Skip to main content

Growth Factors and Growth Factor Inhibitors

  • Chapter
Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This chapter will outline novel treatment strategies predicated on the modulation of growth factor or cytokine-mediated signal transduction pathways. Several excellent recent monographs have addressed this tissue from the point of view of inhibitors of individual pathway constituents (1,2).The current focus will be on defining the pathways potentially relevant to the common neoplasms, followed by a consideration of approaches to modulating processes common to the action of various pathways, with mention of individual agents as they exemplify these strategies. In addition, opportunities for interdigitation of “growth-factor directed” and “traditional” therapeutic agents will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powis G. Signaling pathways as targets for anticancer drug development. Pharmacol Ther 1994; 62: 57 - 95.

    Article  PubMed  CAS  Google Scholar 

  2. Kerr DJ, Workman P. New Molecular Targets for Cancer Chemotherapy. Boca Raton, FL: CRC, 1994.

    Google Scholar 

  3. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction. Cell 1991; 64: 281 - 302.

    Article  PubMed  CAS  Google Scholar 

  4. Sporn MB, Roberts AB. Autocrine secretion-10 years later. Ann Intern Med 1992; 117: 408 - 414.

    PubMed  CAS  Google Scholar 

  5. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with phosphoprotein. Cell 1978; 15: 561 - 572.

    Article  PubMed  CAS  Google Scholar 

  6. Bolen JB. Nonreceptor tyrosine protein kinases. Oncogene 1993; 8: 2025 - 2031.

    PubMed  CAS  Google Scholar 

  7. Witte ON, Kelliher M, Muller AJ, Pendergast AM, Gishizky M, McLaughlin J, Sawyers C, Maru Y, Shah N, Denny C, Rosenberg N. Role of BCR-ABL oncogene in the pathogenesis of Philadelphia chromosome positive leukemias. In: Brugge J, Curran T, Harlow E, McCormick F, eds. Origins of Human Cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1991: 521 - 526.

    Google Scholar 

  8. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550 - 554.

    Article  PubMed  CAS  Google Scholar 

  9. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079 - 1082.

    Article  PubMed  CAS  Google Scholar 

  10. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 1987; 84: 2251 - 2255.

    Article  PubMed  CAS  Google Scholar 

  11. Veillette A, Foss FM, Sausville EA, Bolen JB, Rosen N. Expression of the lck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines. Oncogene Res 1987; 1: 357 - 374.

    PubMed  CAS  Google Scholar 

  12. Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56I±. Cell 1988; 55: 301 - 308.

    Article  PubMed  CAS  Google Scholar 

  13. Sporn M, Roberts A. Growth Factors: Handbook of Experimental Pharmacology, vol. 95. Berlin: Springer-Verlag, 1990.

    Google Scholar 

  14. Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennstrom B. Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell 1983; 32: 227 - 238.

    Article  PubMed  CAS  Google Scholar 

  15. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD. Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 1984; 307: 521 - 527.

    Article  PubMed  CAS  Google Scholar 

  16. Fanti WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993; 62: 453 - 481.

    Article  Google Scholar 

  17. Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 1985; 82: 6497 - 6501.

    Article  PubMed  CAS  Google Scholar 

  18. Hendler FJ, Ozanne BW. Human squamous cell lung cancers express increased epidermal growth factor receptors. J Clin Invest 1984; 74: 647 - 651.

    Article  PubMed  CAS  Google Scholar 

  19. Merlino GT, Xu YH, Richert N, Clark AJL, Ishii S, Banks-Schlegel S, Pastan I. Elevated epidermal growth factor receptor gene copy number and expression in a squamous carcinoma cell line. J Clin Invest 1985; 75: 1077 - 1079.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto T, Kamata N, Kawano H, Shimizu S, Kuroki T, Toyoshima K, Rikimaru K, Nomura N, Ishizaki R, Pastan I, Gamou S, Shimizu N. High incidence of amplification of the epidermal growth factor receptor gene in human squamous carcinoma cell lines. Cancer Res 1986; 46: 414 - 416.

    PubMed  CAS  Google Scholar 

  21. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707 - 712.

    Article  PubMed  CAS  Google Scholar 

  22. Han M, Sternberg PW. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 1990; 63: 921 - 931.

    Article  PubMed  CAS  Google Scholar 

  23. Morrison DK, Kaplan DR, Rapp U, Roberts TM. Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA 1988; 85: 8855 - 8859.

    Article  PubMed  CAS  Google Scholar 

  24. Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature 1988; 332: 272 - 275.

    Article  PubMed  CAS  Google Scholar 

  25. Courtneidge SA, Heber A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 1987; 50: 1031 - 1037.

    Article  PubMed  CAS  Google Scholar 

  26. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, Smith AD, Morgan SJ, Courtneidge SA, Parker PJ, Waterfield MD. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/

    Google Scholar 

  27. Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, Weiss MA. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J 1993; 12: 795 - 802.

    PubMed  CAS  Google Scholar 

  28. Margolis B, Rhee SG, Felder S, Mervic M, Lyall R, Levitski A, Ullrich A, Zilberstein A, Schlessinger J. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell 1989; 57: 1101 - 1117.

    Article  PubMed  CAS  Google Scholar 

  29. Margolis B, Bellot F, Honegger A, Ullrich A, Schlessinger J. Zilberstein A. Tyrosine kinase activity is essential for the association of phospholipase C-7 with the epidermal growth factor receptor. Mol Cell Biol 1990; 10: 435 - 441.

    PubMed  CAS  Google Scholar 

  30. Margolis B, Li N, Koch A, Mohammadi M, Hurwitz DR, Zilberstein A, Ullrich A, Pawson T, Schlessinger J. The tyrosine-phosphorylated carboxy terminus of the EGF receptor is a binding site for GAP and PLC-y. EMBO J 1990; 9: 4375 - 4380.

    PubMed  CAS  Google Scholar 

  31. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992; 70: 431 - 442.

    Article  PubMed  CAS  Google Scholar 

  32. Downward J. The GRB2/Sem-5 adaptor protein. FEBS Lett 1994; 338: 113 - 117.

    Article  PubMed  CAS  Google Scholar 

  33. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993; 363: 45 - 51.

    Article  PubMed  CAS  Google Scholar 

  34. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature 1993; 363: 83 - 85.

    Article  PubMed  CAS  Google Scholar 

  35. Warne PH, Viciana PR, Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Activation of serine pepetide kinase activity by myelin basic protein kinases in vitro. Nature 1993; 364: 352 - 355.

    Article  CAS  Google Scholar 

  36. Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p217°S proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364: 308 - 313.

    Article  PubMed  CAS  Google Scholar 

  37. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994; 264: 1463 - 1467.

    Article  PubMed  CAS  Google Scholar 

  38. Wartmann M, Davis RJ. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Bio! Chem 1994; 269: 6695 - 6701.

    CAS  Google Scholar 

  39. Ahn NG, Weiel JE, Chan CP, Krebs EG. Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. J Bio! Chem 1990; 265: 11,487-11,494.

    Google Scholar 

  40. Ahn NG, Krebs EG. Evidence for an epidermal growth factor-stimulated protein kinase cascade in Swiss 3T3 cells. J Bio! Chem 1990; 265:11,495-11,501.

    Google Scholar 

  41. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268:14,553-14,556.

    Google Scholar 

  42. Rossomando A, Wu J, Weber MJ, Sturgill TW. The phorbol ester-dependent activator of the mitogen-activated protein kinase p42maPk is a kinase with specificity for the threonine and tyrosine regulatory sites. Proc Natl Acad Sci USA 1992; 89: 5221 - 5225.

    Article  PubMed  CAS  Google Scholar 

  43. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J. Raf-1 activates MAP kinase-kinase. Nature 1992; 358: 417 - 421.

    Article  PubMed  CAS  Google Scholar 

  44. Taylor SS, Buechler JA, Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990; 59: 971 - 1005.

    Article  PubMed  CAS  Google Scholar 

  45. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF. Structure and function of G protein-coupled receptors. Annu Rev Biochem 1994; 63: 101 - 132.

    Article  PubMed  CAS  Google Scholar 

  46. Allende JE. GTP-mediated macromolecular interactions: the common features of different systems. FASEB J 1988; 2: 2356 - 2367.

    PubMed  CAS  Google Scholar 

  47. Corjay MH, Dobrzanski DJ, Way JM, Viallet J, Shapira H, Worland P, Sausville EA, Battey JF. Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J Biol Chem 1991; 266:18, 771-18, 779.

    Google Scholar 

  48. Sharoni Y, Viallet J, Trepel JB, Sausville EA. Effect of guanine and adenine nucleotides on bombesin-stimulated phospholipase C activity in membranes from Swiss 3T3 and small cell lung carcinoma cells. Cancer Res 1990; 50: 5257 - 5262.

    PubMed  CAS  Google Scholar 

  49. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenyl cyclase in human pituitary tumours. Nature 1989; 340: 692 - 696.

    Article  PubMed  CAS  Google Scholar 

  50. Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the als-adrenergic receptor enhances mito-genesis and tumorigenicity. Proc Nall Acad Sci USA 1991; 88:11, 354-11, 358.

    Google Scholar 

  51. Murata J, Lee HY, Clair T, Krutzsch HC, A restad AA, Sobel ME, Liotta LA, Stracke ML. cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterase. J Bio! Chem 1994; 269:30,479-30,484.

    Google Scholar 

  52. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-ß receptor. Nature 1994; 370: 341 - 347.

    Article  PubMed  CAS  Google Scholar 

  53. Koff A, Ohtsuki M, Polyak K, Roberts JM, Massagué J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-ß. Science 1993; 260: 536 - 539.

    Article  PubMed  CAS  Google Scholar 

  54. Heller RA, Krtinke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994; 126: 5 - 9.

    Article  PubMed  CAS  Google Scholar 

  55. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325 - 328.

    Article  PubMed  CAS  Google Scholar 

  56. Weller M, Frei K, Groscurth P, Krammer PH, Yonekawa Y, Fontana A. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest 1994; 94: 954 - 964.

    Article  PubMed  CAS  Google Scholar 

  57. Fu XY, Schindler C, Improta T, Aebersold R, Darnell JE Jr. The proteins of ISGF-3, the interferon a-induced transcriptional activator, define a gene family involved in signal transduction. Proc Nat! Acad Sci USA 1992; 89: 7840 - 7843.

    Article  PubMed  CAS  Google Scholar 

  58. Lamer AC, David M, Feldman GM, Igarashi K, Hackett RH, Webb DSA, Sweitzer SM, Petricoin EF III, Finbloom DS. Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 1993; 261: 1730 - 1733.

    Article  Google Scholar 

  59. Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739 - 1744.

    Article  PubMed  CAS  Google Scholar 

  60. Shuai K, Stark GR, Kerr IM, Darnell JE Jr. A single phosphotyrosine residue of STAT91 required for gene activation by interferon-y. Science 1993; 261: 1744 - 1746.

    Article  PubMed  CAS  Google Scholar 

  61. Trowbridge IS. CD45. A prototype for transmembrane protein tyrosine phosphatases. J Bio! Chem 1991; 266:23,517-23,520.

    Google Scholar 

  62. Molina TJ, Kishihara K, Siderovski DP, van Ewijk W, Narendran A, Timms E, Wakeham A, Paige CJ, Hartmann KU, Veillette A, Davidson D, Mak TW. Profound block in thymocyte development in mice lacking p561d Nature 1992; 357: 161 - 164.

    Article  PubMed  CAS  Google Scholar 

  63. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 1991; 253: 401 - 406.

    Article  PubMed  CAS  Google Scholar 

  64. Sigal NH, Dumont FJ. Cyclosporin A, FK-506; and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol 1992; 10:519-560.

    Google Scholar 

  65. Clipstone NA, Fiorentino DF, Crabtree GR. Molecular analysis of the interaction of calcineurin with drug-immunophilin complexes. J Biol Chem 1994; 269:26, 431-26, 437.

    Google Scholar 

  66. Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. JAntibiot (Tokyo) 1984; 37: 1231 - 1237.

    Article  CAS  Google Scholar 

  67. Lin CR, Chen WS, Lazar CS, Carpenter CD, Gill GN, Evans RM, Rosenfeld MG. Protein kinase C phosphorylation at Thr 654 of the unoccupied EGF receptor and EGF binding regulate functional receptor loss by independent mechanisms. Cell 1986; 44: 839 - 848.

    Article  PubMed  CAS  Google Scholar 

  68. Betsholtz C, Johnsson A, Heldin CH, Westermark B. Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci USA 1986; 83: 6440 - 6444.

    Article  PubMed  CAS  Google Scholar 

  69. Huang SS, Huang JS. Rapid turnover of the platelet-derived growth factor receptor in sis-transformed cells and reversal by suramin. Implications for the mechanism of autocrine transformation. J Biol Chem 1988; 263:12, 608-12, 618.

    Google Scholar 

  70. Kopp R, Pfeiffer A. Suramin alters phosphoinositide synthesis and inhibits growth factor receptor binding in HT-29 cells. Cancer Res 1990; 50: 6490 - 6496.

    PubMed  CAS  Google Scholar 

  71. Myers C, Cooper M, Stein C, LaRocca R, Walther MM, Weiss G, Choyke P, Dawson N, Steinberg S, Uhrich MM, Cassidy J, Kohler DR, Trepel J, Linehan WM. Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer. J Clin Onco! 1992; 10: 881 - 889.

    CAS  Google Scholar 

  72. Mills GB, Zhang N, May C, Hill M, Chung A. Suramin prevents binding of interleukin 2 to its cell surface receptor: a possible mechanism for immunosuppression. Cancer Res 1990; 50: 3036 - 3042.

    PubMed  CAS  Google Scholar 

  73. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD. Bombesinlike peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 1985; 316: 823 - 826.

    Article  PubMed  CAS  Google Scholar 

  74. Heikkila R, Trepel JB, Cuttitta F, Neckers LM, Sausville EA. Bombesin-related peptides induce calcium mobilization in a subset of human small cell lung cancer cell lines. J Bio! Chem 1987; 262:16,456-14,460.

    Google Scholar 

  75. Trepel JB, Moyer JD, Heikkila R, Sausville EA. Modulation of bombsin-induced phosphatidylinositol hydrolysis in a small-cell lung-cancer cell line. Biochem J 1988; 255: 403 - 410.

    PubMed  CAS  Google Scholar 

  76. Jensen RT, Mrozinski JE Jr, Coy DH. Bombesin receptor antagonists: different classes and cellular basis of action. Recent Results in Cancer Res 1993; 129: 87 - 113.

    Article  CAS  Google Scholar 

  77. Thomas F, Arvelo F, Antoine E, Jacrot M, Poupon MF. Antitumoral activity of bombesin analogues on small cell lung cancer xenografts: relationship with bombesin receptor expression. Cancer Res 1992; 52: 4872 - 4877.

    PubMed  CAS  Google Scholar 

  78. Radulovic S, Miller G, Schally AV. Inhibition of growth of HT-29 human colon cancer xeno-grafts in nude mice by treatment with bombesin/gastrin releasing peptide antagonist (RC-3095). Cancer Res 1991; 51: 6006 - 6009.

    PubMed  CAS  Google Scholar 

  79. Yano T, Pinski J, Szepeshazi K, Halmos G, Radulovic S, Groot K, Schally AV. Inhibitory effect of bombesin/gastrin-releasing peptide antagonist SB-75 on the growth of MCF-7 MIII human breast cancer xenografts in athymic nude mice. Cancer 1994; 73: 1229 - 1238.

    Article  PubMed  CAS  Google Scholar 

  80. Qin Y, Ertl T, Cai RZ, Halmos G, Schally AV. Inhibitory effect of bombesin receptor antagonist RC-3095 on the growth of human pancreatic cancer cells in vivo and in vitro. Cancer Res 1994; 54: 1035 - 1041.

    PubMed  CAS  Google Scholar 

  81. Woll PJ, Rozengurt E. Multiple neuropeptides mobilize calcium in small cell lung cancer: effects of vasopressin, brudykinin, cholecytokinin, galonin and neurostensin. Biochem Biophys Res Commun 1989; 164: 66 - 73.

    Article  PubMed  CAS  Google Scholar 

  82. Bunn PA, Dienhart DG, Chan D, Puck TT, Tagawa M, Jewett PB, Braunschweiger. Neuropeptide stimulation of calcium flux in human lung cancer cells: delination of alternative pathways. Proc Natl Acad Sci USA 1990; 87: 2162 - 2166.

    Article  PubMed  CAS  Google Scholar 

  83. Lamberts SWJ, Reubi JC, Krenning EP. The role of somatostatin analogs in the control of tumor growth. Semin Oncol 1994; 21: 61 - 64.

    PubMed  CAS  Google Scholar 

  84. Bogden AE, Taylor JE, Moreau JP, Coy DH, LePage DJ. Response of human lung tumor xenografts to treatment with a somatostatin analogue (Somatuline). Cancer Res 1990; 50: 4360 - 4365.

    PubMed  CAS  Google Scholar 

  85. Hershkovitz E, Marbach M, Bosin E, Levy J, Roberts CT Jr, LeRoith D, Schally AV, Sharoni Y. Luteinizing hormone-releasing hormone antagonists interfere with autocrine and paracrine growth stimulation of MCF-7 mammary cancer cells by insulin-like growth factors. J Clin Endocrinol Metab 1993; 77: 963 - 968.

    Article  PubMed  CAS  Google Scholar 

  86. Kleinman D, Roberts CT Jr, LeRoith D, Schally AV, Levy J, Sharoni Y. Regulation of endometrial cancer cell growth by insulin-like growth factors and the luteinizing hormone-releasing hormone antagonist SB-75. Regul Pept 1993; 20: 91 - 98.

    Article  Google Scholar 

  87. Coffey RJ, Goustin AS, Soderquist AM, Shipley GD, Wolfshohl J, Carpenter G, Moses HL. Transforming growth factor a and ß expression in human colon cancer lines: implications for an autocrine model. Cancer Res 1987; 47: 4590 - 4594.

    PubMed  CAS  Google Scholar 

  88. Smith JJ, Derynck R, Korc M. Production of transforming growth factor a in human pancreatic cancer cells: evidence for a superagonist autocrine cycle. Proc Natl Acad Sci USA 1987; 84: 7567 - 7570.

    Article  PubMed  CAS  Google Scholar 

  89. Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1984; 44: 1002 - 1007.

    PubMed  CAS  Google Scholar 

  90. Ennis BW, Valverius EM, Bates SE, Lippman ME, Bellot F, Kris R, Schlessinger J, Masui H, Goldenberg A, Mendelsohn J, Dickson RB. Anti-epidermal growth factor receptor antibodies inhibit the autocrine-stimulated growth of MDA-468 human breast cancer cells. Mol Endocrinol 1989; 3: 1830 - 1838.

    Article  PubMed  CAS  Google Scholar 

  91. Fan Z, Baselga J, Masui H, Mendelsohn J. Antitumor effects of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993; 53: 4637 - 4642.

    PubMed  CAS  Google Scholar 

  92. Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller JH Jr, Mendelsohn J. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1993; 85: 1327 - 1333.

    Article  PubMed  CAS  Google Scholar 

  93. Rieman DJ, Anzano MA, Chan GW, Imburgia TJ, Chan JA, Johnson RK, Greig RG. Antagonism of TGF-a receptor binding and TGF-a induced stimulation of cell proliferation by methyl pheophorbides. Oncol Res 1992; 4: 193 - 200.

    PubMed  CAS  Google Scholar 

  94. Todo T, Adams EF, Fahlbusch R. Inhibitory effect of trapidil on human meningioma cell proliferation via interruption of autocrine growth stimulation. J Neurosurg 1993; 78: 463 - 469.

    Article  PubMed  CAS  Google Scholar 

  95. Baserga R. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 1995; 55: 249 - 252.

    PubMed  CAS  Google Scholar 

  96. Figueroa JA, Jackson JG, McGuire WL, Krywicki RF, Yee D. Expression of insulin-like growth factor binding proteins in human breast cancer correlates with estrogen receptor status. J Cell Biochem 1993; 52: 196 - 205.

    Article  PubMed  CAS  Google Scholar 

  97. Arteaga CL. Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res Treat 1992; 22: 101 - 106.

    Article  PubMed  CAS  Google Scholar 

  98. Vassbotn FS, Ostman A, Langeland N, Holmsen H, Westermark B, Heldin CH, Nistér M. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line. J Cell Biochem 1994; 158: 381 - 389.

    CAS  Google Scholar 

  99. Engström U, Engström A, Ernlund A, Westermark B, Heldin CH. Identification of a peptide antagonist for platelet-derived growth factor. J Bio! Chem 1992; 267:16,581-16,587.

    Google Scholar 

  100. Nikaido T, Shimizu A, Ishida H, Sabe K, Teshigawara M, Maeda T, Uchiyama J, Yodoi J, Honjo T. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature 1984; 311: 631 - 635.

    Article  PubMed  CAS  Google Scholar 

  101. Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T. Interleukin-2 receptor beta chain: generation of three receptor forms by loned alpha and beta chain cDNA’s. Science 1989; 244: 551 - 556.

    Article  PubMed  CAS  Google Scholar 

  102. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K. Cloning of the ’y chain of the human IL-2 receptor. Science 1992; 257: 379 - 382.

    Article  PubMed  CAS  Google Scholar 

  103. Strauchen J, Breakstone B. IL-2 receptor expression in human lymphoid lesions. Am J Pathol 1987; 126: 506 - 512.

    PubMed  CAS  Google Scholar 

  104. Waldmann TA, Goldman C, Top L, Grant A, Burton J, Bamford R, Roessler E, Horak I, Zakorn S, Kaston-Sporks C, White J, England R, Horak E, Martinucci J, Tinubu SA, Mishra B, Junghans R, Dipre M, Carasquillo J, Reynolds J, Gansow O, Nelson D. The interleukin-2 receptor: a target for immunotherapy. Ann NY Acad Sci 1993; 685: 603 - 610.

    Article  PubMed  CAS  Google Scholar 

  105. Kreitman RJ, Chang CN, Hudson DV, Queen C, Bailon P, Pastan I. Anti-Tac (Fab)-PE40, a recombinant double-chain immunotoxin which kills interleukin-2-receptor-bearing cells and induces complete remission in an in vivo tumor model. Int J Cancer 1994; 57: 856 - 864.

    Article  PubMed  CAS  Google Scholar 

  106. Williams D, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom T, Murphy J. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic reconstitution and properties of a diphtheria toxin related interleukin-2 fusion protein. Protein Eng 1987; 1: 493 - 498.

    Article  PubMed  CAS  Google Scholar 

  107. Bacha P, Williams D, Waters C, Murphy J, Strom T. Interleukin-2 receptor mediated action of a diphtheria toxin related interleukin-2 fusion protein. J Exp Med 1988; 167: 612 - 622.

    Article  PubMed  CAS  Google Scholar 

  108. LeMaistre CF, Meneghetti C, Rosenblum M, Reuben J, Shaw J, Deisseroth A, Woodworth T, Parkinson D. Phase I trial of an interleukin-2 fusion toxin (DAB 486IL2) in hematologic malignancies expressing the IL-2 receptor. Blood 1992; 79: 2547 - 2554.

    PubMed  CAS  Google Scholar 

  109. LeMaistre CF, Craig F, Meneghetti C, McMullin B, Parker K, Reuben J, Boldt D, Rosenblum M, Woodworth T. Phase I trial of a 90-minute infusion of the fusion toxin DAB(486)IL2 in hematologic cancers. Cancer Res 1993; 53: 3930 - 3934.

    PubMed  CAS  Google Scholar 

  110. Hesketh P, Caguioa P, Koh H, Dewey H, Facada A, McCaffrey R, Parker K, Nylen P, Woodworth T. Clinical activity of a cytotoxic fusion protein in the treatment of cutaneous T-cell lymphoma. J Clin Oncol 1993; 11: 1682 - 1690.

    PubMed  CAS  Google Scholar 

  111. Foss FM, Borkowski TA, Gilliom M, Stetler-Stevenson M, Jaffe ES, Figg WD, Tompkins A, Bastian A, Nylen P, Woodworth T, Udey MC, Sausville EA. Chimeric fusion protein toxin DAB486IL-2 in advanced mycosis fungoides and the Sezary syndrome: correlation of activity and interleukin-2 receptor expression in a phase II study. Blood 1994; 84: 1765 - 1774.

    PubMed  CAS  Google Scholar 

  112. Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K, Sugamura K. Sharing of the interleukin 2 (IL-2) receptor y chain between receptors for IL-2 and IL-4. Science 1993; 262: 1874 - 1877.

    Article  PubMed  CAS  Google Scholar 

  113. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ. Interleukin-2 receptor y chain: a functional component of the interleukin-7 receptor. Science 1993; 262: 1877 - 1880.

    Article  PubMed  CAS  Google Scholar 

  114. Foss FM, Koc Y, Stetler-Stevenson MA, Nguyen DT, O’Brien MC, Turner R, Sausville EA. Costimulation of cutaneous T-cell lymphoma cells by interleukin-7 and interleukin-2: potential autocrine or paracrine effectors in the Sézary syndrome. J Clin Oncol 1994; 12: 326 - 335.

    PubMed  CAS  Google Scholar 

  115. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science 1992; 258: 593 - 597.

    Article  PubMed  CAS  Google Scholar 

  116. Falini B, Pileri S, Pizzolo G, Dürkop H, Flenghi L, Stirpe F, Martelli MF, Stein H. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85: 1 - 14.

    PubMed  CAS  Google Scholar 

  117. Kilian PL, Kaffka KL, Biondi DA, Lipman JM, Benjamin WR, Feldman D, Campen CA. Antiproliferative effect of interleukin-1 on human ovarian carcinoma cell line (NHI:OVCAR-3). Cancer Res 1991; 51: 1823 - 1828.

    PubMed  CAS  Google Scholar 

  118. Lewis MP, Sullivan MH, Elder MG. Regulation by interleukin-1 beta of growth and collagenase production by choriocarcinoma cells. Placenta 1994; 15: 13 - 20.

    Article  PubMed  CAS  Google Scholar 

  119. Powell CB, Manning K, Collins JL. Interferon-alpha (IFN alpha) induces a cytolytic mechanism in ovarian carcinoma cells through a protein kinase C-dependent pathway. Gynecol Oncol 1993; 50: 208 - 214.

    Article  PubMed  CAS  Google Scholar 

  120. Boente MP, Berchuck A, Rodriguez GC, Davidoff A, Whitaker R, Xu FJ, Marks J, Clarke-Pearson DL, Bast RC Jr. The effect of interferon gamma on epidermal growth factor receptor expression in normal and malignant ovarian epithelial cells. Am J Obstet Gynecol 1992; 167: 1877 - 1882.

    PubMed  CAS  Google Scholar 

  121. Hamburger AW, Pinnamaneni GD. Increased epidermal growth factor receptor gene expression by gamma-interferon in human breast carcinoma cell line. Br J Cancer 1991; 4: 64 - 68.

    Article  Google Scholar 

  122. Chakravarthy A, Chen LC, Mehta D, Hamburger AW. Modulation of epidermal growth factor receptors by gamma interferon in a breast cancer cell line. Anticancer Res 1991; 11: 347 - 351.

    PubMed  CAS  Google Scholar 

  123. Wu S, Boyer CM, Whitaker RS, Berchuck A, Wiener JR, Weinberg JB, Bast RC Jr. Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res 1993; 53:1939-1944.

    Google Scholar 

  124. Kalthoff H, Roeder C, Gieseking J, Humburg I, Schmiegel W. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha. Proc Natl Acad Sci USA 1993; 90: 8972 - 8976.

    Article  PubMed  CAS  Google Scholar 

  125. Bates S, McManaway ME, Lippman ME, Dickson RB. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res 1986; 46: 1707 - 1713.

    PubMed  Google Scholar 

  126. Dickson RB, McManaway ME, Lippman ME. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 1986; 232: 1540 - 1543.

    Article  PubMed  CAS  Google Scholar 

  127. Knabbe C, Zugmaier G, Schmahl M, Dietel M, Lippman ME, Dickson RB. Induction of transforming growth factor beta by the antiestrogens droloxifene, tamoxifen, and toremifene in MCF-7 cells. Am J Clin Oncol 1991; 14: S15 - S20.

    Article  PubMed  Google Scholar 

  128. Kawamura I, Lacey E, Mizota T, Tsujimoto S, Nishigaki F, Manda T, Shimomura K. The effect of droloxifene on the insulin-like growth factor-I stimulated growth of breast cancer cells. Anticancer Res 1994; 14: 427 - 431.

    PubMed  CAS  Google Scholar 

  129. Le Roy X, Escot C, Brouillet JP, Theillet C, Maudelonde T, Simony-Lafontaine J, Pujol H, Rochefort H. Decrease of c-erbB-2 and c-myc RNA levels in tamoxifen-treated breast cancer. Oncogene 1991; 6: 431 - 437.

    PubMed  Google Scholar 

  130. Zheng ZS, Polakowska R, Johnson A, Goldsmith LA. Transcriptional control of epidermal growth factor receptor by retinoic acid. Cell Growth Differ 1992; 3: 225 - 232.

    PubMed  CAS  Google Scholar 

  131. Halter SA, Winnier AR, Arteaga CL. Pretreatment with vitamin A inhibits transforming growth factor alpha stimulation of human mammary carcinoma cells. J Cell Physiol 1993; 156: 80 - 87.

    Article  PubMed  CAS  Google Scholar 

  132. Fontana JA, Nervi C, Shao ZM, Jetten AM. Retinoid antagonism of estrogen-responsive transforming growth factor alpha and pS2 gene expression in breast carcinoma cells. Cancer Res 1992; 52: 3938 - 3945.

    PubMed  CAS  Google Scholar 

  133. Hsu HC, Yang K, Kharbanda S, Clinton S, Datta R, Stone RM. All-trans retinoic acid induces monocyte growth factor receptor (c-fms) gene expression in HL-60 leukemia cells. Leukemia 1993; 7: 458 - 462.

    PubMed  CAS  Google Scholar 

  134. de Gentile A, Toubert ME, Dubois C, Krawice I, Schlageter MH, Balitrand N, Castaigne S, Degos L, Rain JD, Najean Y, Chomienne C. Induction of high-affinity GM-CSF receptors during all-trans retinoic acid treatment of acute promyelocytic leukemia. Leukemia 1994; 8: 1758 - 1762.

    PubMed  Google Scholar 

  135. Hunter T. A thousand and one protein kinases. Cell 1987; 50: 823 - 829.

    Article  PubMed  CAS  Google Scholar 

  136. Burke TR Jr. Protein-tyrosine kinase inhibitors. Drugs of the Future 1992; 17: 119 - 131.

    Google Scholar 

  137. Fry DW. Protein tyrosine kinases as therapeutic targets in cancer chemotherapy and recent advances in the development of new inhibitors. Exp Opinion Invest Drugs 1994; 3: 577 - 595.

    Article  CAS  Google Scholar 

  138. Graziani Y, Erikson E, Erikson RL. The effect of quercetin on the phosphorylation activity of the Rous sarcoma virus transforming gene product in vitro and in vivo. Eur J Biochem 1983; 135: 583 - 589.

    Article  CAS  Google Scholar 

  139. Cushman M, Nagarathnam D, Burg DL, Geahlen RL. Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogues. J Med Chem 1991; 34: 798 - 806.

    Article  PubMed  CAS  Google Scholar 

  140. Akiyama T, Ishida J, Nakagawa S, Ogawa H, Watanabe S, Itou N, Shibata M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinase. J Bio! Chem 1987; 262: 5592 - 5595.

    CAS  Google Scholar 

  141. Imoto M, Umezawa K, Isshiki K, Kanimoto S, Takeuchi T, Umezawa H. Kinetic studies of tyrosine kinase inhibition by erbstatin. J Antibiot 1987; 40: 1471 - 1473.

    Article  PubMed  CAS  Google Scholar 

  142. Simizu S, Imoto M, Umezawa K. Induction of apoptosis by erbstatin in mouse leukemia L 1210 cells. Biosci Biotech Biochem 1994; 58: 1549 - 1552.

    Article  CAS  Google Scholar 

  143. Daya-Makin M, Pelech SL, Levitzki A, Hudson AT. Erbstatin and tyrphostins block protein-serine kinase activation and meiotic maturation of sea star oocytes. Biochim Biophys Acta 1991; 1093: 87 - 94.

    Article  PubMed  CAS  Google Scholar 

  144. Smyth MS, Stefanova I, Hartmann F, Horak ID, Osherov N, Levitzki A, Burke TR Jr. Non-amine based analogues of lavendustin A as protein-tyrosine kinase inhibitors. J Med Chem 1993; 36: 3010 - 3014.

    Article  PubMed  CAS  Google Scholar 

  145. Nussbaumer P, Winiski AP, Cammisuli S, Hiestand P, Weckbecker G, Stütz A. Novel anti-proliferative agents derived from lavendustin A. J Med Chem 1994; 37: 4079 - 4084.

    Article  PubMed  CAS  Google Scholar 

  146. Slate DL, Lee RH, Rodriguez J, Crews P. The marine natural product, halistanol trisulfate, inhibits pp60v-src protein tyrosine kinase activity. Biochem Biophys Res Commun 1994; 203: 60 - 264.

    Article  Google Scholar 

  147. mura S, Iwai Y, Takahashi Y, Sadakane N, Nakagawa A, wa H, Hasegawa Y, Ikai T. Herbimycin, a new antibiotic produced by a strain of Streptomyces. JAntibiot 1979; 32: 255 - 261.

    Google Scholar 

  148. Uehara Y, Hori M, Takeuchi T, Umezawa H. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60sr’ in rat kidney cells infected with Rous sarcoma virus. Mol Cell Bio! 1986; 6: 2198 - 2206.

    CAS  Google Scholar 

  149. Murakami Y, Mizuno S, Hori M, Uehara Y. Reversal of transformed phenotypes by herbimycin A in src oncogene expressed rat fibroblasts. Cancer Res 1988; 48: 1587 - 1590.

    PubMed  CAS  Google Scholar 

  150. Oikawa T, Hirotani K, Shimamura M, Ashino-Fuse H, Iwaguchi T. Powerful antiangiogenic activity of herbimycin A (named angiostatic antibiotic). J Antibiot 1989; 42: 1202 - 1204.

    Article  PubMed  CAS  Google Scholar 

  151. Uehara Y, Murakami Y, Sugimoto Y, Mizuno S. Mechanism of reversion of Rous sarcoma virus transformation by Herbimycin A: reduction of total phosphotyrosine levels due to reduced kinase activity and increased turnover of p60’-src Cancer Res 1989; 49: 780 - 785.

    PubMed  CAS  Google Scholar 

  152. Murakami Y, Mizuno S, Uehara Y. Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells. Biochem J 1995; 301: 63 - 68.

    Google Scholar 

  153. Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD. Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res 1994; 54: 2724 - 2730.

    PubMed  CAS  Google Scholar 

  154. Whitesell L, Shifrin SD, Schwab G, Neckers LM. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 1992; 52: 1721 - 1728.

    PubMed  CAS  Google Scholar 

  155. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Nat! Acad Sci USA 1994; 91: 8324 - 8328.

    Article  PubMed  CAS  Google Scholar 

  156. Preis PN, Saya H, Nâdasdi L, Hochhaus G, Levin V, Sadée W. Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A. Cancer Res 1988; 48: 6530 - 6534.

    PubMed  CAS  Google Scholar 

  157. Honma Y, Okabe-Kado J, Hozumi M, Uehara Y, Mizuno S. Induction of erythroid differentiation of K562 human leukemic cells by herbimycin A, an inhibitor of tyrosine kinase activity. Cancer Res 1989; 49: 331 - 334.

    PubMed  CAS  Google Scholar 

  158. Yaish P, Gazit A, Gilon C, Levitzki A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 1988; 242: 933 - 935.

    Article  PubMed  CAS  Google Scholar 

  159. Gazit A, Yaish P, Gilon C, Levitzki A. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 1989; 32: 2344 - 2352.

    Article  PubMed  CAS  Google Scholar 

  160. Gazit A, Osherov N, Posner I, Yaish P, Poradosu E, Gilon C, Levitzki A. Tyrphostins. Heterocyclic and a-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. JMed Chem 1991; 34: 1896 - 1907.

    Article  CAS  Google Scholar 

  161. Levitzki A. Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J 1992; 6: 3275 - 3282.

    PubMed  CAS  Google Scholar 

  162. Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995; 267: 1782 - 1788.

    Article  PubMed  CAS  Google Scholar 

  163. Aflalo E, Iftach S, Segal S, Gazit A, Priel E. Inhibition of topoisomerase I activity by tyrphostin derivatives, protein tyrosine kinase blockers: mechanism of action. Cancer Res 1994; 54: 5138 - 5142.

    PubMed  CAS  Google Scholar 

  164. Lyall RM, Zilberstein A, Gazit A, Gilon C, Levitzki A, Schlessinger J. Tyrphostins inhibit epidermal growth factor (EGF)-receptor tyrosine kinase activity in living cells and EGF-stimulated cell proliferation. J Bio! Chem 1989; 264:14,503-14,509.

    Google Scholar 

  165. Yoneda T, Lyall RM, Alsina MM, Persons PE, Spada AP, Levitzki A, Zilberstein A, Mundy GR. The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res 1991; 51: 4430 - 4435.

    PubMed  CAS  Google Scholar 

  166. Anafi M, Gazit A, Gilon C, Ben-Neriah Y, Levitzki A. Selective interactions of transforming and normal ab proteins with ATP, tyrosine-copolymer substrates, and tyrphostins. J Biol Chem 1992; 267: 4518 - 4523.

    PubMed  CAS  Google Scholar 

  167. Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA, Sausville EA. Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abi autokinase activity in K562 chronic myelogenous leukemia. Anti-Cancer Drugs 1994; 5: 213 - 222.

    Article  PubMed  CAS  Google Scholar 

  168. Anafi M, Gazit A, Zehavi A, Ben-Neriah Y, Levitski A. Tyrphostin-induced inhibition of p210bcr-abl tyrosine kinase activity induces K562 to differentiate. Blood 1993; 82: 3524 - 3529.

    PubMed  CAS  Google Scholar 

  169. Bryckaert MC, Eldor A, Fontenay M, Gazit A, Osherov N, Gilon C, Levitzki A, Tobelem G. Inhibition of platelet-derived growth factor-induced mitogenesis and tyrosine kinase activity in cultured bone marrow fibroblasts by tyrphostins. Exp Cell Res 1992; 199: 255 - 261.

    Article  PubMed  CAS  Google Scholar 

  170. Kovalenko M, Gazit A, Böhmer A, Rorsman C, Rönnstrand L, Heldin CH, Waltenberger J, Böhmer FD, Levitzki A. Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res 1994; 54: 6106 - 6114.

    PubMed  CAS  Google Scholar 

  171. Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM, Leopold WR, Connors RW, Bridges AJ. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 1994; 265: 1093 - 5.

    Article  PubMed  CAS  Google Scholar 

  172. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767 - 778.

    Article  PubMed  CAS  Google Scholar 

  173. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, Resh MD, Rios CB, Silverman L, Kuriyan J. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 1992; 358: 646 - 653.

    Article  PubMed  CAS  Google Scholar 

  174. Burke TR Jr, Smyth MS, Otaka A, Nomizu M, Roller PP, Wolf G, Case R, Shoelson SE. Nonhydrolyzable phosphotyrosyl mimetics for the preparation of phosphatase-resistant SH2 domain inhibitors. Biochemistry 1994; 33: 6490 - 6494.

    Article  PubMed  CAS  Google Scholar 

  175. Harris W, Hill CH, Lewis EJ, Nixon JS, Wilkinson SE. Protein kinase C inhibitors. Drugs of the Future 1993; 18: 727 - 735.

    Google Scholar 

  176. Tamaoki T, Nakano H. Potent and specific inhibitors of protein kinase C of microbial origin. Bio/Technology 1990; 8: 732 - 735.

    Article  PubMed  CAS  Google Scholar 

  177. Ruegg UT, Burgess GM. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 1989; 10: 218 - 220.

    Google Scholar 

  178. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994; 45: 1207 - 1214.

    PubMed  CAS  Google Scholar 

  179. Seynaeve CM, Stetler-Stevenson M, Sebers S, Kaur G, Sausville EA, Worland PJ. Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells. Cancer Res 1993; 53: 2081 - 2086.

    PubMed  CAS  Google Scholar 

  180. Akinaga S, Gomi K, Morimoto M, Tamaoki T, Okabe M. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res 1991; 51: 4888 - 4892.

    PubMed  CAS  Google Scholar 

  181. Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA. Apoptosis in 7-hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 1995; 6: 927 - 936.

    PubMed  CAS  Google Scholar 

  182. Shi L, Nishioka WK, Thing J, Bradburg EM, Litchfield DW, Greenbury AM. Premature p34cdc2 activation required for apoptosis. Science 1994; 263: 1143 - 1145.

    Article  PubMed  CAS  Google Scholar 

  183. Davis PD, Elliott LH, Harris W, Hill CH, Hurst SA, Keech E, Kumar MKH, Lawton G, Nixon JS, Wilkinson SE. Inhibitors of protein kinase C. Substituted bisindolylmaleimides with improved potency and selectivity. J Med Chem 1992; 35: 994 - 1001.

    Article  PubMed  CAS  Google Scholar 

  184. Bit RA, Davis PD, Elliott LH, Harris W, Hill CH, Keech E, Kumar H, Lawton G, Maw A, Nixon JS, Vesey DR, Wadsworth J, Wilkinson SE. Inhibitors of protein kinase C. Potent and highly selective bisindolylmaleimides by conformational restriction. JMed Chem 1993; 36: 21 - 29.

    Article  CAS  Google Scholar 

  185. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 1991; 266: 15, 771-15, 781.

    Google Scholar 

  186. Zhang L, Higuchi M, Totpal K, Chaturvedi MM, Aggarwal BB. Staurosporine induces the cell surface expression of both forms of human tumor necrosis factor receptors on myeloid and epithelial cells and modulates ligand-induced cellular response. J Biol Chem 1994; 269:10, 270-10, 279.

    Google Scholar 

  187. Sampson LE, Mire-Sluis A, Meager A. Protein kinase C-dependent phosphorylation is involved in resistance to tumour necrosis factor-alpha-induced cytotoxicity in a human monocytoid cell line. Biochem J 1993; 292: 289 - 294.

    PubMed  CAS  Google Scholar 

  188. Coppock DL, Tansey JB, Nathanson L. 12-O-tetradecanoylphorbol-13-acetate induces transient cell cycle arrest in G1 and 02 in metastatic melanoma cells: inhibition of phosphorylation of p34cdc2. Cell Growth Differ 1992; 1: 485 - 1194.

    Google Scholar 

  189. Berkow RL, Kraft AS. Byrostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochem Biophys Commun 1985; 131: 1109 - 1116.

    Article  CAS  Google Scholar 

  190. Kraft AS, Smith JB, Berkow RL. Byrostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells, HL-60. Proc Natl Acad Sci USA 1986; 83: 1334 - 1338.

    Article  PubMed  CAS  Google Scholar 

  191. Gebbia V, Citarrella P, Miserendino V, Valennza R, Borsellino N. The effects of the macrocytic lactone bryostatin-1 on leukemic cells in vitro. Tumori 1992; 78: 167 - 171.

    PubMed  CAS  Google Scholar 

  192. Nurse P. Ordering S phase and M phase in the cell cycle. Cell 1994; 79: 547 - 550.

    Article  PubMed  CAS  Google Scholar 

  193. Sherr CJ. 01 phase progression: cycling on cue. Cell 1994; 79:551-555.

    Google Scholar 

  194. Vesely J, Havlicek L, Strnad M, Blow J, Donella-Deanna A, Pinna L, Letham DS, Kato J, Detivaud L, Leclerc S, Meijer L. Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 1994; 224: 771 - 786.

    Article  PubMed  CAS  Google Scholar 

  195. Kitagawa M, Okabe T, Ogino H, Matsumoto H, Suzuki-Takahashi I, Kokubo T, Higashi M, Saitoh S, Taya Y, Yasuda H, Ohba Y, Nishimura S, Tanaka N, Okuyama A, Butyrolactone I. A selective inhibitor of cdk2 and cdc2 kinase. Oncogene 1993; 8: 2425 - 2432.

    PubMed  CAS  Google Scholar 

  196. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R, Sausville E. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J Natl Cancer Inst 1992; 84: 1736 - 1740.

    Article  PubMed  CAS  Google Scholar 

  197. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of Cdc2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun 1994; 201: 589 - 595.

    Article  PubMed  CAS  Google Scholar 

  198. Worland PJ, Kaur G, Stetler-Stevenson M, Sebers S, Sartor O, Sausville EA. Alteration of the phosphorylation state of p34odc2 kinase by the flavone L86-8275 in breast carcinoma cells. Correlation with decreased H1 kinase activity. Biochem Pharmacoi 1993; 46: 1831 - 1840.

    Article  CAS  Google Scholar 

  199. Carlson BA, Sausville EA, Worland PJ. Flavopiridol induced GI-S phase block in MDA-MB468 breast carcinoma cells with deregulation of CDK2. Proc Am Assoc Cancer Res 1995; 36: 35.

    Google Scholar 

  200. Czech J, Hoffman D, Naik R, Sedlacek HH. Antitumoral activity of flavone L 86-8275. Int J Oncol 1995; 6: 31 - 36.

    PubMed  CAS  Google Scholar 

  201. Fry MJ. Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1994; 1226: 237 - 268.

    Article  PubMed  CAS  Google Scholar 

  202. Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequency containing phosphotyrosine. Mol Cell Biol 1991; 11: 1125 - 1132.

    PubMed  CAS  Google Scholar 

  203. Lev S, Givol D, Yarden Y. Interkinase domain of kit contains the binding site for phosphatidylinositol 3 ’ kinase. Proc Natl Acad Sci USA 1992; 89: 678 - 682.

    Article  PubMed  CAS  Google Scholar 

  204. Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J, White MF. Phosphatidylinositol 3 ’-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 1992; 11: 3469 - 3479.

    PubMed  CAS  Google Scholar 

  205. Raffioni S, Bradshaw RA. Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basis fibroblast growth factor, and nerve growth factor in PC12 pheochromocytoma cells. Proc Natl Acad Sci USA 1992; 89: 9121 - 9125.

    Article  PubMed  CAS  Google Scholar 

  206. Yamanashi Y, Fukui Y, Wongsasant B, Kinoshita Y, Ichimori Y, Toyoshima K, Yamamoto T. Activation of src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci USA 1992; 89: 1118 - 1122.

    Article  PubMed  CAS  Google Scholar 

  207. Gold MR, Chan VW-F, Turck CW, DeFranco AL. Membrane Ig cross-linking regulates phosphatidylinositol 3-kinase in B lymphocytes. J Immunol 1992; 148: 2012 - 2022.

    PubMed  CAS  Google Scholar 

  208. Thompson PA, Gutkind JS, Robbins KC, Ledbetter JA, Bolen JB. Identification of distinct populations of PI-3 kinase activity following T-cell activation. Oncogene 1992; 7: 719 - 725.

    PubMed  CAS  Google Scholar 

  209. Prasad KVS, Janssen O, Kapeller R. Raab M, Cantley LC, Rudd CE. Src-homology 3 domain of protein kinase p59fm mediates binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci USA 1993; 90: 7366 - 7370.

    Article  PubMed  CAS  Google Scholar 

  210. Fanti WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, Williams LT. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 1992; 69: 413 - 423.

    Article  Google Scholar 

  211. Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y, Nonomura Y, Matsuda Y. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 1993; 268:25, 846-25, 856.

    Google Scholar 

  212. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindley G, Vlahos CJ. Wortmannin, a potent a selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 1994; 54: 2419 - 2423.

    PubMed  CAS  Google Scholar 

  213. Kiguchi K, Glesne D, Chubb CH, Fujiki H, Huberman E. Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Differ 1994; 5: 995 - 1004.

    PubMed  CAS  Google Scholar 

  214. Casillas AM, Amaral K, Chegini-Farahani S, Nel AE. Okadaic acid activates p42 mitogenactivated protein kinase (MAP kinase; ERK-2) in B-lymphocytes but inhibits rather than augments cellular proliferation: contrast with phorbol 12-myristate 13-acetate. Biochem J 1993; 290: 545 - 550.

    PubMed  CAS  Google Scholar 

  215. Roberg M, Tudan C, Hung SMF, Harder KW, Jirik FR, Anderson H. Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A. Cancer Res 1994; 54: 6115 - 6121.

    Google Scholar 

  216. Crooke ST, Bennett CF. Mammalian phosphoinositide-specific phospholipase C isoenzymes. Cell Calcium 1989; 10: 309 - 323.

    Article  PubMed  CAS  Google Scholar 

  217. Merritt JE, Rink TJ. The effects of substance P and carbachol on inositol tris-and tetrakisphosphate formation and cytosolic free calcium in rat parotid acinar cells. J Biol Chem 1987; 262:14, 912-14, 916.

    Google Scholar 

  218. Perrella FW, Chen SF, Behrens DL, Kaltenbach RF III, Seitz SP. Phospholipase C inhibitors: a new class of cytotoxic agents. J Med Chem 1994; 37: 2232 - 2237.

    Article  PubMed  CAS  Google Scholar 

  219. Kohn EC, Sandeen MA, Liotta LA. In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res 1992; 52: 3208 - 3212.

    PubMed  CAS  Google Scholar 

  220. Viallet J, Sharoni Y, Frucht H, Jensen RT, Minna JD, Sausville EA. Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of small cell lung cancer. J Clin Invest 1990; 86: 1904 - 1912.

    Article  PubMed  CAS  Google Scholar 

  221. Bunn PA Jr, Chan D, Stewart J, Gera L, Tolley R, Jewett R, Tagawa M, Alford C, Mochzuki T, Yanaihara N. Effects of neuropeptide analogues on calcium flux and proliferation in lung cancer cell lines. Cancer Res 1994; 54: 3602 - 3610.

    PubMed  CAS  Google Scholar 

  222. Gordon J, Melamed MD, Ley SC, Hughes-Jones NC. Anti-immunoglobulin inhibits DNA synthesis in Epstein Barr virus-transformed lymphoblastoid cell lines. Immunology 1984; 52: 79 - 85.

    PubMed  CAS  Google Scholar 

  223. Ashwell JD, Longo DL, Bridges SH. T-cell tumor elimination as a result of T-cell receptor-mediated activation. Science 1987; 237: 61 - 64.

    Article  PubMed  CAS  Google Scholar 

  224. Beckwith M, Urba WJ, Ferris DK, Freter CE, Kuhns DB, Moratz CM, Longo DL. Anti-IgMmediated growth inhibition of a human B lymphoma cell line is independent of phosphatidylinositol turnover and protein kinase C activation and involves tyrosine phosphorylation. J Immunol 1991; 147: 2411 - 2418.

    PubMed  CAS  Google Scholar 

  225. Bridges SH, Kruisbeek AM, Longo DL. Selective in vivo antitumor effects of monoclonal antiI-A antibody on B cell lymphoma. J Immunol 1987; 139: 4242 - 4249.

    PubMed  CAS  Google Scholar 

  226. Sussman JJ, Saito T, Shevach EM, Germain RN, Ashwell JD. Thy-1 and Ly-6-mediated lymphokine production and growth inhibition of a T cell hybridoma require coexpression of the T cell antigen receptor complex. J Immunol 1988; 140: 2520 - 2526.

    PubMed  CAS  Google Scholar 

  227. Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I, Armitage RJ, Fanslow WC, Spriggs MK, Murphy WJ. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 1994; 83: 2787 - 2789.

    PubMed  CAS  Google Scholar 

  228. Aboud-Pirak E, Hurwitz E, Pirak ME, Bellot F, Schlessinger J, Sela M. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J Natl Cancer Inst 1988; 80: 1605 - 1611.

    Article  PubMed  CAS  Google Scholar 

  229. Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP, Shawver LK. A monoclonal antibody against the c-erB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991; 51: 4575 - 4580.

    PubMed  CAS  Google Scholar 

  230. Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ. Antibody to HER2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 1994; 9: 1829 - 1838.

    PubMed  CAS  Google Scholar 

  231. Kohn KW, Jackman J, O’Connor PM. Cell cycle control and cancer chemotherapy. J Cell Biochem 1994; 54: 440 - 452.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sausville, E.A., Longo, D.L. (1997). Growth Factors and Growth Factor Inhibitors. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics