Skip to main content

Anthracyclines

  • Chapter
Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The clinical activity of actinomycin D against Wilm’s pediatric kidney tumor and choriocarcinoma in the early to mid-1950s resulted in a widespread effort to discover other antibiotic substances for potential use in the treatment of malignancies. As a result, cancer chemotherapy was altered immeasurably more than 30 years ago by the independent discoveries by Grein (1), Dubost (2), and their colleagues of an anthracycline antibiotic, derived from a Streptomyces soil mold, with significant experimental activity against leukemias. Structurally this intensely red product whose common name, daunorubicin, reflects both its Italian (daunomicina) and French (rubidomycine) origins, consists of a planar anthraquinone attached to a daunosamine sugar; the latter has been shown to stabilize intercalation of the molecule with DNA, which for many years was considered to be the principal mechanism of anthracycline action (3). Subsequently, although not necessarily through DNA interaction, this structural requirement has proven essential for the multiple potential mechanisms of action now identified for anthracyclines, including inhibition of DNA topoisomerase I (4) and II (5), inhibition of helicases (6), generation of toxic free radicals (7), alteration of membrane structure and function (810), and endonucleolytic cleavage (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grein A, Spella C, DiMarco A, Canevazzi G. Descrizione e classificazione di un attionamicette (Streptomyces Peucetius sp nova) produltore di un sostanza ad attivite antitumorale; la daunomicina. Giorn Microbiol 1963; 11: 109–118.

    Google Scholar 

  2. Dubost M, Gauter P, Maral R, et al. Un novel antibiotique a proprietes cytostatiques; la rubidomycine. CR Acad Sci Paris 1963; 257: 1813–1815.

    CAS  Google Scholar 

  3. Pigram WJ, Fuller W, Hamilton LD. Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature New Biol 1972; 235: 17–19.

    Article  PubMed  CAS  Google Scholar 

  4. Fogleson PD, Reckord C, Swink S. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol 1992; 30: 123–125.

    Article  Google Scholar 

  5. Tewey KM, Rowe TC, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226: 466–468.

    Article  PubMed  CAS  Google Scholar 

  6. Bachur NR, Yu F, Johnson R, et al. Helicase inhibition by anthracycline anticancer agents. Mol Pharmacol 1992; 41: 993–998.

    PubMed  CAS  Google Scholar 

  7. Bachur NR, Gordon SL, Gee MW. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol 1977; 13: 901–910.

    PubMed  CAS  Google Scholar 

  8. Murphree SA, Cunningham LS, Hwang KM, Sartorelli AC. Effects of adriamycin on surface properties of sarcoma 180 ascites cells. Biochem Pharmacol 1976; 25: 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  9. Tritton TR. Cell surface actions of Adriamycin. Pharmacol Ther 1991; 49: 293–309.

    Article  PubMed  CAS  Google Scholar 

  10. Koseki Y, Israel M, Sweatman TW, et al. Inhibitory effects of immobilized adriamycin on cell growth and thymidine uptake in human CEM leukemic lymphocytes. J Cell Pharmacol 1991; 2: 171–178.

    CAS  Google Scholar 

  11. Ling YH, Priebe W, Perez-Soler R. Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug resistant cells. Cancer Res 1993; 53: 1583–1589.

    PubMed  CAS  Google Scholar 

  12. Jacquillat C, Tanzer J, Boiron M, et al. Rubidomycin: a new agent active in the treatment of acute lymphoblastic leukemia. Lancet 1966; 2: 27–28.

    Article  PubMed  CAS  Google Scholar 

  13. Boiron M, Jacquillat C, Weil M, et al. Daunorubicin in the treatment of acute myelocytic leukemia. Lancet 1969; 1: 330–333.

    Article  PubMed  CAS  Google Scholar 

  14. Wiernik PH, Serpick AA. Randomized clinical trial of daunorubicin and a combination of prednisone, vincristine, 6-mercaptopurine and methotrexate in adult acute non-lymphocytic leukemia. Cancer Res 1972; 32: 2023–2026.

    PubMed  CAS  Google Scholar 

  15. DiMarco A, Gaetani M, Scarpinato B. Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep (Part I) 1969; 53: 33–37.

    CAS  Google Scholar 

  16. DeVita VT, Hellman S, Rosenberg SA, eds. Cancer. Principles and Practice of Oncology, 4th ed. Philadelphia: JB Lippincott Company, 1993.

    Google Scholar 

  17. Woodcock TM, Allegra JC, Richman SP, et al. Pharmacology and phase I clinical studies of daunorubicin in patients with advanced malignancies. Semin Oncol 1984; 11: 28–32.

    PubMed  CAS  Google Scholar 

  18. Harvey J, Goodman A, McFadden M, et al. A phase I study of daunorubicin in advanced untreatable malignancies. Semin Oncol 1984; 11: 33–35.

    PubMed  CAS  Google Scholar 

  19. Von Hoff DD. Use of daunorubicin in patients with solid tumors. Semin Oncol 1984; 11: 23–27.

    Google Scholar 

  20. List AF. Multidrug resistance: clinical relevance in acute leukemia. Oncology 1993; 7: 23–32.

    PubMed  CAS  Google Scholar 

  21. Booser DJ, Hortobagyi GN. Anthracycline antibiotics in cancer therapy. Drugs 1994; 47: 223–258.

    Article  PubMed  CAS  Google Scholar 

  22. Von Hoff DD, Rozencweìg M, Leyard M, et al. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 1977; 62: 200–208.

    Article  Google Scholar 

  23. Steinberg JS, Cohen AJ, Wasserman AG, et al. Acute arrhythmogenicity of doxorubicin administration. Cancer 1987; 60: 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  24. Wortman JE, Lucas VS Jr, Schuster E, et al. Sudden death during doxorubicin administration. Cancer 1979; 44: 1588–1591.

    Article  PubMed  CAS  Google Scholar 

  25. Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites; alterations produced by doxorubicin. J. Clin Invest 1980; 65: 128–135.

    Article  PubMed  CAS  Google Scholar 

  26. Myers CE, McGuire WP, Liss RH, et al. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumour response. Science 1977; 197: 165–167.

    Article  PubMed  CAS  Google Scholar 

  27. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Mec(1977; 62: 200–208.

    Google Scholar 

  28. Watts RG. Severe and fatal anthracycline cardiotoxicity at cumulative doses below 400 mg/m’: evidence for enhanced toxicity with multi-agent chemotherapy. Am J Hematol 1991; 36: 217, 218.

    Google Scholar 

  29. Lipschultz SE, Colan SD, Gelber R, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991; 324: 808–815.

    Article  Google Scholar 

  30. Lipschultz SE, Lipsitz SR, Mone SM, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995; 332: 1738–1743.

    Article  Google Scholar 

  31. Gottlieb SL, Edmiston WE Jr, Haywood LJ. Late, late doxorubicin cardiotoxicity. Chest 1980; 78: 880–882.

    Article  PubMed  CAS  Google Scholar 

  32. Freter CE, Lee TC, Billingham ME, et al. Doxorubicin cardiac toxicity manifesting seven years after treatment. Case report and review. Am J Med 1986; 80: 483–485.

    Article  PubMed  CAS  Google Scholar 

  33. Sunnenberg TD, Kramer B. Long-term effects of cancer chemotherapy. Compr Ther 1985; 11: 58–67.

    PubMed  CAS  Google Scholar 

  34. Goorin AM, Chauvenet AR, Perez-Atayde AR, et al. Initial congestive heart failure six to ten years after doxorubicin chemotherapy for childhood cancer. J. Pediatr 1990; 116: 144–147.

    Article  PubMed  CAS  Google Scholar 

  35. Steinherz L, Steinherz P. Delayed cardiac toxicity from anthracycline therapy. Paediatrician 1991; 18: 49–52.

    CAS  Google Scholar 

  36. DeValeriola DL. Dose optimization of anthracyclines. Anticancer Res 1994; 14: 2307–2314.

    CAS  Google Scholar 

  37. Mitchell RB, Ratain MJ, Vogelzang NJ. Experimental rationale for continuous infusion chemotherapy. In: Lokich JJ, ed. Cancer Chemotherapy by Infusion, 2nd ed. Chicago: Precept Press. 1990: 3.

    Google Scholar 

  38. Bielack SS, Erttmann R, Winkler K, Landbeck G. Doxorubicin: effect of different schedules on toxicity and antitumor efficacy. Eur J Cancer Clin Oncol 1989; 25: 873–882.

    Article  PubMed  CAS  Google Scholar 

  39. Zalupski M, Metch B, Balcerzak S, et al. Phase III comparisons of doxorubicin and dacarbazine given by bolus versus infusion in patients with soft tissue sarcomas: a Southwest Oncology Group Study. J Natl Cancer Inst 1991; 83: 926–932.

    Article  PubMed  CAS  Google Scholar 

  40. Hortobagyi GN, Frye D, Budzar AU, et al. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 1989; 63: 37–45.

    Article  PubMed  CAS  Google Scholar 

  41. Preisler HD, Gessner T, Azarnia N, et al. Relationship between plasma adriamycin levels and the outcome of remission induction therapy for acute non-lymphocytic leukemia. Cancer Chemother Pharmacol 1984; 12: 125–130.

    Article  PubMed  CAS  Google Scholar 

  42. Robert J, Monnier A, Poutignat N, Herait P. A pharmacokinetic and pharmacodynamic study of the new anthracycline pirarubicin in breast cancer patients. Cancer Chemother Pharmacol 1991; 29: 75–79.

    Article  PubMed  CAS  Google Scholar 

  43. Robert J, Illiadis A, Hoerni B, et al. Pharmacokinetics of adriamycin in patients with breast cancer: correlation between pharmacokinetic parameters and clinical short-term response. Eur J Cancer Clin Oncol 1982; 18: 739–745.

    Article  PubMed  CAS  Google Scholar 

  44. Robert J. Use of pharmacokinetic-pharmacodynamic relationships in the development of new anthracyclines. Cancer Chemother Pharmacol 1993; 32: 99–102.

    Article  PubMed  CAS  Google Scholar 

  45. DeValeriola DL, Ross DD, Forrest A, et al. Use of plasma cytotoxic activity to model cytotoxic pharmacodynamics of anticancer drugs. Cancer Chemother Pharmacol 1991; 29: 133–140.

    Article  CAS  Google Scholar 

  46. Robert J, Giani L. Pharmacokinetics and metabolism of anthracyclines. Cancer Surveys 1993; 17: 219–252.

    PubMed  CAS  Google Scholar 

  47. Gabizon AA. Liposomal anthracyclines. Hematol Oncol Clin North Am 1994; 8: 431–450.

    PubMed  CAS  Google Scholar 

  48. Huang SK, Mayhew E, Giliani S, et al. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 1992; 52: 6774–6781.

    PubMed  CAS  Google Scholar 

  49. Mayhew EG, Lasic DD, Babbar S, et al. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes. Int J Cancer 1992; 51: 302–309.

    Article  PubMed  CAS  Google Scholar 

  50. Papahadjopoulos D, Allen TM, Gabizon AA, et al. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci 1991; 88: 11, 460–11, 464.

    Google Scholar 

  51. Gabizon AA, Peretz T, Ben-Yosef R, et al. Phase I study of liposome-associated Adriamycin: Preliminary report. Proc Am Soc Clin Oncol 1986; 5: 43.

    Google Scholar 

  52. Gill PS, Espina BM, Muggia F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J. Clin Oncol 1995; 13: 996–1003.

    PubMed  CAS  Google Scholar 

  53. Gill PS, Wernz J, Scadden DT, et al. A randomized trial of liposomal daunorubicin (DX) vs Adriamycin, bleomycin and vincristine (ABV) in 232 patients with advanced AIDS-related Kaposi’s sarcoma. Proc Am Assoc Cancer Res 1995; 14: A830.

    Google Scholar 

  54. Law TM, Mencel P, Motzer RJ. Phase II trial of liposomal encapsulated doxorubicin in patients with advanced renal cell carcinoma. Invest New Drugs 1994; 12: 323–325.

    Article  PubMed  CAS  Google Scholar 

  55. Speyer JL, Freedberg R. In: Abeloff MD, et al. eds. Clinical Oncology. New York: Churchhill Livingstone. 1995: 811.

    Google Scholar 

  56. Rajagopalan S, Politi PM, Sinha BK, Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res 1988; 48: 4766–4769.

    PubMed  CAS  Google Scholar 

  57. Buss JL, Hasinoff BB. Ferrous iron strongly promotes the ring opening of the hydrolysis intermediates of the antioxidant cardioprotective agent dexrazoxane (ICR-187). Arch Biochem Biophys 1995; 317: 121–127.

    Article  PubMed  CAS  Google Scholar 

  58. Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 1992; 10: 117–127.

    PubMed  CAS  Google Scholar 

  59. Jelic S, Radulovic S, Neskovic-Konstantinovic Z, et al. Cardioprotection with ICRF-187 (Cardioxane) in patients with advanced breast cancer having cardiac risk factors for doxorubicin cardiotoxicity, treated with the FDC regimen. Support Cancer Care 1995; 3: 176–182.

    Article  CAS  Google Scholar 

  60. Kolaric K, Bradamante V, Cervek J, et al. A phase II trial of cardioprotection with Cardioxane (ICRF-187) in patients with advanced breast cancer receiving 5-fluorouracil, doxorubicin and cyclophosphamide. Oncology 1995; 52: 251–255.

    Article  PubMed  CAS  Google Scholar 

  61. Monte E, Sinha BK. Potentiation of doxorubicin cytotoxicity by (+)-1,2-bis (3,5-dioxopipera-zinyl-1-yl) propane (ICRF-187) in human leukemic HL-60 cells. Cancer Commun 1990; 2: 145–149.

    Google Scholar 

  62. Sehested M, Jensen PB, Sorensen BS, et al. Antagonistic effects of the cardioprotector (+)-1,2-bis (3,5-dioxopiperazinyl-1-yl) propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II-directed drugs daunorubicin and etoposide (VP-16). Biochem Pharmacol 1993; 46: 389–393.

    Article  PubMed  CAS  Google Scholar 

  63. Abramowicz M, Ed. Med Lett Drugs Ther 1995; 37:110,111.

    Google Scholar 

  64. Kessel D, Woo ES, Michalska AE, et al. Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res 1968; 28: 938–941.

    PubMed  CAS  Google Scholar 

  65. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic and cytogenetic studies. Cancer Res 1970; 30: 1174–1184.

    PubMed  CAS  Google Scholar 

  66. Roninson IB, Chin JE, Choi K, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 1986; 83: 4538–4542.

    Article  PubMed  CAS  Google Scholar 

  67. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full length cDNA for the human “MDR 1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 1987; 84: 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  68. List AF. Multidrug resistance: clinical relevance in acute leukemia. Oncology 1993; 7: 23–38.

    PubMed  CAS  Google Scholar 

  69. Cole SPC, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in multidrugresistant human lung cancer cell line. Science 1992; 258: 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  70. Cole SPC, Sparks KE, Fraser K, et al. Pharmacologic characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54: 5902–5910.

    PubMed  CAS  Google Scholar 

  71. Cole SPC, Downes HF, Slovak ML. Effect of calcium antagonists on the chemosensitivity of two multidrug-resistant human tumor cell lines which do not overexpress P-glycoprotein. Br J Cancer 1989; 59: 42–46.

    Article  PubMed  CAS  Google Scholar 

  72. Barrand MA, Rhodes T, Center MS, Twentyman PR. Chemosensitization and drug accumulation effects of cyclosporin A, PSC-833, and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein. Eur J Cancer 1993; 29: 408–415.

    Google Scholar 

  73. Kuss BJ, Deeley RG, Cole SPC, et al. Deletion of gene for multidrug resistance in acute myeloid leukemia with inversion in chromosome 16: prognostic implications. Lancet 1994; 343: 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  74. Bordow SB, Haber M, Madafiglio J, et al. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma. Cancer Res 1994; 54: 5036–5040.

    PubMed  CAS  Google Scholar 

  75. Liu LF. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 1989; 58: 351–375.

    Article  PubMed  CAS  Google Scholar 

  76. Osheroff N. Effect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposide. Biochemistry 1989; 28: 6157–6160.

    Article  PubMed  CAS  Google Scholar 

  77. Beck WT, Danks MK, Wolverton JS, et al. Resistance of mammalian tumor cells to inhibitors of DNA topoisomerase II. In: Liu LF, ed. Topoisomerase-Targeting Drugs. New York: Academic. 1994: 145–169.

    Chapter  Google Scholar 

  78. Akimoto H, Bruno NA, Slate DL, et al. Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Res 1993; 53: 4658–4664.

    PubMed  CAS  Google Scholar 

  79. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 1992; 19: 670–686.

    PubMed  CAS  Google Scholar 

  80. Priebe W. Mechanism of action-governed design of anthracycline antibiotics: “a turn off/turn on” approach. Current Drug Design 1995; 1: 73–96.

    Google Scholar 

  81. Miller AA, Salewski E. Prospects for Pirarubicin. Med Pediatr Oncol 1994; 22: 261–268.

    Article  PubMed  CAS  Google Scholar 

  82. Goldin A, Venditti JM, Geran R. The effectiveness of the anthracycline analogue 4 ’-epidoxorubicin in the treatment of experimental tumors: a review. Invest New Drugs 1985; 3: 3–21.

    Article  PubMed  CAS  Google Scholar 

  83. Hurteloup P, for the French Epirubicin Study Group: A prospective randomized Phase III trial comparing combination chemotherapy with cyclophosphamide, fluorouracil, and either doxorubicin or epirubicin. J Clin Oncol 1988; 6: 679–688.

    Google Scholar 

  84. Intimi C, for the Italian Multicentre Breast Study with Epirubicin: Phase III randomized study of fluorouracil, epirubicin and cyclophosphamide v. fluorouracil, doxorubicin and cyclophosphamide in advanced breast cancer: An Italian multicentre trial. J Clin Oncol 1988; 6: 976–982.

    Google Scholar 

  85. Weenen H, Van Maanan JMS, De Planque MM, et al. Metabolism of 4’ modified analogs of doxorubicin. Unique glucuronidation pathway for 4’ epidoxorubicin. Eur J Cancer Clin Oncol 1984; 20: 919–926.

    Article  PubMed  CAS  Google Scholar 

  86. Perez DJ, Harvey VJ, Robinson BA, et al. A randomized comparison of single-agent doxorubicin and epirubicin as first-line cytotoxic therapy in advanced breast cancer. J Clin Oncol 1991; 9: 2148–2152.

    PubMed  CAS  Google Scholar 

  87. Nielsen D, Jensen JB, Dombernowsky P, et al. Epirubicin cardiotoxicity: A study of 135 patients with advanced breast cancer. J Clin Oncol 1990; 8: 1806–1810.

    PubMed  CAS  Google Scholar 

  88. Dardir MD, Ferrans VJ, Mikhael YS, et al. Cardiac morphologic and functional changes induced by epirubicin chemotherapy. J Clin Oncol 1989; 7: 947–958.

    PubMed  CAS  Google Scholar 

  89. Kuffel MJ, Reid JM, Ames MM. Anthracyclines and their C-13 metabolites: growth inhibition and DNA damage following incubation with human tumor cells in culture. Cancer Chemother Pharmacol 1992; 30: 51–57.

    Article  PubMed  CAS  Google Scholar 

  90. Weiss RB. A third anthracycline for acute leukemia. Contemp Oncol 1992; 2: 30–39.

    Google Scholar 

  91. Wiernik PH, Banks PLC, Case DC, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. Blood 1992; 79: 313–319.

    PubMed  CAS  Google Scholar 

  92. Stewart DJ, Grewaal D, Green RM, et al. Bioavailability and pharmacology of oral idarubicin. Cancer Chemother Pharmacol 1991; 27: 308–314.

    Article  PubMed  CAS  Google Scholar 

  93. Lopez M, Contegiacomo A, Vici P, et al. A prospective randomized trial of doxorubicin versus idarubicin in the treatment of advanced breast cancer. Cancer 1989; 64: 2431–2436.

    Article  PubMed  CAS  Google Scholar 

  94. Stuart NSA, Cullen MH, Priestman TJ, et al. A phase II study of oral idarubicin (4-demethoxydaunorubicin) in advanced breast cancer. Cancer Chemother Pharmacol 1988; 21: 351–354.

    Article  PubMed  CAS  Google Scholar 

  95. Hurteloup P, Armand JP, Schneider M, et al. Phase II trial of idarubicin (4-demethoxydaunorubicin) in advanced breast cancer. Eur J Cancer Clin Oncol 1989; 25: 423–428.

    Article  PubMed  CAS  Google Scholar 

  96. Michieli M, Michelutti A, Damiani D, et al. A comparative analysis of the sensitivity of multi-drug resistant (MDR) and non-MDR cells to different anthracycline derivatives. Leukemia Lymphoma 1993; 9: 255–264.

    Article  PubMed  CAS  Google Scholar 

  97. Klumper E, Pieters R, den Boer ML, et al. In vitro anthracycline cross-resistance pattern in childhood acute lymphoblastic leukaemia. Br J Cancer 1995; 71: 1188–1193.

    Article  PubMed  CAS  Google Scholar 

  98. Bastholt L, Dalmark M. Phase II study of idarubicin given orally in the treatment of anthracycline-naive advanced breast cancer patients. Cancer Treat Rep 1987; 71: 451–454.

    PubMed  CAS  Google Scholar 

  99. Han G, Israel M, Seshadri R, Sweatman TW. Metabolism and elimination of N,N-di(n-butyl) adriamycin-14-valerate in the rat. Cancer Chemother Pharmacol 1996; 37: 472–478.

    Article  PubMed  CAS  Google Scholar 

  100. Priebe W, Van NT, Burke TG, Perez-Soler R. Removal of the basic center from doxorubicin partially overcomes multidrug resistance and decreases cardiotoxicity. Anticancer Drugs 1993; 4: 37–48.

    Article  PubMed  CAS  Google Scholar 

  101. Acton EM. Unresolved structure-activity relationships in anthracycline analogue development. In: Priebe W, ed. Anthracycline Antibiotics. Novel Analogues, Methods of Delivery and Mechanisms of Action. Washington DC: American Chemical Society. 1995: 1–13.

    Google Scholar 

  102. Ogawa M, Ariyoshi Y. New anticancer drugs under clinical trials in Japan. Hematol Oncol Clin North Am 1994; 8: 277–287.

    PubMed  Google Scholar 

  103. Acton EM, Tong GL, Mosher CW, Wolgemuth RL. Intensely potent morpholinyl anthracyclines. J Med Chem 1984; 27: 638–645.

    Article  PubMed  CAS  Google Scholar 

  104. Mosher CW, Wu HY, Fujiwara AN, Acton EM. Enhanced antitumor properties of 3’-(4morpholinyl) and 3’-(4-methoxy-l-piperidinyl) derivatives of 3 ’-deamino-daunorubicin. J Med Chem 1982; 25: 18–24.

    Article  PubMed  CAS  Google Scholar 

  105. Sikic BT, Ehsam MS, Harker WG, et al. Dissociation of antitumor potency from the anthracycline cardiotoxicity in a doxorubicin analogue. Science 1985; 228: 1544–1546.

    Article  PubMed  CAS  Google Scholar 

  106. Streeter PG, Johl JS, Gordon GR, Peters JH. Uptake and retention of morpholinyl anthracyclines by adriamycin-sensitive and -resistant P388 cells. Cancer Chemother Pharmacol 1986; 16: 247–252.

    Article  PubMed  CAS  Google Scholar 

  107. Westendorf J, Aydin M, Groth G, et al. Mechanistic aspects of DNA damage by morpholinyl and cyanomorpholinyl anthracyclines. Cancer Res 1989; 49: 5262–5266.

    PubMed  CAS  Google Scholar 

  108. Graham MA, Clugson CK, King LH, et al. Mechanistic studies with methoxymorpholinodoxorubicin: evidence for a novel covalently bound DNA adduct following activation by CYT P450 3A. Proc Am Assoc Cancer Res 1992; 33: 513.

    Google Scholar 

  109. Lau DH, Duran GE, Sikic BI. Characterization of covalent DNA binding of morpholino and cyanomorpholino derivatives of doxorubicin. J Natl Cancer Inst 1992; 84: 1587–1592.

    Article  PubMed  CAS  Google Scholar 

  110. Lau DH, Lewis AD, Sikic BI. Association of DNA cross-linking with potentiation of the morpholino derivative of doxorubicin by human liver microsomes. J Natl Cancer Inst 1989; 81: 1034–1038.

    Article  PubMed  CAS  Google Scholar 

  111. Wasserman K, Markovits J, Jaxel C, et al. Effects of morpholinyl doxorubicin, doxorubicin, and actinomycin D on mammalian DNA topoisomerases I and II. Mol Pharmacol 1990; 38: 38–45.

    Google Scholar 

  112. Watanabe M, Komeshima N, Nakajima S, Tsuruo T. MX2, a morpholino anthracycline, as a new antitumor agent against drug-sensitive and multidrug-resistant human and murine tumor cells. Cancer Res 1988; 48: 6653–6657.

    PubMed  CAS  Google Scholar 

  113. Streeter DG, Taylor DL, Acton EM, Peters JH. Comparative cytotoxicities of various morpholinyl anthracyclines. Cancer Chemother Pharmacol 1985; 14: 160–164.

    Article  PubMed  CAS  Google Scholar 

  114. Komeshima N, Tsuruo T., Umezawa H. Antitumor activity of new morpholino anthracyclines. J Antibiot 1988; 41: 548–553.

    Article  PubMed  CAS  Google Scholar 

  115. Koseki Y, Sweatman TW, Israel M. N-Trifluoroacetyladriamycin-14-valerate (AD 32) cellular pharmacology in human bladder tumor cell lines. Proc Am Assoc Cancer Res 1992; 33: 428.

    Google Scholar 

  116. Israel M, Sweatman TW, Seshadri R, Koseki Y. Comparative uptake and retention of Adriamycin and N-benzyladriamycin-l4-valerate in human CEM leukemia lymphocyte cell cultures. Cancer Chemother Pharmacol 1989; 25: 177–183.

    Article  PubMed  CAS  Google Scholar 

  117. Israel M, Seshadri R, Sweatman TW, et al. Structure and biological activity of N-substituted anthracyclines: correlation with DNA interaction. First Conference on DNA Topoisomerases in Cancer Chemotherapy, New York, November 1988.

    Google Scholar 

  118. Israel M, Seshadri R, Koseki Y, et al. New anthracycline analogues directed against DNA topoisomerase II. In Tapiero H, Robert J, Lampidis TJ, eds. Interface on Clinical and Laboratory Responses to Anticancer Drugs. Montrouge France: John Libby Eurotext, 1989; 191: 39–47.

    Google Scholar 

  119. Israel M, Khetarpal VK. Tissue distribution and metabolism of N-trifluorocetyladriamycin-14valerate (AD 32) compared with adriamycin in mice bearing established Lewis Lung carcinoma. Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983.

    Google Scholar 

  120. Israel M, Modest EJ, Frei E III. N-Trifluoroacetyladriamycin-14-valerate, an analog with greater experimental antitumor activity and less toxicity than adriamycin. Cancer Res 1975; 35: 1365–1368.

    PubMed  CAS  Google Scholar 

  121. Vecchi A, Cairo M, Mantovani A, et al. Comparative antineoplastic activity of adriamycin and N-trifluoroacetyladriamycin-14-valerate. Cancer Treat Rep 1978; 62: 111–117.

    PubMed  CAS  Google Scholar 

  122. Blum RH, Garnick MB, Israel M, et al. An initial clinical evaluation of N-trifluoroacetyladriamycin-14-valerate (AD 32), an adriamycin analog. Cancer Treat Rep 1979; 63: 919–923.

    PubMed  CAS  Google Scholar 

  123. Blum RH, Garnick MB, Israel M, et al. Preclinical rationale and phase I clinical trial of the adriamycin analog, AD 32. In: Carter SK, Sakurai Y, Umezawa H, eds. New Drugs in Cancer Chemotherapy, Recent Results in Cancer Research, vol. 76. New York: Springer-Verlag. 1981: 7–15.

    Google Scholar 

  124. Garnick MB, Griffin JD, Sack MJ, et al. Phase II evaluation of N-trifluoroacetyladriamycin14-valerate (AD 32). In: Muggia FM, Young CW, Carter SK, eds. Anthracycline Antibiotics in Cancer Therapy. The Hague: Martinus Nijhoff. 1982: 7.

    Google Scholar 

  125. Sweatman TW, Payne C, Koseki Y, et al. Drug penetration into dog bladder wall following intravesical (ive) instillation of N-trifluoroacetyladriamycin-l4-valerate (AD 32). Proc Am Assoc Cancer Res 1993; 34: 364.

    Google Scholar 

  126. Koseki Y, Sweatman TW, Israel M. N-Trifluoroacetyladriamycin-14-valerate (AD 32) cellular pharmacology in human bladder tumor cell lines. Proc Am Assoc Cancer Res 1992; 33: 428.

    Google Scholar 

  127. Sweatman TW, Payne C, Patterson L, et al. N-Trifluoroacetyladriamycin-l4-valerate (AD 32) penetration into human urinary bladder tissue following intravesical instillation. Proc Am Assoc Cancer Res 1996; 37: 182.

    Google Scholar 

  128. Sweatman TW, Parker RF, Israel M. Pharmacologic rationale for intravesical N-trifluoroacetyladriamycin-14-valerate (AD 32): A preclinical study. Cancer Chemother Pharmacol 1991; 28: 1–6.

    Article  PubMed  CAS  Google Scholar 

  129. Sweatman TW, Payne C, Israel M, et al. Clinical pharmacology of intravesical (IVE) N-trifluoroacetyladriamycin-14-valerate (AD 32). Proc Am Soc Clin Oncol 1993; 12: 162.

    Google Scholar 

  130. Giantonio B, Greenberg R, Bamberger M, et al. A Phase-I trial of AD 32 administered intravesically in patients with superficial transitional cell carcinoma of the bladder. Proc Am Soc Clin Oncol 1993; 12: 251.

    Google Scholar 

  131. Israel M, Chengelis CP, Naas DJ, Sweatman TW. Absence of N-trifluoroacetyladriamycin-14valerate (AD 32) toxicity following intraperitoneal (ip) injection in rats. Proc Am Assoc Cancer Res 1993; 34: 427.

    Google Scholar 

  132. Sweatman TW, Payne C, Israel M, et al. Clinical pharmacology of intraperitoneal (ip) N-trifluoroacetyladriamycin-14-valerate. Proc Am Assoc Cancer Res 1994; 35: 245.

    Google Scholar 

  133. Markman M, Homesley H, Norberts DA, et al. Phase I trial of intraperitoneal AD 32 in gynecologic malignancies. Gynecol Oncol 1996; 61: 90–93.

    Article  PubMed  CAS  Google Scholar 

  134. Devlin S, Sweatman TW. Pharmacology of intrapleural (ipl) N-trifluoroacetyladriamycin-l4valerate (AD 32) in the rat. Proc Am Assoc Cancer Res 1994; 35: 431.

    Google Scholar 

  135. Israel M, Bernacki RJ, Kanter PM. Pharmacologic rationale for intraprostatic AD 32 (N-trifluoroacetyladriamycin-14-valerate). Proc Am Assoc Cancer Res 1996; 37: 372.

    Google Scholar 

  136. DiDomenico D, Brown J, Shaw M, et al. Intralesional AD 32 is efficacious in a prostate cancer model. Proc Am Assoc Cancer Res 1996; 37: 303.

    Google Scholar 

  137. Israel M, Seshadri R. N-Alkyl and N-benzyladriamycin derivatives. US Patent 4,610,977, 1986. US Patent Office, Washington, DC.

    Google Scholar 

  138. Israel M, Seshadri R, Koseki Y, et al. Amelioration of adriamycin toxicity through modification of drug-DNA binding properties. Cancer Treat Rev 1987; 14: 163.

    Article  PubMed  CAS  Google Scholar 

  139. Ganapathi R, Grabowski D, Sweatman TW, et al. N-Benzyladriamycin-14-valerate versus progressively doxorubicin-resistant murine tumours: cellular pharmacology and characterization of cross-resistance in vitro and in vivo. Br J Cancer 1989; 60: 819–826.

    Article  PubMed  CAS  Google Scholar 

  140. Traganos F, Israel M, Seshadri R, et al. Effects of new N-alkyl analogues of adriamycin on in vitro survival and cell-cycle progression. Cancer Res 1985; 45: 6273–6279.

    PubMed  CAS  Google Scholar 

  141. Lameh J, Chuang LF, Israel M, Chuang RY. Mechanistic studies on N-benzyladriamycin-l4valerate (AD 198), a highly lipophilic alkyl adriamycin analogue. Anticancer Res 1988; 8: 689–694.

    PubMed  CAS  Google Scholar 

  142. Bodley A, Liu LF, Israel M, et al. DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989; 49: 5969–5978.

    PubMed  CAS  Google Scholar 

  143. Israel M, Sweatman TW, Seshadri R, Koseki Y. Comparative uptake and retention of adriamycin and N-benzyladriamycin-14-valerate in human leukemic lymphocyte cell cultures. Cancer Chemother Pharmacol 1989; 25: 177–183.

    Article  PubMed  CAS  Google Scholar 

  144. Sweatman TW, Israel M, Seshadri R, et al. Cytotoxicity and cellular pharmacology of N-benzyladriamycin-14-valerate in mechanistically different multidrug-resistant human leukemic cells. J Cell Pharmacol 1990; 1: 96–102.

    Google Scholar 

  145. Krishan A, Sauerteig A, Gordon K, Swinkin C. Flow cytometric monitoring of cellular anthracycline accumulation in murine leukemia cells. Cancer Res 1986; 46: 1768–1773.

    PubMed  CAS  Google Scholar 

  146. Maniar N, Krishan A, Israel M, Samy TSA. Anthracycline-induced DNA breaks and resealing in doxorubicin-resistant murine leukemia P388 cells. Biochem Pharmacol 1988; 37: 1763–1772.

    Article  PubMed  CAS  Google Scholar 

  147. Lothstein L, Sweatman TW, Dockter M, Israel M. Resistance of N-benzyladriamycin-14valerate in mouse J774.2 cells: P-glycoprotein expression without reduced N-benzyladriamycin14-valerate accumulation. Cancer Res 1992; 52: 3409–3417.

    PubMed  CAS  Google Scholar 

  148. Lothstein L, Koseki Y, Sweatman TW. P-glycoprotein overexpression in mouse cells does not correlate with resistance to N-benzyladriamycin-14-valerate (AD 198). Anticancer Drugs 1994; 5: 623–633.

    Article  PubMed  CAS  Google Scholar 

  149. Koseki Y, Lothstein L, Sweatman TW, Israel M. Absence of P-glycoprotein (P-gp) mechanism for the synergistic effect of N-benzyladriamycin-l4-valerate (AD 198) on Adriamycin (ADR) cytotoxicity in human ovarian carcinoma cells. Proc Am Assoc Cancer Res 1993; 34: 367.

    Google Scholar 

  150. Koseki Y, Sweatman TW, Israel M. Pharmacologic rationale for lung cancer therapy with Nbenzyladriamycin-l4-valerate (AD 198). Proc Am Assoc Cancer Res 1994; 35: 411.

    Google Scholar 

  151. Lothstein L, Sweatman TW, Priebe W. Study of the effect of charge and lipophilicity on anthracycline cytotoxicity in multidrug resistant murine J774.2 cells. Proc Am Assoc Cancer Res 1994; 35: 342.

    Google Scholar 

  152. Tsuchiya T, Takagi Y, Umezawa S, et al. Synthesis and antitumor activities of 14-O-acyl derivatives of 7–0-(2,6-dideoxy-2-fluoro-a-L-talopyranosyl) adriamycin. JAntibiotic 1988; 41: 988–991.

    Article  CAS  Google Scholar 

  153. Tsuruo T, Yusa K, Sudo Y, et al. A fluorine-containing anthracycline (ME2303) as a new antitumor agent against murine and human tumors and their multidrug resistant sublines. Cancer Res 1989; 49: 5537–5542.

    PubMed  CAS  Google Scholar 

  154. Priebe W, Perez-Soler R. Design and tumor targeting of anthracyclines able to overcome multidrug resistance: a double-advantage approach. Pharmacol Ther 1993; 60: 215–234.

    Article  PubMed  CAS  Google Scholar 

  155. Zou Y, Priebe W, Ling YH, Perez-Soler R. Organ distribution and tumor uptake of annamycin, a new anthracycline derivative with high affinity for lipid membranes, entrapped in multilamellar vesicles. Cancer Chemother Pharmacol 1993; 32: 190–196.

    Article  PubMed  CAS  Google Scholar 

  156. Zou Y, Ling YH, Van NT, et al. Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res 1994; 54: 1479–1484.

    PubMed  CAS  Google Scholar 

  157. Israel M, Seshadri R. Hybrid nitrosoureidoanthracyclines having antitumor activity. U.S. Patent 4,973,675, 1990. US Patent Office, Washington, DC.

    Google Scholar 

  158. Pawlik C, Payne C, Lothstein L, et al. Tissue distribution of N-(2-[“C]-chloroethyl)-N-nitrosoureidodaunorubicin in the rat. Proc Am Assoc Cancer Res 1994; 35: 431.

    Google Scholar 

  159. Sweatman TW, Rodrigues P, Pawlik C, et al. Metabolism and elimination of N-(2-[“C]chloroethyl) N-nitrosoureidodaunorubicin in the rat. Proc Am Assoc Cancer Res 1995; 36: 364.

    Google Scholar 

  160. Bertazzoli C, Bellini O, Magrini U, Tozana M. Quantitative experimental evaluation of adriamycin cardiotoxicity in the mouse. Cancer Treat Rep 1979; 63: 1877–1883.

    PubMed  CAS  Google Scholar 

  161. Israel M, Chengelis CP. Lack of anthracycline-type cardiotoxicity associated with N-(2-chloroethyl)nitrosoureidodaunorubicin (AD 312). Proc Am Assoc Cancer Res 1994; 35: 407.

    Google Scholar 

  162. Johnson RK, Chitnis MP, Embrey WM, Gregory EB. In vivo characteristics of resistance and cross resistance of an adriamycin-resistant subline of P388 leukemia. Cancer Treat Rep 1978; 62: 1535–1547.

    PubMed  CAS  Google Scholar 

  163. Israel M, Koseki Y, Seshadri R. Further in vivo antitumor studies with 2-chloroethylnitrosoureidodaunorubicin (AD 312) in murine P388 leukemia systems. Proc Am Assoc Cancer Res 1991; 32: 2401.

    Google Scholar 

  164. Israel M, Koseki Y, Sweatman TW, Seshadri R. DNA topoisomerase II-directed nitrosoureidoanthracyclines: high in vivo antitumor activity with minimal myelosuppression. J Cancer Res Clin Oncol 1990; 116: 468.

    Google Scholar 

  165. Glaves D, Rustum Y, Bernacki RJ, et al. Therapeutic activity of a nitrosourea: anthracycline hybrid (AD 312) against human bladder, lung, and ovarian xenografts. Proc Am Assoc Cancer Res 1995; 36: 392.

    Google Scholar 

  166. Israel M, Krishan A, Wellham LL. Antitumor activity of 2-chloroethylnitrosoureidodaunorubicin (AD 312) in nude mice bearing xenografts of FCC-8 human lung adenocarcinoma. Proc Am Assoc Cancer Res 1995; 36: 396.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sweatman, T.W., Israel, M. (1997). Anthracyclines. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics