Skip to main content

Interferons and Other Cytokines

  • Chapter
Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 164 Accesses

Abstract

Cancer therapy with cytokines is a rapidly growing field owing to recent advances in immunology, molecular biology, and cell biology. In normal physiology, cytokines are proteins that regulate cell behavior in a paracrine or autocrine manner. When administered exogenously, these proteins often possess biological activities that make them attractive for cancer therapy. Results of clinical trials to date indicate that cytokines may be used along with other current cancer therapies and may eventually replace some of these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaacs A, Lindenmann J. Virus interference I. The interferon. Proc R Soc Lond Ser B 1957; 147: 258–267.

    Article  CAS  Google Scholar 

  2. Balkwill FR. Cytokines in Cancer Therapy. New York: Oxford University Press, 1989.

    Google Scholar 

  3. Jahiel RI, Krim M. Interferons: biology, clinical trials, and effects on hematologic neoplasms. In: Chiao JW, ed. Biological Response Modifiers and Cancer Therapy. New York: Marcel Dekker. 1988: 197–266.

    Google Scholar 

  4. Uze G, Lutfalla, Gresser I. Genetic transfer of a functional human interferon a receptor into mouse cells: cloning and expression of its cDNA. Cell 1990; 60: 225–234.

    Article  PubMed  CAS  Google Scholar 

  5. Novick D, Cohen B, Rubinstein M. The human interferon a/ß receptor: characterization and molecular cloning. Cell 1994; 77: 391–400.

    Article  PubMed  CAS  Google Scholar 

  6. Paucker K, Cantell K. Henle W. Quantitative studies on viral interference in suspended L cells. III. Effect of interfering viruses and interferon on the growth rate of cells. Virology 1962; 17: 324–334.

    Article  PubMed  CAS  Google Scholar 

  7. Gresser I. Antitumor effects of interferon. Adv Cancer Res 1972; 16: 97–140.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor-Papadimitriou J, Rozengurt E. Interferons as regulators of cell growth and differentiation. In: Taylor-Papadimitriou J, ed. Interferons, Their Impact in Biology and Medicine. Oxford: Oxford Medical Publications. 1985: 81–98.

    Google Scholar 

  9. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    Article  PubMed  CAS  Google Scholar 

  10. Salmon SE, Durk BG, Young L, Liu RM, Trown PW, Stebbing N. Effects of cloned human leukocyte interferons in the human tumor stem cell assay. J Clin Oncol 1983; 1: 217–225.

    PubMed  CAS  Google Scholar 

  11. Wadler S, Schwarz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res 1990; 50: 3473–3486.

    PubMed  CAS  Google Scholar 

  12. Denz H. Lechleitner M, Marth Ch, Daxenbichler G, Gastl G, Braunsteiner H. Effect of human recombinant alpha-2 and gamma-interferon on the growth of human cell lines from solid tumors and hematologic malignancies. J Interferon Res 1985; 5: 147–157.

    Article  PubMed  CAS  Google Scholar 

  13. Brunda MJ, Wright RB. Differential antiproliferative effects of combinations of recombinant interferons alpha and gamma on two murine tumor cell lines. Int J Cancer 1986; 37: 287–291.

    Article  PubMed  CAS  Google Scholar 

  14. Kikuchi A, Holan V, Minowada J. Effects of tumor necrosis factor alpha, interferon alpha and interferon gamma on non-lymphoid leukemia cell lines: growth inhibition, differentiation induction and drug sensitivity modulation. Cancer Immunol Immunother 1992; 35 (4): 257–263.

    Article  PubMed  CAS  Google Scholar 

  15. Matsubara N, Fuchimoto S, Orita K. Antiproliferative effects of natural human tumor necrosis factor-alpha, interferon-alpha, and interferon-gamma on human pancreatic carcinoma cell lines. Int J Pancreatol 1991; 8 (3): 235–243.

    PubMed  CAS  Google Scholar 

  16. Dorr RT. Interferon-a in malignant and viral diseases. Drugs 1993; 45 (2): 177–211.

    Article  PubMed  CAS  Google Scholar 

  17. Einhorn S, Showe L, Ostlund L, Juliusson G, Robert KH, Gahrton G, Croce C. Influence of interferon-alpha on the expression of cellular oncogenes in primary chronic lymphocytic leukemia cells. Oncogene Res 1988; 3 (1): 39–49.

    PubMed  CAS  Google Scholar 

  18. Hannigan GE, Williams BR. Interferon-alpha activates binding of nuclear factors to a sequence element in the c-fos proto-oncogene 5 ’-flanking region. J Interferon Res 1992; 12 (5): 355–361.

    Article  PubMed  CAS  Google Scholar 

  19. Baron S. Tyring SK, Fleischmann WR, Coppenhaver DH, Niesel DW, Klimpel GR, Stanton GJ, Hughes TK. The interferons: mechanisms of action and clinical applications. J Am Med Assoc 1991; 266: 1375–1383.

    Article  CAS  Google Scholar 

  20. Pelligrini S, Schindler C. Early events in signalling by interferons. Trends Biochem Sci 1993; 18: 338–342.

    Article  Google Scholar 

  21. Gresser I, Brouty-Boye D, Thomas MT, Macieira A. Interferon and cell division. I. Inhibition of the multiplication of mouse leukemia L1210 cells in vitro by interferon preparations. Proc Natl Acad Sci USA 1970; 66: 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  22. Gresser I, Maury C, Brouty-Boye D. Mechanisms of the antitumor effect of interferon in mice. Nature (Lond) 1972; 239: 167, 168.

    Google Scholar 

  23. Lee SH, Kelley S, Chiu H, Stebbing N. Stimulation of natural killer cell activity and inhibition of proliferation of various leukemic cells by purified human leukocyte interferon subtypes. Cancer Res 1982; 42: 1312–1315.

    PubMed  CAS  Google Scholar 

  24. Vuist WM, Visseren MJ, Otsen M, Bos K, Vyth-Dreese FA, Figdor CG, Melief CJ, Hekman A. Enhancement of the antibody-dependent cellular cytotoxicity of human peripheral blood lymphocytes with interleukin-2 and interferon alpha. Cancer Immunol Immunother 1993; 36 (3): 163–170.

    Article  PubMed  CAS  Google Scholar 

  25. Hokland P, Berg K. Interferon enhances the antibody-dependent cellular cytotoxicity (ADCC) of human polymorphonuclear lymphocytes. J Immunol 1981; 127: 1585–1588.

    PubMed  CAS  Google Scholar 

  26. Webb DSA, Zur Nedden D, Miller DM, Zoon KC, Gerrard TL. Enhancement of monocyte-mediated tumoricidal activity by multiple interferon-a species. Cell Immunol 1989; 124: 158–167.

    Article  PubMed  CAS  Google Scholar 

  27. Oberg K. The action of interferon alpha on human carcinoid tumours. Semin Cancer Biol 1992; 3 (1): 35–41.

    PubMed  CAS  Google Scholar 

  28. Angus R, Collins CM, Symes MO. The effect of alpha and gamma interferon on cell growth and histocompatibility antigen expression by human renal carcinoma cell in vitro. Eur J Cancer 1993; 29A (13): 1879–1885.

    Article  Google Scholar 

  29. Gaicomini P, Aguzzi A, Pestha S. Modulation by recombinant DNA leukocyte (a) and fibroblast (ß) interferons of the expression and shedding of HLA- and tumor-associated antigens by human melanoma cells. J Immunol 1984; 133: 1649–1655.

    Google Scholar 

  30. Greiner JW, Hand PH, Noguchi P, Fisher PB, Pestka S, Schlom J. Enhanced expression of surface tumor associated Ag on human breast and colon tumor cells after recombinant human leukocyte a-interferon treatment. Cancer Res 1984; 44: 3208–3211.

    PubMed  CAS  Google Scholar 

  31. Brouty-Boye D, Zetter BR. Inhibition of cell motility by interferon. Science 1980; 208: 516–518.

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak H, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81: 497–502.

    Article  CAS  Google Scholar 

  33. Gresser I, Coppey J, Falcoff E, Fontaine D. Interferon and murine leukemia. I. Inhibitory effects of interferon preparations on development of Friend leukemia in mice. Proc Soc Exp Biol Med 1967; 124: 84–91.

    PubMed  CAS  Google Scholar 

  34. Gresser I, Coppey J, Bourali C. Interferon and murine leukemia. 6. Effect of interferon preparations on lymphoid leukemia of AKR mice. J Natl Cancer Inst 1969; 43: 1083–1089.

    PubMed  CAS  Google Scholar 

  35. Gresser I, Bourali C. Exogenous interferon and inducers of interferon in the treatment of Balb/c mice inoculated with RC„ tumor cells. Nature 1969; 223: 844–845.

    Article  PubMed  CAS  Google Scholar 

  36. Thomas H, Balkwill FR. Effects of interferons and other cytokines on tumors in animals: a review. Pharmacol Ther 1991; 52: 307–330.

    Article  PubMed  CAS  Google Scholar 

  37. Brunda MJ, Rosenbaum D, Stern L. Inhibition of experimentally-induced murine metastases by recombinant alpha interferon: correlation between the modulatory effect of interferon treatment on natural killer cell activity and inhibition of metastases. Int J Cancer 1984; 34: 421–426.

    Article  PubMed  CAS  Google Scholar 

  38. Gresser I, Maury C, Carnaud C, De Maeyer E, Maunroy MT, Belardelli F. Antitumor effects of IFN in mice injected with IFN sensitive and IFN-resistant Friend erythroleukaemia cells. VIII. Role of the immune system in the inhibition of visceral metastases. Int J Cancer 1990; 46: 468–474.

    Article  PubMed  CAS  Google Scholar 

  39. Chirigos MA, Pearson JW. Brief communication: cure of murine leukemia with drug and interferon treatment. J Natl Cancer Inst 1973; 51: 1367, 1368.

    Google Scholar 

  40. Gresser I, Maury C, Tovey M. Efficacy of combined interferon cyclophosphamide therapy after diagnosis of lymphoma in AKR mice. Eur J Cancer 1978; 14: 97–99.

    PubMed  CAS  Google Scholar 

  41. Balkwill FR, Moodie EM. Positive interactions between human interferon and cyclophosphamide or Adriamycin in a human tumor model system Cancer Res 1984; 44: 904–907.

    PubMed  CAS  Google Scholar 

  42. Carmichael J, Fergusson RJ, Wolf CR, Balkwill FR, Smyth JF. Augmentation of cytotoxicity of chemotherapy by human a-interferons in human non-small cell lung cancer xenografts. Cancer Res 1986; 46: 4916–4920.

    PubMed  CAS  Google Scholar 

  43. Sklarin NT, Chahinian AP, Feuer EJ, Lahman LA, Szrajer L, Holland JR. Augmentation of activity of cis-diamminedichloroplatinum (II) and mitomycin C by interferon in human malignant mesothelioma xenografts in nude mice. Cancer Res 1988; 48: 64–67.

    PubMed  CAS  Google Scholar 

  44. Brunda MJ, Bellantoni D, Sulich V. In vivo anti-tumor activity of combinations of interferon alpha and interleukin-2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. Int J Cancer 1987; 40: 365–371.

    Article  PubMed  CAS  Google Scholar 

  45. Brunda MJ. Antitumour activity of interleukin-2 combined with other cytokines. In: Waxman J, Balkwill F, eds. Interleukin-2. Oxford: Blackwell Scientific Publications. 1992: 106–121.

    Google Scholar 

  46. Koren S, Fleischmann WR. Quantitation of in vivo potentiation resulting from combined interferon therapy: antitumor effect against B-16 melanoma in mice. J Interferon Res 1986; 6: 473–482.

    Article  PubMed  CAS  Google Scholar 

  47. Truitt GA, Bontempo JM, Stern LL, Sulich V, Bellantoni D, Trown PW, Brunda MJ. Efficacy and toxicity elicited by recombinant interferons alpha and gamma when administered in combination to tumor-bearing mice. Biotech Ther 1989–90; 1(1):1–16.

    Google Scholar 

  48. Sayers TJ, Wiltrout TA, McCormick K, Husted C, Wiltrout RH. Antitumor effects of a-interferon and y-interferon on a murine renal cancer (Renca) in vitro and in vivo. Cancer Res 1990; 50: 5414–5420.

    CAS  Google Scholar 

  49. Brunda MJ, Wright RB, Luistro L, Harbison ML, Anderson TD, McIntyre KW. Enhanced antitumor efficacy in mice by combination treatment with interleukin-la and interferon-a. J Immunother 1994; 15: 233–241.

    Article  CAS  Google Scholar 

  50. Sanada E, Fuchimoto S, Orita, K. Synergistic antiproliferative effect of the combination of natural human tumor necrosis factor-alpha and natural murine interferon-alpha/beta against colon-26 adenocarcinoma hepatic metastases in a murine model. Acta Med Okayama 1990; 44 (4): 217–222.

    PubMed  CAS  Google Scholar 

  51. Kedar E, Rutkowski Y, Leshem B. Chemo-immunotherapy of murine solid tumors: enhanced therapeutic effects by interleukin-2 combined with interferon alpha and the role of specific T cells. Cancer Immunol Immuother 1992; 35 (1): 63–68.

    Article  CAS  Google Scholar 

  52. Ogura H, Tani K, Ozawa K, Nagata S, Asano S, Takaku F. Implantation of genetically manipulated fibroblasts into mice as antitumour alpha-IFN therapy. Cancer Res 1990; 50: 5102–5106.

    PubMed  CAS  Google Scholar 

  53. Ferrantini M, Proietti E, Santodonato L, Gabriele L, Peretti M, Plavec I, Meyer F, Kaido T, Gresser I, Belardelli F. at-Interferon gene transfer into metastatic Friend leukemia cells abrogated tumorigenicity in immunocompetent mice: antitumor therapy by means of interferon-producing cells. Cancer Res 1993; 53: 1107–1112.

    PubMed  CAS  Google Scholar 

  54. Ferrantini M, Giovarelli M, Modesti A, Musiani P, Modica A, Venditti M, Peretti E, Lollini P, Nanni P, Forni G, Belardelli F. IFN-al gene expression into a metastatic murine adenocarcinoma (TS/A) result in CD8+ T cell-mediated tumor rejection and development of antitumor immunity. J Immunol 1994; 153: 4604–4615.

    PubMed  CAS  Google Scholar 

  55. Came PE. Interferon: its application and future as an antineoplastic agent. In: Ottenbrite RM, Butler GB, eds. Anticancer and Interferon Agents. Synthesis and Properties. New York: Marcel Dekker. 1984: 301–319.

    Google Scholar 

  56. Platanias LC, Golomb HM. Clinical use of interferons: hairy cell, chronic myelogenous and other leukemias. In: Baron S. Coppenhaver DH, Dianzani F, Fleischmann WR, Hughes TK, Klimpel GR, Niesel DW, Stanton GJ, Tyring SK, eds. Interferon: Principles and Medical Applications. Galveston: The University of Texas Medical Branch. 1992: 487–499.

    Google Scholar 

  57. Strander H, Oberg K. Clinical use of interferons: solid tumors. In: Baron S. Coppenhaver DH, Dianzani F, Fleischmann WR, Hughes TK, Klimpel GR, Niesel DW, Stanton GJ, Tyring SK, eds. Interferon: Principles and Medical Applications. Galveston: The University of Texas Medical Branch. 1992: 533–561.

    Google Scholar 

  58. Smith JW, Longo DL, Urba WJ, Clark JW, Watson T, Beveridge J, Conlon K, Sznol M, Creekmore SP, Alvord WG, Lawrence JB, Steis RG. Prolonged, continuous treatment of hairy cell leukemia patients with recombinant interferon-a2a. Blood 1991; 78: 1664–1671.

    PubMed  Google Scholar 

  59. Vedantham S, Gamliel H, Golomb HM. Mechanism of interferon action in hairy cell leukemia: a model of effective cancer biotherapy. Cancer Res 1992; 52: 1056–1066.

    PubMed  CAS  Google Scholar 

  60. Gutterman JU. Cytokine therapeutics: lessons from interferon a. Proc Natl Acad Sci USA 1994; 91: 1198–1205.

    Article  CAS  Google Scholar 

  61. Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Ann Intern Med 1991; 114: 532–538.

    PubMed  CAS  Google Scholar 

  62. Arthur CK, Ma DDF. Combined interferon alpha-2a and cytosine arabinoside as first-line treatment for chronic myeloid leukemia. Acta Haematol 1992; 89 (suppl 1): 15–21.

    Article  Google Scholar 

  63. Higano CS, Raskind WH, Singer JW. Use of a interferon for the treatment of relapse of chronic myelogenous leukemia in chronic phase after allogeneic bone marrow transplantation. Blood 1992; 80: 1437–1442.

    PubMed  CAS  Google Scholar 

  64. Keilholz U, Scheibenbogen C, MacLachlan D, Jochim A, Bergmann L, Weidmann E, Mitrou PS, Tilgen W, Hunstein W. Treatment of metastatic melanoma with interferon-a and high dose interleukin-2. In: Bergmann L, Mitrou PS, eds. Cytokines in Cancer Therapy. Contributions to Oncology. Basel: Karger. 1994: 191–200.

    Google Scholar 

  65. Khayat D, Antoine E, Rixe O, Tourani JM, Vuillemin E, Borel C, Benhammouda A, Thill L, Franks C, Auclerc G, et al. Chemoimmunotherapy of metastatic malignant melanoma. The Salpetriere Hospital (SOMPS) experience. Eur J Cancer 1993; 29A (S5): S2 - S5.

    Article  Google Scholar 

  66. Fossa SD. Proc Symp, Progress in the treatment of renal cell carcinoma. Cambridge: Queens College, 1989: 12–21.

    Google Scholar 

  67. Bergerat JP, Herbrecht R, Dufour P, Jacqmin D, Bollack C, Prevot G, Bailly G, De Gans S, Juraschek F, Oberling F. Combination of recombinant interferon alpha-2a and vinblastine in advanced renal cell cancer. Cancer 1988; 62: 2320–2324.

    Article  PubMed  CAS  Google Scholar 

  68. Fossa SD, Gunderson R, Moe B. Recombinant interferon-alpha combined with prednisone in metastatic renal cell carcinoma. Cancer 1990; 65: 2451–2454.

    Article  PubMed  CAS  Google Scholar 

  69. Sella A, Logothetis J, Fitz K, Dexeus FH, Amato R, Kilbourn R, Wallace S. Phase II study of interferon-a and chemotherapy (5-fluorouracil and mitomycin C) in metastatic renal cell cancer. J Urol 1992; 147: 573–577.

    PubMed  CAS  Google Scholar 

  70. Rosenberg SA, Lotze MT, Yang JC, Linehan WM, Seipp C, Calabro S, Karp SE, Sherry RM, Steinberg S, White DE. Combination therapy with interleukin-2 and alpha-interferon for the treatment of patients with advanced cancer. J Clin Oncol 1989; 7: 1863, 1874.

    Google Scholar 

  71. Atzpodien J, Kirchner H, Poliwoda H. Treatment strategies employing chemoimmunotherapy in patients with metastatic renal carcinoma. In: Bergmann L, Mitrou PS, eds. Cytokines in Cancer Therapy. Contributions to Oncology. Basel: Karger. 1994: 211–217.

    Google Scholar 

  72. Evans LM, Itri LM, Campion M, Wyler-Plaut R, Krown SE, Groopman JE, Goldsweig H, Volberding PA, West SB, Mitsuyasu RT, et al. Interferon-alpha-2a in the treatment of acquired immunodeficiency syndrome-related Kaposi’s sarcoma. J Immunother 1991; 10: 39–50.

    Article  PubMed  CAS  Google Scholar 

  73. De Wit R, Schattenkerk JKME, Boucher CAB, Bakker PJM, Veenhof KHN, Danner SA. Clinical and virological effects of high-dose recombinant interferon-alpha in disseminated AIDS-related Kaposi’s sarcoma. Lancet 1988; 2: 1214–1217.

    Article  PubMed  Google Scholar 

  74. Folkman J, Shing Y. Minireview: Angiogenesis. J Bio! Chem 1992; 267:10,931–10,934.

    Google Scholar 

  75. Fischl MA. Antiretroviral therapy in combination with interferon for AIDS-related Kaposi’s sarcoma. Am J Med 1991; 90 (suppl 4A): 2S - 7S.

    Article  PubMed  CAS  Google Scholar 

  76. Morgan D, Ruscztti FW, Gallo R. Selective in vitro growth of T-lymphocytes from normal bone marrow. Science 1976; 193: 1007, 1008.

    Google Scholar 

  77. Welte K, Wang CY, Mertelsmann R, Venuta S, Felman SP, Moore MA. Purification of human interleukin-2 to apparent homogeneity and its molecular heterogeneity. J Exp Med 1982; 156: 454–464.

    Article  PubMed  CAS  Google Scholar 

  78. Gillis S, Ferm MM, Ou W, Smith KA. T-cell growth factor: Parameters of production and a quantitative microassay for activity. J Immunol 1978; 120: 2027–2032.

    PubMed  CAS  Google Scholar 

  79. Taniguchi T, Matsui H, Fujita T, Fakaoka C, Kashima N, Yoshimoto R, Hamuro J. Structure and expression of a cloned cDNA for human interleukin-2. Nature 1983; 302: 305–310.

    Article  PubMed  CAS  Google Scholar 

  80. Leonard WJ, Depper JM, Crabtree GR, Rudikoff S, Pumphrey J, Robb RJ, Kronke M, Svetlik, PB, Peffer NJ, Waldmann TA, Greene WC. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature 1984; 311: 626–631.

    Article  PubMed  CAS  Google Scholar 

  81. Nikaido T, Shimizu A, Ishida N, Sabe H, Teshigawara K, Maeda M, Uchiyama T, Yodoi J, Honjo T. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature 1984; 311: 631–635.

    Article  PubMed  CAS  Google Scholar 

  82. Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T. Interleukin-2 receptor ß chain gene: Generation of three receptor forms by cloned human a and 3 chain cDNAs. Science 1989; 244: 551–556.

    Article  PubMed  CAS  Google Scholar 

  83. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Natamura M, Sugamura K. Cloning of the y chain of the human IL-2 receptor. Science 1992; 257: 379–382.

    Article  PubMed  CAS  Google Scholar 

  84. Smith KA. Lowest dose interleukin-2 immunotherapy. Blood 1993; 81: 1414–1423.

    PubMed  CAS  Google Scholar 

  85. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell 1993; 73: 5–8.

    Article  PubMed  CAS  Google Scholar 

  86. Mosmann TR, Coffman RL. Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–173.

    Article  PubMed  CAS  Google Scholar 

  87. Rees RC. The biological response to interleukin-2. In: Waxman J, Balkwill F, eds. Interleukin-2. Oxford: Blackwell Scientific Publications. 1992: 47–68.

    Google Scholar 

  88. Kintzel PE, Calis KA. Recombinant interleukin-2: a biological response modifier. Clin Pharm 1991; 10: 110–128.

    PubMed  CAS  Google Scholar 

  89. Takai Y, Herrmann S, Greenstein JL, Spitalny GL, Burakoff SJ. Requirement for three distinct lymphocytes for the induction of cytotoxic T lymphocytes from thymocytes. J Immunol 1986; 137: 3494–3500.

    PubMed  CAS  Google Scholar 

  90. Gately MK, Wilson DE, Wong HL. Synergy between recombinant interleukin 2 (rIL 2) and IL 2-depleted lymphokine-containing supernatants in facilitating allogeneic human cytolytic T lymphocyte responses in vitro. J Immunol 1986; 136: 1274–1282.

    CAS  Google Scholar 

  91. Hefeneider SH, Conlon PJ, Henney CS. Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cell activity. J Immunol 1983; 130: 222–227.

    PubMed  CAS  Google Scholar 

  92. Rosenberg SA, Grimm EA, McGrogan M, Doyle M, Kawasaki E, Koths K, Mark DF. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 1984; 223: 1412–1415.

    CAS  Google Scholar 

  93. Henney CS, Kuribayashi K, Kern DE, Gillis S. Interleukin-2 augments natural killer cell activity. Nature (Lond) 1981; 291: 335–338.

    Article  CAS  Google Scholar 

  94. Brunda MJ, Tarnowski D, Davatelis V. Interaction of recombinant interferons with recombinant interleukin-2: differential effects on natural killer cell activity and interleukin-2 activated killer cells. Int J Cancer 1986; 37: 787–793.

    Article  PubMed  CAS  Google Scholar 

  95. Talmadge JE, Herberman RB, Chirigos MA, Maluish AE, Schneider MA, Adams JS, Philips H, Thurman GB, Varesio L, Long C, Oldham RK, Wiltrout RH. Hyporesponsiveness to augmentation of murine natural killer cell activity in different anatomical compartments by multiple injections of various immunomodulators including recombinant interferons and interleukin-2. J Immunol 1985; 135: 2483–2491.

    PubMed  CAS  Google Scholar 

  96. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon: lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155: 1823–1841.

    Article  PubMed  CAS  Google Scholar 

  97. Ortaldo JR, Mason AA, Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med 1986; 164: 1193–1205.

    Article  PubMed  CAS  Google Scholar 

  98. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233: 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  99. Espinoza-Delgado I, Bosco MC, Musso T, Gusella GL, Longo DL, Varesio L. Interleukin-2 and human monocyte activation. J Leuk Biol 1995; 57: 13–19.

    CAS  Google Scholar 

  100. Farrar WL, Johnson HM, Farrar JJ. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol 1981; 124: 1120–1125.

    Google Scholar 

  101. Saraya KA. Interleukin-2 and its place in the cytokine network. In: Waxman J, Balkwill F, eds. Interleukin-2. Oxford: Blackwell Scientific Publications. 1992: 69–77.

    Google Scholar 

  102. Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985; 161: 1169–1188.

    Article  PubMed  CAS  Google Scholar 

  103. Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985; 45: 3735–3741.

    PubMed  CAS  Google Scholar 

  104. Thompson JA, Peace DJ, Klarnet JP, Kern DE, Greenberg PD, Cheever MA. Eradication of disseminated murine leukemia by treatment with high-dose interleukin 2. J Immunol 1986; 137: 3675–3680.

    PubMed  CAS  Google Scholar 

  105. Talmadge JE, Philips H, Schindler J. Tribble H, Pennington R. Systematic preclinical study on the therapeutic properties of recombinant human interleukin 2 for the treatment of metastatic disease. Cancer Res 1987; 47: 5752.

    Google Scholar 

  106. Truitt GA, Brunda MJ, Levitt D, Anderson TD, Sherman MI. The therapeutic activity in cancer of IL-2 in combination with other cytokines. Cancer Surveys 1989; 8: 875–889.

    PubMed  CAS  Google Scholar 

  107. Gately MK, Anderson TK, Hayes TJ. Role of asialo-GM,-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice. J Immunol 1988; 141: 189–200.

    PubMed  CAS  Google Scholar 

  108. Mule JJ, Yang JC, Lafreniere RL, Shu S, Rosenberg SA. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. J Immunol 1987; 139: 285–294.

    PubMed  CAS  Google Scholar 

  109. Papa MZ, Vetto JT, Ettinghausen SE, Mule JJ, Rosenberg SA. Effect of corticosteroid on the antitumor activity of lymphokine-activated killer cells and interleukin 2 in mice. Cancer Res 1986; 46: 5618–5623.

    PubMed  CAS  Google Scholar 

  110. Papa MZ, Mule JJ, Rosenberg SA. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: Successful immunotherapy of established pulmonary metastases from weakly immunogenic and nonimmunogenic murine tumors of three distinct histological types. Cancer Res 1986; 46: 4973–4978.

    PubMed  CAS  Google Scholar 

  111. Weber JS, Jay G, Tanaka K, Rosenberg SA. Immunotherapy of a murine tumor with interleukin 2. Increased sensitivity after MHC class I gene transfer. JExp Med 1987; 166: 1716–1733.

    Article  CAS  Google Scholar 

  112. Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 1984; 225: 1487–1489.

    Article  PubMed  CAS  Google Scholar 

  113. Mule JJ, Shu S, Rosenberg SA. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985; 135: 646–652.

    CAS  Google Scholar 

  114. Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985; 45: 3735–3741.

    PubMed  CAS  Google Scholar 

  115. Mule JJ, Yan J, Shu S, Rosenberg SA. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: Direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol 1986; 136: 3899–3909.

    PubMed  CAS  Google Scholar 

  116. Basse P, Herberman RB, Nannmark U. Johansson BR, Hokland M, Wasserman K, Goldfarb RH. Accumulation of adoptively transferred adherent, lymphokine-activated killer cells in murine metastases. J Exp Med 1991; 174: 479–488.

    Article  PubMed  CAS  Google Scholar 

  117. Futami H, Pilar o AM, Gruys ME, Back TC, Young HA, Wiltrout RH. In vivo distribution and cytokine expression by enriched mouse LAK effector cells. Biotherapy 1991; 3: 219–232.

    Article  PubMed  CAS  Google Scholar 

  118. Spiess PJ, Yang JC, Rosenberg SA. In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Nall Cancer Inst 1987; 79: 1067–1075.

    CAS  Google Scholar 

  119. Alexander R, Rosenberg SA. Long term survival of adoptively transferred tumor-infiltrating lymphocytes in mice. J Immunol 1990; 145: 1615–1620.

    PubMed  CAS  Google Scholar 

  120. Alexander RB, Rosenberg SA. Adoptively transferred tumor-infiltrating lymphocytes can cure established metastatic tumor in mice and persist long-term in vivo as functional memory T lymphocytes. J Immunother 1991; 10: 389–397.

    Article  PubMed  CAS  Google Scholar 

  121. Salup RR, Back TC, Wiltrout RH. Successful treatment of advanced murine renal cell cancer by bicompartmental adoptive chemoimmunotherapy. J Immunol 1987; 138: 641–647.

    PubMed  CAS  Google Scholar 

  122. Papa MZ, Yang JC, Vetto J, Shiloni E, Eisenthal A, Rosenberg SA. Combined effects of chemotherapy and interleukin 2 in the therapy of mice with advanced pulmonary tumors. Cancer Res 1988; 48: 122–129.

    PubMed  CAS  Google Scholar 

  123. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397–403.

    Article  PubMed  CAS  Google Scholar 

  124. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990; 172: 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  125. Kim TS, Cohen EP. Interleukin-2-secreting mouse fibroblasts transfected with genomic DNA from murine melanoma cells prolong the survival of mice with melanoma. Cancer Res 1994; 54: 2531–2535.

    PubMed  CAS  Google Scholar 

  126. Whittington R, Faulds D. Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993; 46: 446–514.

    Article  PubMed  CAS  Google Scholar 

  127. Bruton JK, Koeller JM. Recombinant interleukin-2. Pharmacotherapy 1994; 635–656.

    Google Scholar 

  128. Physicians Desk Reference. Proleukin. Medical Economics, Montvale, NJ. 1994: 801–804.

    Google Scholar 

  129. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber J, Shiloni E, Vetto JT, Seipp CA, Simpson C, Reichert CM. Observations on the systemic administration of autologous lymphokine activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Eng J Med 1985; 313: 1485–1492.

    Article  CAS  Google Scholar 

  130. Palmer PA, Vinke J, Evers P, Porreaux C, Oskam R, Roest G, Viems F, Becker L, Loriaux E, Franks GP. Continuous infusion of recombinant interleukin-2 with or without autologous lymphokine activated killer cells for the treatment of advanced renal cell carcinoma. Eur J Cancer 1992; 28A: 1038–1044.

    Article  Google Scholar 

  131. Rosenberg SA, Lotze MT, Yand JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in combination with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Nati Cancer Inst 1993; 85: 622–632.

    Article  CAS  Google Scholar 

  132. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, Simpson C, Carter C, Bock S, Schwartzentruber D, Wei JP, White DE. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Eng J Med 1988; 319: 1676–1680.

    Article  CAS  Google Scholar 

  133. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biological effects on human lymphocytes. J Exp Med 1989; 170: 827–845.

    Article  PubMed  CAS  Google Scholar 

  134. Stern AS, Podlaski FJ, Hulmes JD, Pan Y-CE, Quinn PM, Wolitzky AG, Familletti PC, Stremio DL, Truitt T, Chizzonite R, Gately MK. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Nati Acad Sci USA 1990; 87: 6808–6812.

    Article  CAS  Google Scholar 

  135. Gubler U, Chua AO, Schoenbaut DS, Dwyer CM, McComas W, Motyka R, Nabavi N, Wolitzky AG, Quinn PM, Familletti PC, Gately MK. Coexpression of two distinct genes is required to generate secreted, bioactive cytoxic lymphocyte maturation factor. Proc Natl Acad Sci USA 1991; 88: 4143–4147.

    Article  PubMed  CAS  Google Scholar 

  136. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L, Dzialo R, Fitz L, Ferenz C, Hewick RM, Kelleher K, Herrmann SH, Clark SC, Azzoni L, Chan SH, Trinchieri G, Perussia B. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991; 146: 3074–3081.

    PubMed  CAS  Google Scholar 

  137. Chizzonite R, Truitt T, Desai BB, Nunes P, Podlaski FJ, Stern AS, Gately MK. IL-12 receptor. I. Characterization of the receptor on phytohemagglutinin-activated human lymphocytes. J Immunol 1992; 148: 3117–3124.

    PubMed  CAS  Google Scholar 

  138. Desai BB, Quinn PM, Wolitzky AG, Mongini PKA, Chizzonite R, Gately MK. IL-12 receptor. II. Distribution and regulation of receptor expression. J Immunol 1992; 148: 3125–2132.

    PubMed  CAS  Google Scholar 

  139. Chua AO, Chizzonite R, Desai BB, Truitt T, Nunes P, Minetti LJ, Warrier RR, Presky DH, Levine JF, Gately MK, Gubler U. Expression cloning of a human IL-12 receptor component: a new member of the cytokine receptor superfamily with strong homology to gp130. Jlmmunol 1994; 153: 128–136.

    CAS  Google Scholar 

  140. Brunda MJ. Interleukin-12. J Leukocyte Biol 1994; 55: 280–288.

    PubMed  CAS  Google Scholar 

  141. Gately MK, Gubler U, Brunda MJ, Nadeau RR, Anderson TD, Lipman JM, Sarmiento U. Interleukin-12: a cytokine with therapeutic potential in oncology and infectious diseases. Therapeutic Immunol 1994; 1: 187–196.

    CAS  Google Scholar 

  142. Brunda MJ, Gately MK. Interleukin-12: potential role in cancer therapy. In: DeVita V, Hellman S, Rosenberg SA, eds. Important Advances in Oncology 1995. Philadelphia: JB Lippincott Company. 1995: 3–18.

    Google Scholar 

  143. Gately MK, Brunda MJ. Interleukin-12: a pivotal regulator of cell-mediated immunity. In: Kurzrock R, Talpaz M. eds. Cytokines: Interleukins and Their Receptors. Norwell, MA: Kluwer Academic Publishers. 1995: 341–366.

    Chapter  Google Scholar 

  144. Schoenhaut DA, Chua AO, Wolitzky AG, Quinn PM, Dwyer CM, McComas W, Familletti PC, Gately MK, Gubler U. Cloning and expression of murine IL-12. J Immunol 1992; 148: 3433–3440.

    PubMed  CAS  Google Scholar 

  145. Gately MK, Warrier RR, Honasoge S, Carvajal DM, Faherty DA, Connaughton SE, Anderson TD, Sarmiento U, Hubbard BR, Murphy M. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-y in vivo. Intl Immunol 1994; 6: 157–167.

    Article  CAS  Google Scholar 

  146. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MF. Antitumor and antimetastatic activity of interleukin-12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  147. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik M, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Stewart T, Storkus WJ, Lotze MJ. Recombinant interleukin-12 (IL-12) administration induces tumor regression in association with interferon-gamma production. J Immunol 1994; 153: 1697–1706.

    PubMed  CAS  Google Scholar 

  148. Brunda MJ, Gately MK. Antitumor activity of interleukin-12. Clin Immunol Immunopath 1994; 71: 253–255.

    Article  CAS  Google Scholar 

  149. Brunda MJ, Luistro L, Hendrzak JA, Fountoulakis M, Garotta G, Gately MK. Interleukin-12: biology and preclinical studies of a new anti-tumor cytokine. In: Bukowski RM, Finke JH, Klein EA, eds. The Biology of Renal Cell Carcinoma. New York: Springer-Verlag, pp. 177–188.

    Google Scholar 

  150. Tahara J, Zeh HJ, Storkus WJ III, Pappo I, Watkins SC, Gubler U, Wolf SF, Robbins PD, Lotze MT. Fibroblasts genetically engineered to secrete IL-12 can suppress tumor growth and induce antitumor immunity to murine melanoma in vivo. Cancer Res 1994; 54: 182–189.

    PubMed  CAS  Google Scholar 

  151. Brunda MJ, Luistro L, Hendrzak JA, Fountoulakis M, Garotta G, Gately MK. Role of interferon gamma in mediating the antitumor efficacy of interleukin-12. J Immunother 1995; 17: 71–77.

    Article  CAS  Google Scholar 

  152. O’Toole M, Wolf SF, O’Brien C, Hubbard B, Herrmann S. Effect of in vivo IL-12 administration on murine tumor cell growth. J Immunol 1993; 150: 294A.

    Google Scholar 

  153. Stern LL, Tarby CM, Tamborini B, Truitt GA. Preclinical development of IL-12 as an anticancer drug: comparison to IL-2. Proc Am Assoc Cancer Res 1994; 35: 520.

    Google Scholar 

  154. Mayor SE, O’Donnell MA, Clinton SK. Interleukin-12 (IL-12) immunotherapy of experimental bladder cancer. Proc Am Assoc Cancer Res 1994; 35: 474.

    Google Scholar 

  155. Hendrzak JA, Luistro L, Gately MK, Garotta G, Brunda MJ. Role of interferon gamma in mediating the antitumor effects of interleukin-12. Proc Am Assoc Cancer Res 1994; 35: 524.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hendrzak, J.A., Brunda, M.J. (1997). Interferons and Other Cytokines. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics