eur J Cancer 1992; 28A: 2055–2060.

    Article  Google Scholar 

  15. Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 1994; 34: 191–218.

    Article  PubMed  CAS  Google Scholar 

  16. Capranico G, De Isabella P, Penco S, Tinelli S, Zunino F. Role of DNA breakage in cytotoxicity of doxorubicin, 9-deoxydoxorubicin, and 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells. Cancer Res 1989; 49: 2022–2027.

    PubMed  CAS  Google Scholar 

  17. Capranico G, Supino R, Binaschi M, Capolongo L, Grandi M, Suarato A, Zunino F. Influence of structural modifications at the 3’ and 4’ positions of doxorubicin on the drug ability to trap topoisomerase II and to overcome multidrug resistance. Mol Pharmacol 1994; 45: 908–915.

    PubMed  CAS  Google Scholar 

  18. Moore MH, Hunter WN, d’Estaintot BL, Kennard O. DNA-drug interactions. The crystal structure of d(CGATCG) complexed with daunomycin. J Mol Biol 1989; 206: 693–705.

    Article  PubMed  CAS  Google Scholar 

  19. Woynarowski JM, Sigmund RD, Beerman TA. DNA minor groove binding agents interfere with topoisomerase II mediated lesions induced by epipodophyllotoxin derivative VM-26 and acridine derivative m-AMSA in nuclei from L1210 cells. Biochemistry 1989; 28: 3850–3855.

    Article  PubMed  CAS  Google Scholar 

  20. Fesen M, Pommier Y. Mammalian topoisomerase II activity is modulated by the DNA minor groove binder distamycin in simian virus 40 DNA. JBiol Chem 1989; 264:11, 354–11, 359.

    Google Scholar 

  21. Wassermann K, Markovits J, Jaxel C, Capranico G, Kohn KW, Pommier Y. Effects of morpholinyl doxorubicins, doxorubicin, and actinomycin D on mammalian DNA topoisomerase I and II. Mol Pharmacol 1990; 38: 38–45.

    PubMed  CAS  Google Scholar 

  22. Capranico G, Butelli E, Zunino F. Change of the sequence specificity of daunorubicin-stimulated topoisomerase II DNA cleavage by epimerization of the amino group of the sugar moiety. Cancer Res 1995; 55: 312–317.

    PubMed  CAS  Google Scholar 

  23. Kamitori S, Takusagawa F. Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. J Mol Biol 1992; 225: 445–456.

    Article  PubMed  CAS  Google Scholar 

  24. Capranico G, Palumbo M, Tinelli S, Mabilia M, Pozzan A, Zunino F. Conformational drug determinants of the sequence specificity of drug-stimulated topoisomerase II DNA cleavage. J Mol Biol 1994; 235: 1218–1230.

    Article  PubMed  CAS  Google Scholar 

  25. Caprianico G, Palumbo M, Tinelli S, Zunino F. Unique sequence specificity of topoisomerase II DNA cleavage stimulation and DNA binding mode of streptonigrin. J Biol Chem 1994; 269:25, 004–25, 009.

    Google Scholar 

  26. Riou J-F, Fossé P, Nguyen CH, Larsen AK, Bissery M-C, Grondard L, Saucier J-M, Bisagni E, Lavelle F. Intoplicine (RP 60475) and its derivatives, a new class of antitumor agents inhibiting both topoisomerase I and II activities. Cancer Res 1993; 53: 5987–5993.

    PubMed  CAS  Google Scholar 

  27. Trask DK, Muller MT. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proc Natl Acad Sci USA 1988; 85: 1417–1421.

    Article  PubMed  CAS  Google Scholar 

  28. Yamashita Y, Kawada SZ, Fujii N, Nakano H. Induction of mammalian DNA topoisomerase I and II mediated DNA cleavage by saintopin, a new antitumor agent from fungus. Biochemistry 1991; 30: 5838–5845.

    Article  PubMed  CAS  Google Scholar 

  29. Riou JF, Helissey P, Grondard L, Giorgi-Renault S. Inhibition of eukaryotic DNA topoisomerase I and II activities by indoloquinolinedione derivatives. Mol Pharmacol 1991; 40: 699–706.

    PubMed  CAS  Google Scholar 

  30. Yamashita Y, Fujii N, Murakata C, Ashizawa T, Okabe M, Nakano H. Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 1992; 31:12, 069–12, 075.

    Google Scholar 

  31. Wassermann K, Newman RA, Davis FM, Mullins TD, Rose KM. Selective inhibition of human ribosomal gene transcription by the morpholinyl anthracyclines cyanomorpholinyl-and morpholinyldoxorubicin. Cancer Res 1988; 48: 4101–4106.

    PubMed  CAS  Google Scholar 

  32. Nicolaou KC, Smith AL, Yue EW. Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci USA 1993; 90: 5881–5888.

    Article  PubMed  CAS  Google Scholar 

  33. Sugiura Y, Matsumoto T. Some characteristics of DNA strand scission by macromolecular antitumor antibiotic C-1027 containing a novel enediyne chromophore. Biochemistry 1993; 32: 5548–5553.

    Article  PubMed  CAS  Google Scholar 

  34. Xu YJ, Zhen YS, Goldberg IH. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage. Biochemistry 1994; 33: 5947–5954.

    Article  PubMed  CAS  Google Scholar 

  35. Hawley RC, Kiessling LL, Schreiber SL. Model of the interactions of calicheamicin gamma 1 with a DNA fragment from pBR322. Proc Natl Acad Sci USA 1989; 86: 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  36. Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin gamma 11: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988; 240: 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  37. Uesugi M, Sekida T, Matsuki S, Sugiura Y. Selective DNA cleavage by elsamicin A and switch function of its amino sugar group. Biochemistry 1991; 30: 6711–6715.

    Article  PubMed  CAS  Google Scholar 

  38. Kenani A, Lohez M, Houssin R, Helbecque N, Lemay P, Hénichart JP. Chelating, DNA-binding and DNA-cleaving properties of a bleomycin synthetic model. Anticancer Drug Design 1987; 2: 47–59.

    CAS  Google Scholar 

  39. Chen AY, Yu C, Gatto B, Liu LF. DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sci USA 1993; 90: 8131–8135.

    Article  PubMed  CAS  Google Scholar 

  40. Beerman TA, Woynarowski JM, Sigmund RD, Gawron LS, Rao KE, Lown JW. Netropsin and bis-netropsin analogs as inhibitors of the catalytic activity of mammalian DNA topoisomerase II and topoisomerase cleavable complexes. Biochim Biophys Acta 1991; 1090: 52–60.

    Article  PubMed  CAS  Google Scholar 

  41. Beerman TA, McHugh MM, Sigmund R, Lown JW, Rao KE, Bathini Y. Effects of analogs of the DNA minor groove binder Hoechst 33258 on topoisomerase II and I mediated activities. Biochim. Biophys Acta 1992; 1131: 53–61.

    Article  PubMed  CAS  Google Scholar 

  42. Fujii N, Yamashita Y, Saitoh Y, Nakano H. Induction of mammalian DNA topoisomerase I-mediated DNA cleavage and DNA winding by bulgarein. J Bio! Chem 1993; 268:13,160–13,165.

    Google Scholar 

  43. Merino A, Madden KR, Lane WS, Champoux JJ, Reinberg D. DNA topoisomerase I is involved in both repression and activation of transcription. Nature 1993; 365: 227–232.

    Article  PubMed  CAS  Google Scholar 

  44. Lee DK, Horikoshi M, Roeder RG. Interaction of TFIID in the minor groove of the TATA element. Cell 1991; 67: 1241–1250.

    Article  PubMed  CAS  Google Scholar 

  45. Chiang S-Y, Welch J, Rauscher FJ, Beerman TA. Effects of minor groove binding drugs on the interaction of TATA box binding protein and TFIIA with DNA. Biochemistry 1994; 33: 7033–7040.

    Article  PubMed  CAS  Google Scholar 

  46. Neidle S. Principles in the design of DNA-interactive molecules. In: Workman P, ed. New Approaches in Cancer Pharmacology: Drug Design and Development, vol. II. Heidelberg: Springer Verlag, 1994: 9–22.

    Google Scholar 

  47. Wang H, Gupta R, Lown JW. Synthesis, DNA binding, sequence preference and biological evaluation of minor groove-selective N1-alkoxyalkyl-bis-benzimidazoles. Anticancer Drug Design 1994; 9: 153–180.

    CAS  Google Scholar 

  48. Wong SSC, Sturm RA, Michel J, Zhang X-M, Danoy PAC, McGregor K, Jacobs JJ, Kaushal A, Dong Y, Dunn IS, Parsons PG. Transcriptional regulation of differentiation, selective toxicity and ATGCAAAT binding of bisbenzimidazole derivatives in human melanoma cells. Biochem Pharmacol 1994; 47: 827–837.

    Article  PubMed  CAS  Google Scholar 

  49. Chen AY, Y C, Bodley A, Peng LF, Liu LF. A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Res 1993; 53: 1332–1337.

    PubMed  CAS  Google Scholar 

  50. Kam M, Shafer RH, Berman E. Solution conformation of the antitumor antibiotic chromomycin A3 determined by two-dimensional NMR spectroscopy. Biochemistry 1988; 27: 3581–3588.

    Article  PubMed  CAS  Google Scholar 

  51. Fox KR, Cons BM. Interaction of mithramycin with DNA fragments complexed with nucleo-some core particles: comparison with distamycin and echinomycin. Biochemistry 1993; 32: 7162–7171.

    Article  PubMed  CAS  Google Scholar 

  52. Silva DJ, Goodnow R Jr, Kahne D. The sugars in chromomycin A3 stabilize the Mg(2+)dimer complex. Biochemistry 1993; 32: 463–471.

    Article  PubMed  CAS  Google Scholar 

  53. Gao XL, Mirau P, Patel DJ. Structure refinement of the chromomycin dimer-DNA oligomer complex in solution. J Mol Bio! 1992; 223: 259–279.

    Article  CAS  Google Scholar 

  54. van Houte LP, van Garderen CJ, Patel DJ. The antitumor drug nogalamycin forms two different intercalation complexes with d(GCGT).d(ACGC). Biochemistry 1993; 32: 1667–1674.

    Article  PubMed  Google Scholar 

  55. Bailly C, Ledere V, Pommery N, Colson P, Houssier C, Rivalle C, Bisagni E, Hénichart J-P. Binding to DNA, cellular uptake and biological activity of a distamycin-ellipticine hybrid molecule. Anticancer Drug Design 1993; 8: 145–164.

    CAS  Google Scholar 

  56. Bailly C, Michaux C, Colson P, Houssier C, Sun J-S, Garestier T, Hélène C, Hénichart J-P, Rivalle C, Bisagni E, Waring MJ. Reaction of a biscationic distamycin-ellipticine hybrid ligand with DNA. Mode and sequence specificity of binding. Biochemistry 1994; 33:15, 348–15, 364.

    Google Scholar 

  57. Bailly C, Collyn-D’Hooghe M, Lantoine D, Fournier C, Hecquet B, Fosse P, Saucier J-M, Colson P, Houssier C, Hénichart J-P. Biological activity and molecular interaction of a netropsin-acridine hybrid ligand with chromatin and topoisomerase II. Biochem Pharmacol 1992; 43: 457–466.

    Article  PubMed  CAS  Google Scholar 

  58. Hartley JA, McAdam SR, Das S, Roldan MC, Haskell MK, Lee M. Molecular and cellular pharmacology of novel photoactive psoralen and coumarin conjugates of pyrrole-and imidazole-containing analogues of netropsin. Anticancer Drug Design 1994; 9: 181–197.

    CAS  Google Scholar 

  59. Borowy-Borowski H, Lipman R, Tomasz M. Recognition between mitomycin C and specific DNA sequences for cross-link formation. Biochemistry 1990; 29: 2999–3006.

    Article  PubMed  CAS  Google Scholar 

  60. Kizu R, Drayes PH, Hurley LH. Correlation of DNA sequence specificity of anthramycin and tomaymycin with reaction kinetics and bending of DNA. Biochemistry 1993; 32: 8712–8722.

    Article  PubMed  CAS  Google Scholar 

  61. Kopka ML, Goodsell DS, Baikalov I, Grzeskowiak K, Cascio D, Dickerson RE. Crystal structure of a covalent DNA-drug adduct: anthramycin bound to C-C-A-A-C-G-T-T-G-G and a molecular explanation of specificity. Biochemistry 1994; 33:13, 593–13, 610.

    Google Scholar 

  62. Subhas Bose D, Thompson AS, Ching J, Hartley JA, Berardini MD, Jenkins TC, Neidle S, Hurley LH, Thurston DE. Rational design of a highly efficient non-reversible DNA interstrand cross-linking agent based on the pyrrolobenzodiazepine ring system. J Am Chem Soc 1992; 114: 4939–4941.

    Article  Google Scholar 

  63. Wang JJ, Hill GC, Hurley LH. Template-directed design of a DNA-DNA cross-linker based upon a bis-tomaymycin-duplex adduct. J Med Chem 1992; 35: 2995–3002.

    Article  PubMed  CAS  Google Scholar 

  64. Wierenga W. Sequence-selective DNA-interactive antitumor agents. Drugs Future 1991; 16: 741–750.

    Google Scholar 

  65. Krowicki K, Balzarini J, De Clercq E, Newman RA, Lown JW. Novel DNA groove binding alkylators: design, synthesis, and biological evaluation. J Med Chem 1988; 31: 341–345.

    Article  PubMed  CAS  Google Scholar 

  66. Gravatt GL, Baguley BC, Wilson WR, Denny WA. DNA-directed alkylating agents. 4. 4-anilinoquinoline-based minor groove directed aniline mustards. JMed Chem 1991; 34: 1552–1560.

    Article  CAS  Google Scholar 

  67. Arcamone FM, Animati F, Barbieri B, Configliacchi E, D’Alessio R, Geroni C, Giuliani FC, Lazzari E, Menozzi M, Mongelli N, Penco S, Verini MA. Synthesis, DNA-binding properties, and antitumor activity of novel distamycin derivatives. J Med Chem 1989; 32: 774–778.

    Article  PubMed  CAS  Google Scholar 

  68. Pezzoni G, Grandi M, Biasoli G, Capolongo L, Ballinari D, Giuliani FC, Barbieri B, Pastori A, Pesenti E, Mongelli N, Spreafico F. Biological profile of FCE 24517, a novel benzoyl mustard analogue of distamycin A. Br J Cancer 1991; 64: 1047–1050.

    Article  PubMed  CAS  Google Scholar 

  69. Sessa C, Pagain O, Zurlo MG, de Jong J, Hofmann C, Lassus M, Marrari P, Benedetti MS, Cavalli F. Phase I study of the novel distamycin derivative tallimustine (FCE 24517). Ann Oncol 1994; 5: 901–907.

    PubMed  CAS  Google Scholar 

  70. Animati F, Arcamone F, Bigioni M. DNA sequence selectivity of novel distamycin analogues exhibiting remarkable cytotoxic activity. 8th NCI-EORTC Symposium on New Drugs in Cancer Therapy. Amsterdam, March 15–18, 1994.

    Google Scholar 

  71. Bigioni M, Ciucci A, Palma C. Biologicl profile of MEN 10710, a distamycin A derivative possessing antitumor activity and peculiar mode of DNA interaction. 86th Annual Meeting of the American Association for Cancer Research. Toronto, Ontario, Canada, March 18–22, 1995.

    Google Scholar 

  72. Lee HH, Boyd M, Gravatt GL, Denny WA. Pyrazole analogues of the bispyrrolocarboxamide anti-tumour antibiotics: synthesis, DNA binding and antitumour properties. Anticancer Drug Design 1991; 6: 501–517.

    CAS  Google Scholar 

  73. Broggini M, Erba E, Ponti M, Ballinari D, Geroni C, Spreafico F, D’Incalci M. Selective DNA interaction of the novel distamycin derivative FCE 24517. Cancer Res 1991; 51: 199–204.

    PubMed  CAS  Google Scholar 

  74. Broggini M, Coley H, Mongelli N, Presenti E, Wyatt MD, Hartley JA, D’Incalci M. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res. 1995; 23: 81–87.

    Article  PubMed  CAS  Google Scholar 

  75. Lown JW. Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes. Anticancer Drug Design 1988; 3: 25–40.

    CAS  Google Scholar 

  76. Lee M, Preti CS, Vinson E, Wyatt MD, Hartley JA. GC sequence specific recognition by an N-formamido, C-terminus-modified and imidazole-containing analogue of netropsin. J Med Chem 1994; 37: 4073–4075.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang Y, Chen F-X, Mehta P, Gold B. Groove-and sequence-selective alkylation of DNA by sulfonate esters tethered to lexitropsins. Biochemistry 1993; 32: 7954–7965.

    Article  PubMed  CAS  Google Scholar 

  78. Lee M, Rhodes AL, Wyatt MD, D’Incalci M, Forrow S, Hartley JA. In vitro cytotoxicity of GC sequence directed alkylating agents related to distamycin. J Med Chem 1993; 36: 863–870.

    Article  PubMed  CAS  Google Scholar 

  79. Lee M, Rhodes AL, Wyatt MD, Forrow S, Harley JA. Design, synthesis, and biological evaluation of DNA sequence and minor groove selective alkylating agents. Anticancer Drug Design 1993; 8: 173–192.

    CAS  Google Scholar 

  80. Hurley LH, Warpehoski MA, Lee C-S, McGovren JP, Scahill TA, Kelly RC, Mitchell MA, Wicnienski MA, Gebhard I, Johnson PS, Bradford VS. Sequence specificity of DNA alkylation by the unnatural enantiomer of CC-1065 and its synthetic analogues. J Am Chem Soc 1990; 112: 4633–4649.

    Article  CAS  Google Scholar 

  81. Ding Z-M, Hurley LH. DNA interstrand cross-linking, DNA sequence specificity, and induced conformational changes produced by a dimeric analog of (+)-CC-1065. Anticancer Drug Design 1991; 6: 427–452.

    Google Scholar 

  82. Krueger WC, Hatzenbuhler NT, Prairie MD, Shea MH. DNA sequence recognition by the antitumor antibiotic CC-1065 and analogs of CC-1065. Chem-Biol Interact 1991; 79: 265–286.

    Article  PubMed  CAS  Google Scholar 

  83. Wierenga W, Bhuyan BK, Kelly RC, Krueger WC, LI LH, McGovren JP, Swenson DH, Warpehoski MA. Antitumor activity and biochemistry of novel analogs of the antibiotic, CC-1065. Adv Enzyme Regul 1986; 25: 141–155.

    Google Scholar 

  84. McGovren JP, Clarke GL, Pratt EA, DeKoning TF. Preliminary toxicity studies with the DNA-binding antibiotic, CC-1065. J. Antibiot. 1984; 37: 63–70.

    Article  PubMed  CAS  Google Scholar 

  85. Shamdas GJ, Alberts DS, Modiano M, Wiggins C, Power J, Kasunic DA, Elfring GL, Earhart RH. Phase I study of adozelesin (U-73,975) in patients with solid tumors. Anticancer Drugs 1994; 5: 10–14.

    Article  PubMed  CAS  Google Scholar 

  86. Fleming GF, Ratain MJ, O’Brien SM, Schilsky RL, Hoffman PC, Richards JM, Vogelzang NJ, Kasunic DA, Earhart RH. Phase I study of adozelesin administered by 24-hour continuous intravenous infusion. J Nati Cancer Inst 1994; 86: 368–372.

    Article  CAS  Google Scholar 

  87. Li LH, DeKoning TF, Kelly RC, Krueger WC, McGovren JP, Padbury GE, Petzold GL, Wallace TL, Ouding RJ, Prairie MD, Gebhard I. Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropylpyrroloindole analogue. Cancer Res 1992; 52: 4904–4913.

    PubMed  CAS  Google Scholar 

  88. Lee C-S, Gibson NW. DNA damage and differential cytotoxicity produced in human carcinoma cells by CC-1065 analogues, U-73,975 and U-77,779. Cancer Res 1991; 51: 6586–6591.

    Google Scholar 

  89. Walker DL, Reid JM, Ames MM. Preclinical pharmacology of bizelesin, a potent bifunctional analog of the DNA-binding antibiotic CC-1065. Cancer Chemother Pharmacol 1994; 34: 317–322.

    Article  PubMed  CAS  Google Scholar 

  90. Weiss GR, Burris III HA, Eckardt JR, Fields S, O’Rourke T, Rodriguez GI, Rothenberg ML. New anticancer agents. In: Pinedo HM, Longo DL, Chabner BA, eds. Cancer Chemotherapy and Biological Response Modifiers Annual 15. Elsevier Science. 1994: 130–151.

    Google Scholar 

  91. Boger DL, Invergo BJ, Coleman RS, Zarrinmayeh H, Kitos PA, Collins Thompson S, Leong T, McLaughhlin LW. A demonstration of the intrinsic importance of stabilizing hydrophobic binding and non-covalent van der Waals contacts dominant in the non-covalent CC-1065/BDNA binding. Chem-Biol Interact 1990; 73: 29–52.

    Article  PubMed  CAS  Google Scholar 

  92. Sugiyama H, Hosoda M, Saito I. Covalent alkylation of DNA with duocarmycin A. Identification of a basic site structure. Tetrahedron Lett 1990; 31: 7197–7200.

    Article  CAS  Google Scholar 

  93. Hoshi A, Castaner J. KW-2189. Drugs Future 1993; 18: 1112, 1113.

    Google Scholar 

  94. Bhuyan BK, Smith KS, Adams EG, Wallace TL, Vonhoff DD, Li LH. Adozelesin, a potent new alkylating agent. Cell-killing kinetics and cell-cycle effects. Cancer Chemother Pharmacol 1992; 30: 348.

    Article  PubMed  CAS  Google Scholar 

  95. Broggini M, Ponti M, Ottolenghi S, D’Incalci M, Mongelli N, Mantovani R. Distamycins inhibit the binding of OTF-1 and NFE-1 transfactors to their conserved DNA elements. Nucleic Acids Res 1989; 17: 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  96. Zunino F, Capranico G, Pratesi G, Spinelli S. Current approaches to new drug development in cancer chemotherapy. Farmaco 1992; 47: 1115–1132.

    PubMed  CAS  Google Scholar 

  97. Gewirtz DA. Does bulk damage to DNA explain the cytostatic and cytotoxic effects of topoisomerase II inhibitors? Biochem Pharmacol 1991; 42: 2253–2258.

    Article  PubMed  CAS  Google Scholar 

  98. Schwab G, Guroux I, Chavany C, Hélène C, Saison-Behmoaras E. An approach for new anticancer drugs: oncogene-targeted antisense DNA. Ann Oncol 1994; 5: S55 - S58.

    Article  Google Scholar 

  99. Yamamoto K, Sugiyama H, Kawanishi S. Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A. Biochemistry 1993; 32: 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  100. Lee CS, Pfeifer GP, Gibson NW. Mapping of DNA alkylation sites induced by adozelesin and bizelesin in human cells by ligation-mediated polymerase chain reaction. Biochemistry 1994; 33: 6024–6030.

    Article  PubMed  CAS  Google Scholar 

  101. Hélène C. Rational design of sequence-specific oncogene inhibitors based on antisense and antigene oligonucleotides. Eur J Cancer 1991; 27: 1466–1471.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zunino, F., Capranico, G. (1997). Sequence-Selective Groove Binders. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics