Skip to main content

Antisense Oligonucleotides

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The therapeutic use of oligonucleotides represents a new paradigm for drug discovery. The technology focuses on a class of chemicals, oligonucleotides, that have not been studied as potential drugs before and uses them to intervene in processes that, likewise, have not been studied as sites at which drugs might act. Although the field is still in its infancy, it has generated considerable enthusiasm because of the potential specificity of oligonucleotide drugs and the breadth of potential applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watson JD, Crick FHC. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953; 171: 737.

    Article  PubMed  CAS  Google Scholar 

  2. Gillespie D, Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 1965; 12: 829–842.

    Article  PubMed  CAS  Google Scholar 

  3. Thompson JD, Gillespie D. Current concepts in quantitative molecular hybridization. Clin Biochem 1990; 23: 261–266.

    Article  PubMed  CAS  Google Scholar 

  4. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotides. Proc Nat! Acad Sci USA 1978; 75: 280.

    Article  PubMed  CAS  Google Scholar 

  5. Ts’o POP, Miller PS, Greene JJ. Nucleic acid analogs with targeted delivery at chemotherapeutic agents. In: Cheng YC, Goz B, Minkoff M, eds. Development of Target-Oriented Anticancer Drugs. New York: Raven. 1983: 189.

    Google Scholar 

  6. Barrett JC, Miller PS, Ts’o POP. Inhibitory effect of complex formation with oligodeoxyribonucleotide ethyl phosphotriesters on transfer ribonucleic acid aminoacylation. Biochemistry 1974; 13: 4897.

    Article  PubMed  CAS  Google Scholar 

  7. Caruthers MH. Gene synthesis machines: DNA chemistry and its uses. Science 1985; 230: 281.

    CAS  Google Scholar 

  8. Alvarado-Urbina G, Sathe GM, Liu WC, et al. Automated synthesis of gene fragments. Science 1981; 214: 270.

    Article  PubMed  CAS  Google Scholar 

  9. De Clercq E, Eckstein F, Merigan TC. Interferon induction increased through chemical modification of a synthetic polyribonucleotide. Science 1969; 165: 1137.

    Article  PubMed  Google Scholar 

  10. Marcus-Sekura CJ, Woerner AM, Shinozuka K, et al. Comparative inhibition of chioramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages. Nucleic Acids Res 1987; 15: 5749.

    Article  PubMed  CAS  Google Scholar 

  11. Matsukura M, Shinozuka K, Zon G, et al. Phosphorothioate analogs of oligodeoxyribonucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Nat! Acad Sci USA 1987; 84: 7706.

    Article  PubMed  CAS  Google Scholar 

  12. Agrawal S, Goodchild J, Civeira MP, et al. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Nat! Acad Sci USA 1988; 85: 7079.

    Article  PubMed  CAS  Google Scholar 

  13. Goodchild J, Agrawal S, Civeira MP, et al. Inhibition of human immunodeficiency virus replication by antisense oligonucleotides. Proc Natl Acad Sci USA 1988; 85: 5507.

    Article  PubMed  CAS  Google Scholar 

  14. Sarin PS, Agrawal S, Civeira MP. Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleotide methylphosphonates. Proc Nat! Acad Sci USA 1988; 85: 7448.

    Article  PubMed  CAS  Google Scholar 

  15. Gao W, Stein CA, Cohen JS, et al. Effect of phosphorothioate homo-oligodeoxynucleotides on herpes simplex virus type 2-induced DNA polymerase. J Biol Chem 1989; 264: 11, 521.

    Google Scholar 

  16. Smith CC, Aurelian L, Reddy MP, et al. Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc Nall Acad Sci USA 1986; 83: 2787.

    Google Scholar 

  17. Agris CH, Blake KR, Miller PS, et al. Inhibition of vesicular stomatitis virus protein synthesis and infection by sequence-specific oligodeoxyribonucleoside methylphosphonates. Biochemistry 1986; 25: 6268.

    Article  PubMed  CAS  Google Scholar 

  18. Heikkila R, Schwab G, Wickstrom E, et al. A c-myc antisense oligonucleotide inhibits entry into S phase but not progress from GO to G1. Nature 1987; 328: 445.

    Article  PubMed  CAS  Google Scholar 

  19. Wickstrom EL, Bacon TA, Gonzalez A, et al. Anti-c-myc DNA increases differentiation and decreases colony formation by HL-60 cells in vitro. Cell Dev Biol 1989; 25: 297.

    Article  PubMed  CAS  Google Scholar 

  20. Felsenfeld G, Davies DR, Rich A. Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 1957; 79: 2023.

    Google Scholar 

  21. Helene C. Control of gene expression by triplex-helix-forming oligonucleotides. The antigene strategy. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 375.

    Google Scholar 

  22. Moser HE, Dervan PB. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 1987; 238: 645.

    Article  PubMed  CAS  Google Scholar 

  23. Le Doan T, Perrouault L, Praseuth D, et al. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an olìgo-[a]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acid Res 1987; 15: 7749.

    Article  PubMed  Google Scholar 

  24. Cooney M, Czernuszewicz G, Postel EH, et al. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 1988; 241: 456.

    CAS  Google Scholar 

  25. Mirabelli CK, Crooke ST. Antisense oligonucleotides in the context of modern molecular drug discovery and development. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 7.

    Google Scholar 

  26. Nielsen PE, Egholm M, Berg RH, et al. Peptide nucleic acids (PNA): Oligonucleotide analogs with a polyamide backbone. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 363.

    Google Scholar 

  27. Cech T. Self-splicing of group 1 introns. Annu Rev Biochem 1990; 59: 543.

    Article  PubMed  CAS  Google Scholar 

  28. Uhlenbeck OC. Using ribozymes to cleave RNAs. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 83.

    Google Scholar 

  29. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249: 505.

    Article  PubMed  CAS  Google Scholar 

  30. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346: 818.

    Article  PubMed  CAS  Google Scholar 

  31. Vickers T, Baker BF, Cook PD, et al. Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. Nucleic Acids Res 1991; 19: 3359.

    Article  PubMed  CAS  Google Scholar 

  32. Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 1986; 13: 97.

    Article  PubMed  CAS  Google Scholar 

  33. Tidd DM, Warenieus HM. Partial protection on oncogene, antisense oligodeoxynucleotides against serum nuclease degradation using terminal methylphosphonate groups. Br J Cancer 1989; 60: 343.

    Article  PubMed  CAS  Google Scholar 

  34. Dagle JM, Walder JA, Weeks DL. Targeted degradation of mRNA in Xenopus oncytes and embryos directed by modified oligonucleotides: studies of An2 and cylin in embryogenesis. Nucleic Acids Res 1990; 18: 4751.

    Article  PubMed  CAS  Google Scholar 

  35. Dagle JM, Weeks DL, Walder JA. Pathways of degradation and mechanism of action of anti-sense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev 1991; 1: 11.

    PubMed  CAS  Google Scholar 

  36. Crooke RM. In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anti-Cancer Drug Design 1991; 6: 609.

    CAS  Google Scholar 

  37. Hoke GD, Draper K, Freier SM, et al. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res 1991; 19: 5743.

    Article  PubMed  CAS  Google Scholar 

  38. Asseline U, Delarue M, Lancelot G, et al. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligonucleotides. Proc Natl Acad Sci USA 1984; 81: 3297.

    Article  PubMed  CAS  Google Scholar 

  39. Cazenave C, Stein CA, Loreau N, et al. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 1989; 17: 4255.

    Article  PubMed  CAS  Google Scholar 

  40. Letsinger RL, Zhang G, Sun DK. Cholesteryl-conjugated oligonucleotides: synthesis, properties and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci USA 1989; 86: 6553.

    Article  PubMed  CAS  Google Scholar 

  41. Lamaitre M, Bayard B, Lebleu B. Specific antiviral activity of a poly (L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci USA 1987; 84: 648.

    Article  Google Scholar 

  42. Leonetti JP, Rayner B, Lemaitre M, et al. Antiviral activity of conjugates between poly(Llysine) and synthetic oligodeoxyribonucleotides. Gene 1988; 72: 323.

    Article  PubMed  CAS  Google Scholar 

  43. Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC, 1993.

    Google Scholar 

  44. Crooke ST. Oligonucleotide Therapeutics. In: Wolff ME, ed. Burger’s Medicinal Chemistry and Drug Discovery, vol. 1, 5th ed. New York: Wiley Interscience. 1995: 863.

    Google Scholar 

  45. Crooke ST. Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol 1992; 32: 329.

    Article  PubMed  CAS  Google Scholar 

  46. Mizumoto K, Kaziro Y. Messenger RNA capping enzymes from eukaryotic cells. Prog Nucleic Acids Res Mol Biol 1987; 34: 1.

    Article  CAS  Google Scholar 

  47. Ross J. Messenger RNA turnover in eukaryotic cells. Mol Biol Med 1988; 5: 1.

    PubMed  CAS  Google Scholar 

  48. Friedman DI, Imperiale MJ. RNA 3’ end formation in the control of gene expression. Annu Rev Genet 1987; 21: 453.

    Article  PubMed  CAS  Google Scholar 

  49. Manley JL. Polyadenyation of mRNA precursors. Biochim Biophys Acta 1988; 950: 1.

    Article  PubMed  CAS  Google Scholar 

  50. Padgett RA, Grabowski PJ, Konarska MM, et al. Splicing of messenger RNA precursors. Annu Rev Biochem 1986; 55: 1119.

    Article  PubMed  CAS  Google Scholar 

  51. Green MR. Pre-mRNA splicing. Annu Rev Genet 1986; 20: 671.

    Article  PubMed  CAS  Google Scholar 

  52. Breslauer KJ, Frank R, Blocker H. Predicting DNA duplex stability from base sequence. Proc Natl Acad Sci USA 1986; 83: 3746.

    Article  PubMed  CAS  Google Scholar 

  53. Freier SM, Kierzek R, Jaeger J, et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc Nall Acad Sci USA 1986; 83: 9373.

    Article  CAS  Google Scholar 

  54. Chastain M, Tinoco I. RNA structure as related to antisense drugs. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 55.

    Google Scholar 

  55. Ecker DJ. Strategies for invasion of RNA secondary structure. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 387.

    Google Scholar 

  56. Wyatt JR, Vickers TA, Roberson JL, et al. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelop-mediated cell fusion. Proc Natl Acad Sci USA 1994; 91: 1356.

    Article  PubMed  CAS  Google Scholar 

  57. Wang KY, McCurdy S, Shea RG, et al. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 1993; 32: 1899.

    Article  PubMed  CAS  Google Scholar 

  58. Leroy J-L, Gehring K, Kettani A, et al. Acid multimers of oligodeoxycytidine strands: stoichiometry, base-pair characterization and proton exchange properties. Biochemistry 1993; 32: 6019.

    Article  PubMed  CAS  Google Scholar 

  59. Gehring K, Ley J-L, Gueron M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 1993; 363: 561.

    Article  PubMed  CAS  Google Scholar 

  60. Freier SM, Lima WF, Sanghvi YS, et al. Thermodynamics of antisense oligonucleotide hybridization. In: Izant J, Erickson R, eds. Gene Regulation by Antisense Nucleic Acids. New York: Raven. 1992: 95.

    Google Scholar 

  61. Thein SL, Wallace RB. The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In: Davies KE, ed. Human Genetic Diseases: A Practical Approach. Oxford: IRL. 1986: 33.

    Google Scholar 

  62. Helene C, Toulme JJ. Control of gene expression by oligonucleotides covalently linked to intercalating agents and nucleic acid-cleaving reagents. In: Cohen JS, ed. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Boca Raton, FL: CRC. 1989: 137.

    Google Scholar 

  63. Helene C, Toulme JJ. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1990; 1049: 99.

    Article  PubMed  CAS  Google Scholar 

  64. Monia BP, Johnston JF, Ecker DJ, et al. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem 1992; 267: 19, 954.

    Google Scholar 

  65. Crooke ST. Progress in antisense therapeutics. Hematol Pathol 1995; 9: 59.

    PubMed  CAS  Google Scholar 

  66. McManaway ME, Neckers LM, Loke SL, et al. Tumour-specific inhibition of lymphoma growth by an antisense oligodeoxynucleotide. Lancet 1990; 335: 808.

    Article  PubMed  CAS  Google Scholar 

  67. Kulka M, Smith C, Aurelian L, et al. Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonates) complementary to the acceptor splice junction of herpes simplex virus type 1 immediately early mRNA. Proc Nall Acad Sci USA 1989; 86: 6868.

    Article  CAS  Google Scholar 

  68. Zamecnik PC, Goodchild J, Taguchi Y, et al. Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc Nall Acad Sci USA 1986; 83: 4143.

    Article  CAS  Google Scholar 

  69. Smith CC, Aurelian L, Reddy MP, et al. Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc Natl Acad Sci USA 1985; 83: 2787.

    Google Scholar 

  70. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993; 90: 8673.

    Article  PubMed  CAS  Google Scholar 

  71. Agrawal S, Goodchild J, Civeira MP, et al. Oligodeoxynucleoside phosphoramidites and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci USA 1988; 85: 7079.

    Article  PubMed  CAS  Google Scholar 

  72. Lemaitre M, Bayard B, Lebleu B. Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Biochemistry 1987; 84: 648.

    CAS  Google Scholar 

  73. Rosolen A, Whitesell L, Olegalo M, et al. Antisense inhibition of single copy N-myc expression results in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line. Cancer Res 1990; 50: 6316.

    PubMed  CAS  Google Scholar 

  74. Vasanthakumar G, Ahmed NK. Modulation of drug resistance in a daunorubicin resistant subline with oligonucleotide methylphosphonates. Cancer Commun 1989; 1: 225.

    PubMed  CAS  Google Scholar 

  75. Sburlati AR, Manrow RE, Berger SL. Prothymosin a antisense oligomers inhibit myeloma cell division. Proc Natl Acad Sci USA 1991; 88: 253.

    Article  PubMed  CAS  Google Scholar 

  76. Zheng H, Sahai BM, Kilgannon P, et al. Specific inhibition of cell-surface T-cell receptor expression by antisense oligodeoxynucleotides and its effect on the production of an antigen-specific regulatory T-cell factor. Proc Nall Acad Sci USA 1989; 86: 3758.

    Article  CAS  Google Scholar 

  77. Maier JAM, Voulalas P, Roeder D, et al. Extension of the life-span of human endothelial cells by an interleukin-la antisense oligomer. Science 1990; 249: 1570.

    Article  PubMed  CAS  Google Scholar 

  78. Mirabelli CK, Bennett CF, Anderson K, et al. In vitro and in vivo pharmacologic activities of antisense oligonucleotides. Anti-Cancer Drug Design 1991; 6: 647.

    PubMed  CAS  Google Scholar 

  79. Cowsert LM, Fox MC, Zon G, et al. In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: Potential treatment of genital warts. Antimicrob Agents and Chemotherapy 1993; 37: 171.

    Article  CAS  Google Scholar 

  80. Ecker DJ, Vickers TA, Bruice TW, et al. Pseudo-half knot formation with RNA. Science 1992; 257: 958.

    Article  PubMed  CAS  Google Scholar 

  81. Saxena SK, Ackerman EJ. Microinjected oligonucleotides complementary to the a-sarcin loop of 28 S RNA abolish protein synthesis in xenopus oocytes. J Biol Chem 1990; 265: 3263.

    PubMed  CAS  Google Scholar 

  82. Walker K, Elela SA, Nazar RN. Inhibition of protein synthesis by anti-5.8 S rNA oligodeoxyribonucleotides. J Biol Chem 1990; 265: 2428.

    Google Scholar 

  83. Westerman P, Gross B, Hoinkis G. Inhibition of expression of SV40 virus large T-antigen by antisense oligodeoxyribonucleotides. Biomed Biochim Acta 1989; 48: 85.

    Google Scholar 

  84. Baker B. Decapitation of a 5’ capped oligoribonucleotide by ortho-Phenanthroline:Cu(II). J Am Chem Soc 1993; 115: 3378.

    Article  CAS  Google Scholar 

  85. Baker BF, Miraglia L, Hagedorn CH. Modulation of eurkaryotic initiation factor-4E binding to 5’ capped oligoribonucleotides by modified antisense oligonucleotides. J Biol Chem 1992; 267: 11, 495.

    Google Scholar 

  86. Chiang MY, Chan H, Zounes MA, et al. Antisense oligonucleotides inhibit ICAM-1 expression by two distinct mechanisms. J Bio! Chem 1991; 266: 18, 162.

    Google Scholar 

  87. Crouch RJ, Dirksen M-L. Ribonucleases H. In: Linn SM, Roberts RJ, eds. Nucleases. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 1985: 211.

    Google Scholar 

  88. Crum C, Johnson JD, Nelson A, et al. Complementary oligodeoxynucleotide mediated inhibition of tobacco mosaic virus RNA translation in vitro. Nucleic Acids Res 1988; 16: 4569.

    Article  CAS  Google Scholar 

  89. Haeuptle MT, Frank R, Dobberstein B. Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yields polypeptides of predetermined length. Nucleic Acids Res 1986; 14: 1427.

    Article  PubMed  CAS  Google Scholar 

  90. Doris-Keller H. Site specific enzymatic cleavage of RNA. Nucleic Acid Res 1979; 7: 179.

    Article  Google Scholar 

  91. Kawasaki AM, Casper MD, Freier SM, et al. Uniformly modified 2 ’-deoxy-2 ’-fluoro phosphorothioate oligonucleotides as nuclease resistant antisense compounds with high affinity and specifity for RNA targets. J Med Chem 1993; 36: 831.

    Article  PubMed  CAS  Google Scholar 

  92. Sproat BS, Lamond AL, Beijer B, et al. Highly efficient chemical synthesis of 2’-0-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res 1989; 17: 3373.

    Article  PubMed  CAS  Google Scholar 

  93. Morvan F, Rayner B, Imbach J-L. a-Oligonucleotides: A unique class of modified chimeric nucleic acids. Anti-Cancer Drug Design 1991; 6: 521.

    PubMed  CAS  Google Scholar 

  94. Gagnor C, Rayner B, Leonetti JP, et al. a-DNA IX. Parallel annealing of a-anomeric oligodoxyribonucleotides to natural mRNA is required for interference in RNaseH mediated hydrolysis and reverse transcription. Nucleic Acids Res 1989; 17: 5107.

    Article  PubMed  CAS  Google Scholar 

  95. Maher JL, III, Wold B, Dervan PG. Inhibition of DNA binding properties by oligonucleotidedirected triple helix formation. Science 1989; 245: 725.

    Article  PubMed  CAS  Google Scholar 

  96. Miller PS. Non-ionic antisense oligonucleotides. In: Cohen JS, ed. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Boca Raton, FL: CRC. 1989: 79.

    Google Scholar 

  97. Stein CA, Cohen JS. Phosphorothiote oligodeoxynucleotide analogues. In: Cohen JS, ed. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Boca Raton, FL: CRC. 1989: 97.

    Google Scholar 

  98. Cazenave C, Stein CA, Loreau N, et al. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 1989; 17: 4255.

    Article  PubMed  CAS  Google Scholar 

  99. Quartin R, Brakel C, Wetmur J. Number and distribution of methylphosphonate linkages in oligodeoxynucleotides affect exo-and endonuclease sensitivity and ability to form RNase H substrates. Nucleic Acids Res 1989; 17: 7253.

    Article  PubMed  CAS  Google Scholar 

  100. Furdon P, Dominski Z, Kole R. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res 1989; 17: 9193.

    Article  PubMed  CAS  Google Scholar 

  101. Eder PS, Walder JA. Ribonuclease H from K562 human erythroleukemia cells. J Biol Chem 1991; 206: 6472.

    Google Scholar 

  102. Monia BP, Lesnik EA, Gonzalez C, et al. Evaluation of 2’ modified oligonucleotides containing 2 ’-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993: 268.

    Google Scholar 

  103. Giles RV, Tidd DM. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage of RNase H using chimeric methylphosphonodiester structures. Nucleic Acids Res 1992; 20: 763.

    Article  PubMed  CAS  Google Scholar 

  104. Walder RY, Walder JA. Role of RHase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 1988; 85: 5011.

    Article  PubMed  CAS  Google Scholar 

  105. Minshull J, Hunt T. The use of single-stranded DNA and RNase H to promote quantitative hybrid arrest of translation of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res 1986; 14: 6433.

    Article  PubMed  CAS  Google Scholar 

  106. Gagnor C, Bertrand J, Thenet S, et al. Alpha-DNA VI: Comparative study of alpha-and betaanomeric oligodeoxyribonucleotides in hybridization to mRNA and in cell free translation inhibition. Nucleic Acids Res 1987; 15: 10419.

    Article  PubMed  CAS  Google Scholar 

  107. Knorre DG, Vlassov VV, Zarytova VF. Reactive oligonucleotide derivatives and sequence-specific modification of nucleic acids. Biochimie 1985; 67: 785.

    Article  PubMed  CAS  Google Scholar 

  108. Knoore DG, Vlassov VV, Zarytova VF. Oligonucleotides linked to reactive groups. In: Cohen JS, ed. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. Boca Raton, FL: CRC. 1989: 173.

    Google Scholar 

  109. Vlassov VV, Zarytova VF, Kutyavin IV, et al. Sequence-specific chemical modification of a hybrid bacteriophage M13 single-stranded DNA by alkylating oligonucleotide derivatives. FEBS Lett 1988; 231: 352.

    Article  PubMed  CAS  Google Scholar 

  110. Summerton J, Bartlett, PA. Sequence-specific crosslinking agents for nucleic acids. Use of 6-bromo-5,5-dimethoxyhexanohydrazide for crosslinking cytidine to guanosine and crosslinking RNA to complementary sequences of DNA. J Mol Biol 1978; 122: 145.

    Article  PubMed  CAS  Google Scholar 

  111. Webb TR, Matteucci MD. Hybridization triggered crosslinking of leoxynucleotides. Nucleic Acids Res 1986; 14: 7661.

    Article  PubMed  CAS  Google Scholar 

  112. Cooney M, Czernuszewicz G, Postel EH, et al. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 1988; 241: 456.

    Article  PubMed  CAS  Google Scholar 

  113. Moser HE, Dervan PB. Sequence specific cleavage of double helical DNA by triple helix formation. Science 1987; 238: 650.

    Article  Google Scholar 

  114. Le Doan T, Perrouault L, Praseuth D, et al. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 1987; 15: 7749.

    Article  PubMed  Google Scholar 

  115. Federova OS, Knorre DG, Podust LM, et al. Complementary addressed modification of double-stranded DNA within a ternary complex. FEBS Lett 1988; 228: 273.

    Article  Google Scholar 

  116. Praseuth D, Perrouault L, Le Doan T, et al. Sequence-specific binding and photocrosslinking of [alpha] and [beta]-oligodeoxynucleotides to the major groove of DNA via triple helix formation. Proc Natl Acad Sci USA 1988; 85: 1349.

    Article  PubMed  CAS  Google Scholar 

  117. Praseuth D, Doan TL, Chassignol M, et al. Sequence-targeted photosensitized reactions in nucleic acids by oligo-a-deoxynucleotides and oligo-ß-deoxynucleotides covalently linked to proflavin. Biochemistry 1988; 27: 3031.

    Article  PubMed  CAS  Google Scholar 

  118. Le Doan T, Perrouault L, Chassignol M, et al. Sequence-targeted chemical modifications of nucleic acids by complementary oligonucleotides covalently linked to porphyrins. Nucleic Acids Res 1987; 15: 8643.

    Article  Google Scholar 

  119. Le Doan T, Perrouault L, Thuong NT, et al. Sequence-specific chemical and photochemical reactions on nucleic acids by oligonucleotides linked to porphyrins. J Inorg Biochem 1989; 36: 274 (abstract).

    Article  Google Scholar 

  120. Le Doan T, Praseuth D, Perrouault L, et al. Sequence-targeted photochemical modifications of nucleic acids by complementary oligonucleotides covalently linked to porphyrins. Bioconj Chem 1990; 1: 108.

    Article  Google Scholar 

  121. Lee BL, Blake KR, Miller PS. Interaction of psoralen-derivatized oligodeoxyribonucleoside methylphosphonates with synthetic DNA containing a promoter for T7 RNA polymerase. Nucleic Acids Res 1988; 16: 10, 681.

    Google Scholar 

  122. Lee BL, Murakami A, Blake KR, et al. Interaction of psoralen-derivatized oligodeoxyribonucleoside methylphosphonates with single-stranded DNA. Biochemisty 1988; 27: 3197.

    Article  CAS  Google Scholar 

  123. Praseuth D, Chassignol M, Takasugi M, et al. Double helices with parallel strands are formed by nuclease-resistant oligo-[alpha]-deoxynucleotides and oligo-[alpha]-deoxynucleotides covalently linked to an intercalating agent with complementary oligo-[beta]-deoxynucleotides. J Mol Biol 1987; 196: 939.

    Article  PubMed  CAS  Google Scholar 

  124. Perrouault L, Asseline U, Rivalle C, et al. Sequence-specific artificial photo-induced endonucleases based on triple-helix forming oligonucleotides. Nature 1990; 344: 358.

    Article  PubMed  CAS  Google Scholar 

  125. Helene C. Artificial control of gene expression by oligonucleotides covalently linked to intercalating agents. Br J Cancer 1989; 60: 157.

    Article  PubMed  CAS  Google Scholar 

  126. Kean JM, Murakami A, Blake KR, et al. Photochemical cross-linking of psoralen-derivatized oligonucleotide methylphosphonates to rabbit globin messenger RNA. Biochemistry 1988; 27: 9113.

    Article  PubMed  CAS  Google Scholar 

  127. Saison-Behmoaras T, Tocque B, Rey I, et al. Short modified oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EmboJ1991; 10: 1111.

    Google Scholar 

  128. Dervan PB. Oligonucleotide recognition of double-helical DNA by triple-helix formation. In: Cohen JS, ed. Oligodeoxynucleotide: Antisense Inhibitors of Gene Expression. Boca Raton, FL: CRC. 1989: 197.

    Google Scholar 

  129. Chu BCF, Orgel LE. Nonenzymatic sequence-specific cleavage of single-stranded DNA. Proc Natl Acad Sci USA 1985; 82: 963.

    Article  PubMed  CAS  Google Scholar 

  130. Boutorin AS, Vlassov VV, Kazakov SA, et al. Complementary addressed reagents carrying EDTA-Fe(II) groups for directed cleavage of single-stranded nucleic acids. FEBS Lett 1984; 172: 43.

    Article  Google Scholar 

  131. Francois JC, Saison-Behmoaras T, Chassignol M, et al. Periodic cleavage of poly(dA) by oligothymidylates covalently linked to 1,10-phenanthroline-copper complexes. Biochemistry 1988; 27: 2272.

    Google Scholar 

  132. Francois JC, Saison-Behmoaras T, Barbier C, et al. Sequence-specific recognition and cleavage of duplex DNA via triple helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc Natl Acad Sci USA 1989; 86: 9702.

    Article  PubMed  CAS  Google Scholar 

  133. Francois JC, Saison-Behmoaras T, Chassignol M, et al. Sequence-targeted cleavage of single-and double-stranded DNA by oligothymidylates covalently linked to 1’10-phenanthroline. J Biol Chem 1989; 264: 5891.

    PubMed  CAS  Google Scholar 

  134. Sun JS, Francois JC, Lavery R, et al. Sequence-targeted cleavage of nucleic acids by oligo-[a]thymidylate-phenanthroline conjugates: parallel and anti-parallel double helices are formed with DNA and RNA, respectively. Biochemistry 1988; 27: 6039.

    Article  PubMed  CAS  Google Scholar 

  135. Chen C.-HB, Sigman DS. Nuclease activity of 1,10-phenanthroline-copper: sequence-specific targeting. Proc Natl Acad Sci USA 1986; 83: 7147.

    Article  PubMed  CAS  Google Scholar 

  136. Helene C, Le Doan T, Thuong NT. Sequence-targeted photochemical reactions in single-stranded and double-stranded nucleic acids by oligonucleotide-photosensitizer conjugated. In: Nielson PE, ed. Photochemical Probes in Biochemistry. Kluwer Academic Publishers. 1989: 219.

    Google Scholar 

  137. Helene C, Thuong NT. Oligodeoxynucleotides covalently linked to intercalating agents and to nucleic acid-cleaving reagents. New families of gene regulatory substances. In: Chagas C, Pullman B, eds. Working Group on Molecular Mechanisms of Carcinogenic and Antitumor Activity. Vatican City: Pontificaiae Academiae Scientarium Scripta Varia. 1987: 205.

    Google Scholar 

  138. Helene C, Thuong NT. Control of gene expression by oligonucleotides covalently linked to intercalating agents. Genome 1989; 31: 413.

    Article  PubMed  CAS  Google Scholar 

  139. Cech TR. The chemistry of self-splicing RNA and RNA enzymes. Science 1987; 236: 1532.

    Article  PubMed  CAS  Google Scholar 

  140. McSwiggen JA, Cech TR. Stereochemistry of RNA cleavage by the tetrahymena ribozyme and evidence that the chemical step is not rate-limiting. Science 1989; 244: 679.

    Article  PubMed  CAS  Google Scholar 

  141. Uhlenbeck OC. Using ribozymes to cleave RNAs. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 83.

    Google Scholar 

  142. Haseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 1988; 334: 585.

    Article  PubMed  CAS  Google Scholar 

  143. McCall MJ, Hendry P, Jennings PA. Minimal sequence requirements for ribozyme activity. Proc Natl Acad Sci 1992; 89: 5710.

    Article  PubMed  CAS  Google Scholar 

  144. Chowrira BM, Berzal-Harranz A, Keller CF, et al. Four ribose 2 ’-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J Biol Chem 1993; 268: 19, 458.

    Google Scholar 

  145. Perrouault J-P, Wu T, Cousineau B, et al. Mixed deoxyrib-and ribo-oligonucleotides with catalytic activity. Nature 1990; 344: 565.

    Article  Google Scholar 

  146. Koizumi M, Ohtsuka E. Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mgt+ binding. Biochemistry 1991; 30: 5145.

    Article  PubMed  CAS  Google Scholar 

  147. Heidenreich O, Benseler F, Fahrenholz A, et al. High activity and stability of hammerhead ribozymes containing 2 ’-modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 1993; 269: 2131.

    Google Scholar 

  148. Pieken WA, Olsen DB, Benseler F, et al. Kinetic characterization of ribonuclease-resistant 2’-modified hammerhead ribozymes. Science 1991; 253: 314.

    Article  PubMed  CAS  Google Scholar 

  149. Olsen DB, Benseler F, Aurup H, et al. Study of a hammerhead ribozyme containing 2 ’-modified adenosine residues. Biochem 1991; 30: 9735.

    Article  CAS  Google Scholar 

  150. Goodchild J. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2’-O-methylation. Nucleic Acids Res 1992; 20: 4607.

    Article  PubMed  CAS  Google Scholar 

  151. Forester AC, Altman S. External guide sequences for an RNA enzyme. Science 1990; 249: 783.

    Article  Google Scholar 

  152. Yuan Y, Hwang E-S, Altman S. Targeted cleavage of mRNA by human RNase P. Proc Nall Acad Sci 1992; 89: 8006.

    Article  CAS  Google Scholar 

  153. Herschlag D, Cech TR. DNA cleavage catalyzed by the ribozyme from Tetrahymena. Nature 1990; 344: 405.

    Article  CAS  Google Scholar 

  154. Wilhelm JE, Vale RD. RNA on the move: The mRNA localization pathway. J Cell Biol 1993; 123: 269.

    Article  PubMed  CAS  Google Scholar 

  155. Kislauskis EH, Li Z, Singer RH, et al. Isoform-specific 3 ’-untranslated sequences sort a-cardiac and 0-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol 1993; 123: 165.

    Article  PubMed  CAS  Google Scholar 

  156. Crooke ST. Progress toward oligonucleotide therapeutics: Pharmacodynamic properties. FASEB J 1993; 7: 533.

    PubMed  CAS  Google Scholar 

  157. Bennett CF, Crooke ST. Oligonucleotide-based inhibitors of cytokine expression and function. In: Henderson B, Bodmer M, eds. Therapeutic Modulation of Cytokines. Boca Raton, FL: CRC. 1995; in press.

    Google Scholar 

  158. Bennett CF, Condon TP, Grimm S, et al. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol 1994; 152: 3530.

    PubMed  CAS  Google Scholar 

  159. Cook PD. Medicinal chemistry strategies for antisense research. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. 1993: 149.

    Google Scholar 

  160. Lima WF, Monia BP, Ecker DJ, et al. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry 1992; 31: 12, 055.

    Google Scholar 

  161. Cohen JS. Phosphorothioate oligodeoxynucleotides. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 205.

    Google Scholar 

  162. Freier SM. Hybridization: Considerations affecting antisense drugs. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 67.

    Google Scholar 

  163. Joos RW, Hall WH. Determination of binding constants of serum albumin for penicillin. J Pharmacol Exp Ther 1969; 166: 113.

    PubMed  CAS  Google Scholar 

  164. Loke SL, Stein CA, Zhang XH, et al. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci 1989; 86: 3474.

    Article  PubMed  CAS  Google Scholar 

  165. Graham MJ, Cummins L, Cooke ME, et al. In vitro metabolism of phosphorothioate antisense oligonucleotides. 1994, submitted.

    Google Scholar 

  166. Gao W-Y, Han F-S, Storm C, et al. Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: Implications for antisense technology. Mol Pharm 1991; 41: 223.

    Google Scholar 

  167. Stein CA, Cheng Y-C. Antisense oligonucleotides as therapeutic agents-Is the bullet really magic? Science 1993; 261: 1004.

    Article  PubMed  CAS  Google Scholar 

  168. Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci 1991; 88: 7595.

    Article  PubMed  CAS  Google Scholar 

  169. Majumdar C, Stein CA, Cohen JS, et al. Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxynucleotide. Biochem 1989; 28: 1340.

    Article  CAS  Google Scholar 

  170. Cheng Y-C, Gao W, Han F. Against human immunodeficiency virus and herpes viruses. Nucleosides and Nucleotides 1991; 10: 155.

    Article  CAS  Google Scholar 

  171. Stein CA, Neckers LM, Nair BC, et al. Phosphorothioate oligodeoxycytidine interferes with binding of HIV-1 with gp120 to CD4. JAIDS 1991; 4: 686.

    CAS  Google Scholar 

  172. Fields AP, Bednarik DP, Hess A, et al. Human immunodeficiency virus induces phosphorylation of its cell surface receptor. Nature 1991; 333: 278.

    Article  Google Scholar 

  173. Wyatt JR, Vickers TA, Roberson JL, et al. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelop-mediated cell fusion. Proc Natl Acad Sci 1994; 91: 1356.

    Article  PubMed  CAS  Google Scholar 

  174. Campbell JM, Bacon TA, Wickstrom E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 1990; 20: 259.

    Article  PubMed  CAS  Google Scholar 

  175. Cossum PA, Sasmor H, Dellinger D, et al. Disposition of the ’°C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther 1993; 267: 1181.

    PubMed  CAS  Google Scholar 

  176. Crooke RM. In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anti-Cancer Drug Design 1991; 6: 609.

    CAS  Google Scholar 

  177. Crooke RM. In vitro and in vivo toxicology of first generation analogs. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 471.

    Google Scholar 

  178. Crooke RM, Graham MJ, Cooke ME, et al. In vitro pharmacokinetic analysis of tritiated ISIS 2105 and other phosphorothioate antisense oligonucleotides. Submitted, 1994.

    Google Scholar 

  179. Nestle FO, Mitra RS, Bennett CF, et al. Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. J Invest Dermatol 1994; 103: 569.

    Article  PubMed  CAS  Google Scholar 

  180. Neckers LM. Cellular internalization of oligodeoxynucleotides. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 451–460.

    Google Scholar 

  181. Chrissey LA, Walz SE, Pazirandeh M, et al. Internalizing of oligodeoxyribonucleotides by Vibrio parahaemolyticus. Antisense Res Dev 1993; 3: 367.

    Google Scholar 

  182. Crooke RM. Cellular uptake, distribution and metabolism of phosphorothiote, phosphorodiester and methylphosphonate oligonucleotides. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 427.

    Google Scholar 

  183. Bennett CF, Chiang M-Y, Chan H, et al. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharm 1992; 41: 1023.

    CAS  Google Scholar 

  184. Bennett CF, Chiang M-Y, Chan H, et al. Use of cationic lipids to enhance the biological activity of antisense oligonucleotides. J Liposome Res 1993; 3: 85.

    Article  CAS  Google Scholar 

  185. Iversen P. In vivo studies with phosphorothioate oligonucleotides: pharmacokinetic prologue. Anti-Cancer Drug Design 1991; 6: 531.

    CAS  Google Scholar 

  186. Cossum PA, Truong L, Owens SR, et al. Pharmacokinetics of a’4C labeled phosphorothioate oligonucleotides, ISIS 2105, after intradermal administration to rats. J Pharmacol Exp Ther 1994; 269: 89.

    PubMed  CAS  Google Scholar 

  187. Crooke ST, Grillone LR, Tendolkar A, et al. A pharmacokinetic evaluation of ‘4C labeled afovirsen sodium in genital wart patients. Clin Pharm Ther 1994; 56: 641–646.

    Article  CAS  Google Scholar 

  188. Sands H, Gorey-Feret LJ, Cocuzza AJ, et al. Biodistribution and metabolism of internally ‘H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharm 1994; 45: 932.

    CAS  Google Scholar 

  189. Bayever E, Iversen PL, Bishop MR, et al. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase 1 trial. Antisense Res Dev 1993; 3: 383.

    PubMed  CAS  Google Scholar 

  190. Cook PD. Medicinal chemistry strategies for antisense research. In: Crooke ST, Lebleu B, eds. Antisense Research and Applications. Boca Raton, FL: CRC. 1993: 303.

    Google Scholar 

  191. Azad RF, Driver VB, Tanaka K, et al. Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents and Chemother 1993; 37: 1945.

    Article  CAS  Google Scholar 

  192. Wagner RW, Matteucci MD, Lewis JG, et al. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 1993; 260: 1510.

    Article  PubMed  CAS  Google Scholar 

  193. Nagel KM, Holstad SG, Isenberg KE. Oligonucleotide pharmacotherapy. An antigene stratety. Pharmacotherapy 1993; 13: 177.

    PubMed  CAS  Google Scholar 

  194. Simons M, Edelman ER, DeKeyser J-L, et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992; 359: 67.

    Article  CAS  Google Scholar 

  195. Abe J, Zhou W, Taguchi J, et al. Suppression of neointimal smooth muscle cell accumulation in vivo by antisense CDC2 and CDK2 oligonucleotides in rat carotid artery. Biochem Biophys Res Commun 1994; 198: 16.

    Article  PubMed  CAS  Google Scholar 

  196. Whitesell L, Rosolen A, Neckers LM. In vivo modulation of N-myc expression by continuous perfusion with an antisense oligonucleotide. Antisense Res Dev 1991; 1: 343.

    PubMed  CAS  Google Scholar 

  197. Perkaly L, Saijo Y, Busch RK, et al. Growth inhibition of human tumor cell lines by antisense oligonucleotides designed to inhibit p120 expression. Anti-Cancer Drug Design 1993; 8: 3.

    Google Scholar 

  198. Wahlestedt C, Pich EM, Koob GF, et al. Modulation of anxiety and neuropeptide Y-Yl receptors by antisense oligodeoxynucleotides. Science 1993; 259: 528.

    Article  PubMed  CAS  Google Scholar 

  199. Wahlestedt C, Golanov E, Yamamotop S, et al. Antisense oligodeoxynucleotides to NMDA-Rl receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 1993; 363: 260.

    Article  PubMed  CAS  Google Scholar 

  200. Osen-Sand A, Catsicas M, Staple JK, et al. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 1993; 364: 445.

    Article  CAS  Google Scholar 

  201. Burch RM, Mahan LC. Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice. J Clin Invest 1991; 88: 1190.

    Article  PubMed  CAS  Google Scholar 

  202. Kitajima I, Shinohara T, Bilakovics J, et al. Ablation of transplanted HTLV-1 tax-transformed tumors in mice by antisense inhibition of NF-kB. Science 1992; 258: 1792.

    Article  PubMed  CAS  Google Scholar 

  203. Higgins KA, Perez JR, Coleman TA, et al. Antisense inhibition of the p65 subunit of NF-kB blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci 1993; 90: 9901.

    Article  PubMed  CAS  Google Scholar 

  204. Skorski T, Nieborowska-Skorska M, Nicolaides NC, et al. Suppression of Ph’ leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci 1994; 91: 4504.

    Article  PubMed  CAS  Google Scholar 

  205. Hijiya N, Zhang J, Ratajczak MZ, et al. Biological and therapeutic significance of MYB expression in human melanoma. Proc Natl Acad Sci 1994; 91: 4499.

    Article  PubMed  CAS  Google Scholar 

  206. Dean NM, McKay R. Inhibition of PKC-a expression in mice after systemic administration of phosphorothioate antisense oligonucleotides. Proc Natl Acad Sci 1994; 91:11, 762–11, 766.

    Google Scholar 

  207. Guadette MF, Hampikian G, Metelev V, et al. Effect on embryos of injection of phosphorothioate-modified oligonucleotides into pregnant mice. Antisense Res Dev 1993; 3: 391.

    Google Scholar 

  208. Branda RF, Moore AL, Mathews L, et al. Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1. Biochem Pharmacol 1993; 45: 2037.

    Google Scholar 

  209. McIntyre KW, Lombard-Gilooly K, Perez JR, et al. A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-kB p65 causes sequence-specific immune stimulation. Antisense Res Dey 1993; 3:309.

    Google Scholar 

  210. Cornish KG, Iversen P, Smith L, et al. Cardiovascular effects of a phosphorothioate oligonucleotide with sequence antisense to p53 in the conscious rhesus monkey. Pharmacol Commun 1993; 3:239.

    Google Scholar 

  211. Crooke ST. Advances in oligonucleotide therapeutics. 1994 Experimental Biology Meeting, American Society for Pharmacology and Experimental Therapeutics, Anaheim, CA, April 24–28, 1994. Abstract.

    Google Scholar 

  212. Palestine AG, Cantrill HL, Luckie AP, et al. Intravitreal treatment of CMV retinitis with an antisense oligonucleotide, ISIS 2922. Tenth International Conference on AIDS. Yokohama, Japan, August 7–12, 1994. Abstract.

    Google Scholar 

  213. Stepkowski SM, Tu Y, Condon TP, et al. Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1994; 153:5336.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crooke, S.T. (1997). Antisense Oligonucleotides. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics