Skip to main content

A Case for ras Targeted Agents as Antineoplastics

  • Chapter
Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 168 Accesses

Abstract

Conventional cancer treatment generally employs cytotoxic agents that, by inhibiting DNA replication or mitosis, are most effective against rapidly growing tumors. Clearly we have witnessed successes against various leukemias, lymphomas, and some solid tumors, such as testicular cancer. With some exceptions, there generally exists a close correlation between tumor proliferation rate and sensitivity to cytotoxic drugs (1). Therefore, a critical need still exists for the development of agents that will target the more refractory tumors that are distinguished by a low growth fraction, such as colon adenocarcinoma, nonsmall-cell lung cancers, and pancreatic carcinomas. Despite a roughly 40-year search for more efficaceous antitumor drugs, very few new agents have shown sufficient broad-spectrum activity for entering mainstream chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zubrod CG. Chemical control of cancer. Proc Natl Acad Sci USA 1972; 69: 1042–1047.

    Article  CAS  Google Scholar 

  2. Stacey DW, DeGudicibus SR, Smith MR. Cellular Ras activity and tumor cell proliferation. Exp Cell Res 1987; 171: 232.

    Article  PubMed  CAS  Google Scholar 

  3. Kung HF, Smith MR, Bekesi E, Stacey DW. Reversal of transformed phenotype by monoclonal antibodies against Ha-Ras p21 proteins. Exp Cell Res 1986; 162: 363–371.

    Article  PubMed  CAS  Google Scholar 

  4. Bar Sagi D, Feramisco JR. Microinjection of the Ras oncogene protein into PC12 cells induces morphological differentiation. Cell 1985; 42: 841–848.

    Article  Google Scholar 

  5. Sadler SE, Mailer JL, Gibbs JB. Transforming Ras proteins accelerate hormone-induced maturation and stimulate cyclic AMP phosphodiesterase in Xenopus oocytes. Mol Cell Biol 1990; 10: 1689–1696.

    PubMed  CAS  Google Scholar 

  6. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron 199; 2: 9: 383–391.

    Google Scholar 

  7. Schlessinger J. SH2/SH3 signaling proteins. Curr Opinion Genet Dey 1994; 4: 25–30.

    Article  CAS  Google Scholar 

  8. Lowenstein EJ, Daly RJ Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to Ras signalling. Cell 1992; 70 :431–442.

    Google Scholar 

  9. Buday L, Downward J. Epidermal growth factor regulates p21Ras through the formation of a complex of receptor Grb2 adaptor protein, and Sos nucleotide exchange facator. Cell 1973: 611–620.

    Google Scholar 

  10. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D. Grb2 mediates the EGFdependent activation of guanine nucleotide exchange on Ras. Nature 1993; 363: 88–92.

    Article  PubMed  CAS  Google Scholar 

  11. Osterop AP, Medema RH, v.d.-Zon GC, Bos JL, Moller W, Maassen JA. Epidermal growth factor receptors generate Ras. GTP more efficiently than insulin receptors. Eur J Biochem 1993; 212: 477–482.

    Article  PubMed  CAS  Google Scholar 

  12. Trahey M, McCormick, F. A cytoplasmic protein stimulates normal N-Ras p21 GTPase, but does not affect oncogenic mutants. Science 1987; 238: 542–554.

    Article  PubMed  CAS  Google Scholar 

  13. Cales C, Hancock JF, Marshall CJ, Hall A. The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 1988; 332: 548–551.

    Article  PubMed  CAS  Google Scholar 

  14. Wong G, Muller O, Clark R, Conroy L, Moran MF, Polakis P, McCormick F. Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell 1992; 69: 551–558.

    Article  PubMed  CAS  Google Scholar 

  15. Settleman J, Narasimhan V, Foster LC, Weinberg RA. Molecular cloning cDNAs encoding the GAP-associated protein p190: implications for a signalling pathway from Ras to the nucleus. Cell 1992; 69: 539–549.

    Article  PubMed  CAS  Google Scholar 

  16. Hall A. Ras-related GTPases and the cytoskeleton. Mol Biol Cell 1992; 3: 475–479.

    PubMed  CAS  Google Scholar 

  17. Pendergast GC, Gibbs JB. Ras regulatory interactions: novel targets for anti-cancer intervention. BioEssays 1994; 16: 187–191.

    Article  Google Scholar 

  18. Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  19. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463–1467.

    Article  PubMed  CAS  Google Scholar 

  20. Leevers SJ, Paterson JF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting raf to the plasma membrane. Nature 1994; 369: 411–441.

    Article  PubMed  CAS  Google Scholar 

  21. Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–417.

    Article  PubMed  CAS  Google Scholar 

  22. Sturgill TW, Ray LB, Erikson E, Malter JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 1988; 334: 715–718.

    Article  PubMed  CAS  Google Scholar 

  23. Khosravi-Far R, Der CJ. The Ras signal transduction pathway. Cancer and Metastasis Rev 1994; 13: 67–89.

    Article  CAS  Google Scholar 

  24. Cook SJ, Rubinfeld B, Albert A, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK-1 and ERK-2 by LPA and EGF in rat-1 fibroblasts. EMBO J 1993; 366: 3475–3485.

    Google Scholar 

  25. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 43–653.

    Article  Google Scholar 

  26. Barbacid M. Ras genes. Ann Rev Biochem 1987; 56: 779–827.

    Article  CAS  Google Scholar 

  27. Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261–264.

    Article  PubMed  CAS  Google Scholar 

  28. Krontiris TG, Cooper GM. Transforming activity of human tumor DNA. Proc Natl Acad Sci USA 1981; 78: 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson DM, Yang D, Dillberger JE, Dietrich SE, Maher VM, McCormick JJ. Malignant transformation of human fibroblasts by a transfected N-ras oncogene. Cancer Res 1990; 50: 5587–5593.

    PubMed  CAS  Google Scholar 

  30. Adams JM, Cory S. Transgenic models of tumor development. Science 1991; 254: 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  31. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  Google Scholar 

  32. Gumerlock P, Poonamallee U, Meyers F. Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res 1991; 51: 1632–1637.

    PubMed  CAS  Google Scholar 

  33. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  34. Fearon ER. K-ras gene mutation as a pathogenic and diagnostic marker in human cancer. J Natl Cancer Inst 1993; 85: 1978–1980.

    CAS  Google Scholar 

  35. Pretlow TP, Brasitus TA, Fulton NC, Cheyer C, Kaplan EL. K-ras mutations in putative preneoplastic lesions in human colon. J Natl Cancer Inst 1993; 85: 2004–2007.

    Article  PubMed  CAS  Google Scholar 

  36. Yanagisawa A, Ohtake K, Ohashi K, et al. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res 1993; 53: 953–956.

    PubMed  CAS  Google Scholar 

  37. Goretzki PE, Lyons J, Stacy-Phipps S, Rosenau W, Demeure M, Clark OH, McCormick F, Roher HD, Bourne HR. Mutational activation of ras and gsp oncogenes in differentiated thyroid cancer and their biological implications. World J Surg 1992; 16: 576–581.

    Article  PubMed  CAS  Google Scholar 

  38. Anwar K, Nakakuki K, Naiki H, Inuzuka M. Ras gene mutations and HPV infection are common in human laryngeal carcinoma. Int J Cancer 1993; 53: 22–28.

    Article  CAS  Google Scholar 

  39. Su ZZ, Austin VN, Zimmer SG, Fisher PB. Defining the critical gene expression changes associated with expression and suppression of the tumorigenic and metastatic phenotype in Haras-transformed cloned rat embryo fibroblast cells. Oncogene 1993; 8: 1211–1219.

    PubMed  CAS  Google Scholar 

  40. Zebrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994; 59: 191–195.

    Article  Google Scholar 

  41. Sanz L, Berra E, Municio MM, Dominguez I, Lozano J, Johansen T, Moscat J. Diaz-Meco MT. Zeta PKC plays a critical role during stromelysin promoter activation by platelet-derived growth factor through a novel palindromic element. J Bio! Chem 1994; 269:10,044–10,049.

    Google Scholar 

  42. Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988; 239: 645–647.

    Article  PubMed  CAS  Google Scholar 

  43. Miller AC, Kariko K, Myers CE, Clark EP, Samid D. Increased radioresistance of EJ ras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21 Ras isoprenylation. Int J Cancer 1993; 53: 302–307.

    Article  PubMed  CAS  Google Scholar 

  44. Hermens AF, Bentvelzen PA. Influence of the H-ras oncogene on radiation responses of a rat rhabdomyosarcoma cell line. Cancer Res 1992; 52: 3073–3082.

    PubMed  CAS  Google Scholar 

  45. Grant ML, Bruton RK, Byrd PJ, Gallimore PH, Steele JC, Taylor AM, Grand RJ. Sensitivity to ionising radiation of transformed human cells to mutant ras genes. Oncogene 1990; 5: 1159–1164.

    PubMed  CAS  Google Scholar 

  46. Garden AS, Meyn RE, Weil MM, Lebovitz RM, Lieberman MW. The influence of ras oncogene expression on radiation response in the cell. Int J Radiat Bio 1992; 307–311.

    Google Scholar 

  47. Su LN, Little JB. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen. Int J Radiat Bio 1992; 62: 201–210.

    Article  CAS  Google Scholar 

  48. Mendonca MS, Boukamp P, Stanbridge EJ, Redpath JL. The radiosensitivity of human keratinocytes: influence of activated c-H- ras oncogene expression and tumorigenicity. Int JRadiat Biol 1991; 59: 1195–1206.

    Article  CAS  Google Scholar 

  49. Alapetite C, Baroche C, Remvikos Y, Goubin X, Moustacchi E. Studies on the influence of the presence of an activated ras oncogene on the in vitro radiosensitivity of human mammary epithelial cells. Int J Radiat Bio 1991; 59: 385–396.

    Article  CAS  Google Scholar 

  50. Pirollo KF, Tong YA, Villegas Z, Chen Y, Chang EH. Oncogene-transformed NIH 3T3 cells display radiation resistance indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res 1993; 135: 234–243.

    Article  PubMed  CAS  Google Scholar 

  51. McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, Muschel RJ. Synergistic effect of the v-myc oncogene with H- ras on radioresistance. Cancer Res 1990; 50: 97–102.

    PubMed  CAS  Google Scholar 

  52. Warenius HM, Browning PG, Britten RA, Peacock JA, Rapp UR. C-raf-1 proto-oncogene expression relates to radiosensitivity rather than radioresistance. Eur J Cancer 1994; 30A: 369–375.

    Article  Google Scholar 

  53. Cheong N, Wang Y, Iliakis G. Radioresistance induced in rat embryo cells by transfection with the oncogenes H-ras v-myc is cell cycle dependent and maximal during S and G2. Int J Radiat Bio 1993; 63: 623–629.

    Article  CAS  Google Scholar 

  54. Haeuptle MT, Frank R, Dobberstein B. Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yields polypeptides of predetermined length. Nucleic Acids Res 1986; 14: 1427–1428.

    Article  PubMed  CAS  Google Scholar 

  55. Walder RY, Walder JA. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 1988; 85: 5011–5015.

    Article  PubMed  CAS  Google Scholar 

  56. Chang EH, Miller PS, Cushman C, Devadas K, Pirollo KF, Ts’o PO, Yu ZP. Antisense inhibition of ras p21 expression that is sensitive to a point mutation. Biochemistry 1991; 30: 8283–8286.

    Article  PubMed  CAS  Google Scholar 

  57. Chang EH, Miller PS. Ras, an inner membrane transducer of growth stimuli. In: Wilkstrom E, ed. Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS. New York: Wiley-Liss. 1991: 115–124.

    Google Scholar 

  58. Saison-Behmoaras T, Tocque B, Rey I, Chassignol M, Thuong NT, Helene C. Short modified antisense oligonucleotides directed against Ha-ras mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EMBO J 1991; 10: 1111–1118.

    PubMed  CAS  Google Scholar 

  59. Gray GD, Hernandez OM, Hebel D, Root M, Pow-Sang JM, Wickstrom E. Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice. Cancer Res 1993; 53: 577–580.

    CAS  Google Scholar 

  60. Zhang Y, Mukhopadhyay T, Donehower LA, Georges RN, Roth JA. Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Human Gene Therapy 1993; 4: 451–460.

    Article  PubMed  CAS  Google Scholar 

  61. Georges RN, Mukhopadhyay T, Zhang Y, Yen N, Roth JA. Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 1993; 53: 1743–1746.

    PubMed  CAS  Google Scholar 

  62. Drug and Market Development 1994; 4:235.

    Google Scholar 

  63. Bayever B, Iversen PL, Bishop MR, Sharp JG, Tewary HK, Arneson MA, Pirrucello SJ, Ruddon RW, Kessinger A, Zon G, Armitage JO. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase I trial. Antisense Res Dev 1993; 3: 383–390.

    PubMed  CAS  Google Scholar 

  64. Kashani-Sabel M, Funato T, Florenes VA, Fodstad O, Scanlon KJ. Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res 1994; 54: 900–920.

    Google Scholar 

  65. Koizumi M, Kamiya H, Ohtsuka E. Inhibition of c-Ha-ras gene expression by hammerhead ribozymes containing stable C(UUCG)G hairpin loop. Biol Pharm Bull 1993; 16: 879–883.

    Article  PubMed  CAS  Google Scholar 

  66. Tone T, Kashani-Sabet M, Funato T, Shitara T, Yoshida E, Kashfian BI, Horng M, Fodstadt O, Scanlon KJ. Suppression of EJ cells tumorigenicity. In Vivo 1993; 7: 471–476.

    PubMed  CAS  Google Scholar 

  67. Kashini-Sabet M, Funato T, Tone T, Jiao L, Wang W, Yoshida E, Kashfinn BI, Shitara T, Wu AM, Moreno JG, Scanlon KJ, et al. Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res Dev 1992; 2: 3–15.

    Google Scholar 

  68. Efrat S, Leiser M, Wu YJ, Fusco-DeMane D, Emran OA, Surana M, Jetton TL, Magnuson MA, Weir G, Fleischer N. Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Nall Acad Sci USA 1994; 91: 2051–2055.

    Article  CAS  Google Scholar 

  69. Huber HE, Koblan KS, Heimbrook DC. Protein-protein interactions as therapeutic targets for cancer. Curr Med Chem 1994; 1: 13–34.

    CAS  Google Scholar 

  70. Gibbs JB. Pharmacological probes of Ras function. Sem Cancer Biol 1992; 3: 383–390.

    CAS  Google Scholar 

  71. Gilmer TG, Rodriguez M, Jordan S, Crosby R, Alligood K, Green M, Kimery M, Wagner C, Kinder D, Charifson P, Hassell AM, Willard D, Luther M, Rusnak D, Sternbach DD, Mehrotra M, Peel M, Shampine L, Davis R, Robbins J, Patel IR, Kassel D, Burkhart W, Moyer M, Bradshaw T, Berman J. Peptide inhibitors of src SH3–SH2-phosphoprotein interactions. J Biol Chem 1994; 269:31, 711–31, 719.

    Google Scholar 

  72. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian ras interacts directly with the serine/ threonine kinase Raf. Cell 1993; 74: 205–214.

    Article  PubMed  CAS  Google Scholar 

  73. Duchesne M, Schweighoffer F, Parker F, Clerc F, Frobert Y, Thang MN, Tocque B. Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 1993; 259: 525–528.

    Article  PubMed  CAS  Google Scholar 

  74. Schafer WR, Kim R, Sterne R, Thorner J, Kim S-H, Rine J. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans. Science 1989; 245: 379–385.

    Article  PubMed  CAS  Google Scholar 

  75. Casey PJ, Solski PA, Der CJ, Buss JE. p21Ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–8327.

    Article  PubMed  CAS  Google Scholar 

  76. Gibbs JB. Lipid modifications of proteins in the Ras superfamily. In: Dickey BF, Birnbaumer L, eds. GTPases in Biology I. New York: Springer-Verlag. 1993: 335–344.

    Chapter  Google Scholar 

  77. Jackson JH, Cochrane CG, Boume JR, Solski PA, Buss JE, Der CJ. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proc Nall Acad Sci USA 1990; 87: 3042–3046.

    Article  CAS  Google Scholar 

  78. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Nall Acad Sci USA 1992; 89: 6403–6407.

    Article  CAS  Google Scholar 

  79. Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified p21Ras farresyl: protein transferase by cys-AAX tetrapeptides. Cell 1990; 62: 81–88.

    Article  PubMed  CAS  Google Scholar 

  80. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB. Selective inhibition of Ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  81. Garcia AM, Rowell C, Ackermann K, Kowalczyk JJ, Lewis MD. Peptidomimetic inhibitors of Ras farnesylation and function in whole cells. J Biol Chem 1993; 268:18, 415–18, 418.

    Google Scholar 

  82. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993; 260: 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  83. Nigam M, Seong C-M, Qian Y, Hamilton AD, Sebti SM. Potent inhibition of human tumor p21Ras farnesyltransferase by A,A,-lacking p2lras CA,A,X peptidomimetics. J Biol Chem 1993; 268:20, 695–20, 698.

    Google Scholar 

  84. Kohl NI, Wilson FR, Mosser SD, Giuliani E, DeSolms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T, Smith RL, Graham SL, Hartman GD, Gibbs JB, Oliff A. Protein farnesyltransferase inhibitors block the growth of Ras-dependent tumors in nude mice. Proc Nall Acad Sci USA 1994; 91: 9141–9145.

    Article  CAS  Google Scholar 

  85. Patel DV, Patel MM, Robinson SS, Gordon EM. Phenol based tripeptide inhibitors of Ras farnesyl protein transferase. Bioorganic Med Chem Lett 1994; 4: 1883–1888.

    Article  CAS  Google Scholar 

  86. Vogt A, Qian Y, Blaskovich MA, Fossum RD, Hamilton AD, Sebti SM. A non-peptide mimetic of Ras-CAAX:selective inhibition of farnesyltransferase and Ras processing. J Biol Chem 1994; 270: 660–664.

    Google Scholar 

  87. Gibbs JB, Pompliano DL, Mosser SD, Rands E, Lingham RB, Singh SB, Scolnick EM, Kohl NE, Oliff A. Selective inhibition of farnesyl-protein transferase blocks Ras processing in vivo. J Biol Chem 1993; 268: 7617–7620.

    PubMed  CAS  Google Scholar 

  88. Sebolt-Leopold JS, Gowan R, Su T-Z, Leonard D, Sawyer T, Bolton G, Hodges J, Hupe D. Inhibition of Ras farnesyltransferase by a novel class of peptides containing no cysteine or thiol moieties. Proc Am Assoc Cancer Res 1994; 35: 3535.

    Google Scholar 

  89. Kothapalli R, Guthrie N, Chambers AF, Carroll KK. Farnesylamine: an inhibitor of farnesylation and growth of Ras-transformed cells. Lipids 1993; 28: 969.

    Article  PubMed  CAS  Google Scholar 

  90. Liu WC, Barbacid M, Bulgar M, Clark JM, Crosswell AR, Dean L, Doyle TW, Fernandes PB, Huang S, Manne V, Pirnik DM, Wells JS, Meyers E. 10 ’-Desmethoxystreptonigrin, a novel analog of streptonigrin. J Antibiotics 1992; 45: 454–457.

    Article  CAS  Google Scholar 

  91. Hara M, Akasaka K, Akinaga S, Okabe M, Nakano H, Gomez R, Wood D, Uh M, Tamanoi F. Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci USA 1993; 90: 2281–2285.

    Article  PubMed  CAS  Google Scholar 

  92. Van der Pyl D, Inokoshi J, Shiomi K, Yang H, Takeshima H, Omura S. Inhibition of farnesylprotein transferase by gliotoxin and acetylgliotoxin. J Antibiotics 1992; 45: 1802–1805.

    Article  Google Scholar 

  93. Omura S, Van Der Pyl D, Inokoshi J, Takahashi Y, Takeshima H. Pepticinnamins, new farnesyl-protein transferase inhibitors produced by an actinomycete. JAntiobiotics 1993; 46: 222–234.

    Article  CAS  Google Scholar 

  94. Singh SB, Jones ET, Goetz MA, Bills GF, Nallin-Omstead M, Jenkins RG, Lingham RB, Silverman KC, Gibbs JB. Fusidienol: a novel inhibitor of Ras farnesyl-protein transferase from Fusidium griseum. Tetrahedron Lett 1994; 35: 4693–4696.

    Article  CAS  Google Scholar 

  95. Singh SB, Zink DL, Liesch JM, Ball RG, Goetz MA, Bolessa EA, Giacobbe RA, Silverman KC, Bills GF, Pelaez F, Cascales C, Gibbs JB, Lingham RB. Preussomerins and deoxypreussomerins: novel inhibitors of Ras farnesyl-protein transferase. J Org Chem 1994; 59: 6296–5302.

    Article  CAS  Google Scholar 

  96. Bolton GL, Sebolt-Leopold JS, Hodges JC. Ras oncogene directed approaches in cancer chemotherapy. In: Plattner J, ed. Annual Reports in Medicinal Chemistry. New York: Academic. 1994: 165–174.

    Google Scholar 

  97. Prendergast GC, Gibbs JB. Ras regulatory interactions: novel targets for anticancer intervention? BioEssays 1994; 16: 187–191.

    Article  PubMed  CAS  Google Scholar 

  98. Khosravi-Far R, Cox AD, Kato K, Der CJ. Protein prenylation: key to Ras function and cancer intervention? Cell Growth and Differ 1992; 3: 461–469.

    CAS  Google Scholar 

  99. Gibbs JB. Ras C-terminal processing enzymes-new drug targets? Cell 1991; 65: 1–4.

    Article  PubMed  CAS  Google Scholar 

  100. Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77: 175–178.

    Article  PubMed  CAS  Google Scholar 

  101. Omura S, Takeshima H. Farnesyl-protein transferase inhibitors. Drugs of the Future 1994; 19: 751–755.

    Google Scholar 

  102. Goldstein JL, Brown MS, Stradley SJ, Reiss Y. Gierasch LM. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem 1991; 266:15, 575–15, 578.

    Google Scholar 

  103. Cox AD, Garcia AM, Westwick JK, Kowalczyk JJ, Lewis MD, Brenner DA, Der CJ. The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myrisylated, oncogenic Ras signaling and transformation. J Biol Chem 1994; 269:19, 203–19, 206.

    Google Scholar 

  104. Sebolt-Leopold JS. The therapeutic potential of Ras-targeted protein farnesyltransferase inhibitors. In: Emerging Drugs: The Prospect for Improved Medicines. London: Ashley. 1996: 219–239.

    Google Scholar 

  105. Sebti SM, Tkalcevic GT, Jani JP. Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice. Cancer Commun 1991; 3: 141–147.

    CAS  Google Scholar 

  106. Sinensky M, Beck LA, Leonard S, Evans R. Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis.J Biol Chem 1990; 265:19, 937–19, 941.

    Google Scholar 

  107. Samid D, Ram Z, Hudgins WR, Shack S, Liu L, Walbridge S, Oldfield EH, Myers CE. Selective activity of phenylacetate against malignant gliomas:resemblance to fetal brain damage in phenylketonuria. Cancer Res 1994; 54: 891–895.

    PubMed  CAS  Google Scholar 

  108. Thibault AM, Cooper MR, Figg WD, Venzon DJ, Oliver Sartor VA, Tompkins AC, Weinberger MS, Headlee DJ, McCall NA, Samid D, Myers CE. A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res 1994; 54: 1690–1694.

    PubMed  CAS  Google Scholar 

  109. Crowell PL, Lin S, Vedejs E, Gould MN. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth. Cancer Chem Pharmacol 1992; 31: 205–212.

    Article  CAS  Google Scholar 

  110. Gould MN, Moore CJ, Zhang R, Wang B, Kennen WS, Haag JD. Limonene chemoprevention of mammary carcinoma induction following direct in situ transfer to v-Ha-ras. Cancer Res 1994; 54: 3540–3543.

    CAS  Google Scholar 

  111. Ashby MN, King DS, Rine J. Endoproteolytic processing of a farnesylated peptide in vitro. Proc Natl Aci USA 1992; 89: 4613–4617.

    Article  CAS  Google Scholar 

  112. Ma Y-T, Rando RR. A microsomal endoprotease that specifically cleaves isoprenylated peptides. Proc Natl Acad Sci USA 1992; 89: 6275–6279.

    Article  PubMed  CAS  Google Scholar 

  113. Akopyan TN, Couedel Y, Beaumont A, Foumie-Saluski MC, Roques BP. Cleavage of farnesylated COOH-terminal heptapeptide of mouse N-ras by brain microsomal membranes: evidence for a carboxypeptidase which specifically removes the COOH-terminal methionine. Biochem Biophys Res Commun 1991; 187: 1336–1339.

    Article  Google Scholar 

  114. Ma Y-T, Gilbert, Rando RR. Inhibitors of the isoprenylated protein endopeptidase. Biochemistry 1993; 32: 2386.

    Google Scholar 

  115. Clarke S, Vogel JP, Deschenes RJ, Stock J. Post-translational modification of the H-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferase. Proc Natl Acad Sci USA 1988; 85: 4643–4647.

    Article  PubMed  CAS  Google Scholar 

  116. Perez-Sala D, Tan EW, Canada FJ, Rando RR. Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Proc Natl Acad Sci USA 1991; 88: 3043–3046.

    Article  PubMed  CAS  Google Scholar 

  117. Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21Ras to the plasma membrane. Cell 1990; 63: 133–139.

    Article  PubMed  CAS  Google Scholar 

  118. Hancock JF, Magee AI, Childs JE, Marshall CJ. All Ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  119. Gutierrez L, Magee AI. Characterization of an acyltransferase acting on p21N-Ras protein in a cell-free system. Biochim Biophys Acta 1991; 1078: 147–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sebolt-Leopold, J.S. (1997). A Case for ras Targeted Agents as Antineoplastics. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics