Skip to main content

Matrix Metalloproteinase Inhibitors

  • Chapter
Cancer Therapeutics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The contribution of extracellular matrix turnover to the invasive phenotype of cancer cells has long been recognized. Hippocrates (460–370 bc), who described invading tendrils of tumor tissue and the resulting destruction of bone and soft tissue, ascribed this behavior to an imbalance of the “Four Humors” resulting in a local excess of one of these, which he called “black bile” (1). This theory was later extended by Galen (131–203 ad), who proposed that the “black bile” was concentrated in areas of tumor invasion (2). Our modern view of the process of cancer invasion and metastasis formation is remarkably similar to these early hypotheses, except that we recognize various lytic enzymes as major components of Hippocrates’ “black bile.” Furthermore, Hippocrates’ concept of a localized imbalance of “Humors” is essentially identical to our current understanding that extracellular matrix degradation and tumor cell migration are dependent on a critical balance between activated proteases and their endogenous inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams F. The Genuine Works of Hippocrates. London: Sydeenham Society, 1849.

    Google Scholar 

  2. Osier W. The Evolution of Modern Medicine. New Haven: Yale University Press, 1921.

    Google Scholar 

  3. Koono M, Ushijima K, Hayashi H. Studies on the mechanisms of invasion in cancer. 3. Purification of a neutral protease of rat ascites hepatoma cell associated with production of chemotactic factor for cancer cells. Int J Cancer 1974; 13: 105–115.

    Article  PubMed  CAS  Google Scholar 

  4. Koono M, Katsuya H, Hayashi H. Studies on the mechanisms of invasion in cancer. IV. A factor associated with release of neutral protease of tumor cell. Int J Cancer 1974; 13: 334–342.

    Article  PubMed  CAS  Google Scholar 

  5. Pfleiderer A Jr. Histochemical study of endometrial carcinoma. Systemic investigations of enzymes in infiltrating regions of tumors and interrelations with infiltrated connective tissue. Am J Obstet Gynecol 1969; 104: 823–828.

    PubMed  CAS  Google Scholar 

  6. Sinha B, Goldenberg GJ. The effect of trypsin and neuramidase on the circulation and organ distribution of tumor cells. Cancer 1974; 34: 1956–1961.

    Article  PubMed  CAS  Google Scholar 

  7. Sylven B, Bois-Svenson I. Protein content and enzymatic assays of intersitial fluid from some normal tissues and transplanted mouse tumors. Cancer Res 1960; 20: 239–248.

    Google Scholar 

  8. Sylven B, Bois-Svensson I. On the chemical pathology of interstitial fluid. I. Proteolytic activities in transplanted mouse tumors. Cancer Res 1965; 25: 458–468.

    PubMed  CAS  Google Scholar 

  9. Sylven B. Lysosomal enzyme activity in the interstitial fluid of solid mouse tumour transplants. Eur J Cancer 1968; 4: 463–474.

    PubMed  CAS  Google Scholar 

  10. Nagai Y, Lapiere CM, Gross J. Tadpole collagenase. Preparation and purification. Biochemistry 1966; 5: 3123–3130.

    Article  PubMed  CAS  Google Scholar 

  11. Harris ED, Krane SM. Collagenases. New Eng! J Med 1974; 291:557–563, 605–609, 652–661.

    Google Scholar 

  12. Dresden MH, Hellman SA, Schmidt JD. Collagenolytic enzymes in human neoplasms. Cancer Res 1972; 32: 993–996.

    PubMed  CAS  Google Scholar 

  13. Harris ED Jr., Faulkner CS, Wood S Jr. Collagenase in carcinoma cells. Biochem Biophys Res Commun 1972; 48: 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  14. Carter RL. Metastatic potential of malignant tumours. Invest Cell Pathol 1978; 1: 275–286.

    PubMed  CAS  Google Scholar 

  15. Hashimoto K, Yamanishi Y, Maeyens E. Collagenlytic activities of squamous cell carcinoma of the skin. Cancer Res 1973; 33: 2790–2801.

    PubMed  CAS  Google Scholar 

  16. Robertson DM, Williams DC. In vitro evidence of neutral collagenase activity in an invasive mammalian tumour. Nature 1969; 221: 259, 260.

    Google Scholar 

  17. Strauch L. The role of Collagenase in tumor invasion. In: Tarin D., ed. Tissue Interactions in Carcinogenesis. London: Acedemic. 1972: 399–433.

    Google Scholar 

  18. Taylor AC, Levy BM, Simpson JW. Collagenlytic activity of sarcoma tissues in culture. Nature 1970; 228: 366, 367.

    Google Scholar 

  19. Yamanishi Y, Dabbous MK, Hashimoto K. Effect of Collagenolytic enzymes in basal cell epithelioma of the skin on reconstituted collagen and physical properties and kinetics of the crude enzyme. Cancer Res 1972; 32: 2551–2560.

    PubMed  CAS  Google Scholar 

  20. Yamanishi Y, Maeyens E, Dabbous MK. Collagenlytic activity in malignant melanoma: physiochemical studies. Cancer Res 1973; 33: 2507–2512.

    PubMed  CAS  Google Scholar 

  21. Liotta LA, Kleinerman J, Catanzaro P, Rynbrandt D. Degradation of basement membrane by murine tumor cells. J Natl Cancer Inst 1977; 58: 1427–1431.

    PubMed  CAS  Google Scholar 

  22. Kuettner KE, Soble L, Croxen RL, Marczynska B, Hiti J, Harper E. Tumor cell collagenase and its inhibition by a cartilage-derived protease inhibitor. Science 1977; 196: 653, 654.

    Google Scholar 

  23. Liotta LA, Abe S, Robey PG, Martin GR. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Nall Acad Sci USA 1979; 76: 2268–2272.

    Article  CAS  Google Scholar 

  24. Kleinman HK, McGarvey JL, Liotta LA, Robey PG, Tryggvason K, Matrin GR. Isolation and characterization of type IV porcollagen, laminin and heparan sulfate from the EHS sarcoma. Biochemistry 1981; 21: 6188–6193.

    Article  Google Scholar 

  25. Timpl RA, Dziadek M. Structure, development and molecular pathology of basement membranes. Int Rev Exp Pathol 1986; 29: 1–112.

    Article  PubMed  CAS  Google Scholar 

  26. Yurchenco PD. Assembly of basement membranes. Ann NY Acad Sci 1990; 580: 195–213.

    Article  PubMed  CAS  Google Scholar 

  27. Nagase J, Barrett AJ, Woessner JF. Nomenclature and Glossary of the Matrix Metalloproteinases. Matrix 1992; suppl no 1: 421, 424.

    Google Scholar 

  28. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197–250.

    PubMed  CAS  Google Scholar 

  29. Matrisian LM, Bowden GT, Krieg P, Fiirstenberger G, Briand J-P, Leroy P, Breathnach R. The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors. Proc Natl Acad Sci 1986; 83: 9413–9417.

    Article  PubMed  CAS  Google Scholar 

  30. Bassett P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinoma. Nature 1990; 348: 699–704.

    Article  Google Scholar 

  31. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1994; 269:16, 766–16, 773.

    Google Scholar 

  32. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67, 68.

    Google Scholar 

  33. Liotta LA, Rao CN, Barsky SF. Tumor invasion and the extracellular matrix. Lab Invest 1983; 49: 636–649.

    PubMed  CAS  Google Scholar 

  34. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9: 541–573.

    Article  PubMed  CAS  Google Scholar 

  35. Mignatti P, Robbins E, Rifkin DB. Tumor invasion through the human amnion membrane: requirement for a proteinase cascade. Cell 1986; 47: 487–498.

    Article  PubMed  CAS  Google Scholar 

  36. Hendrix MJ, Gehlsen KR, Wagner HN Jr., Rodney SR, Misiorowski RK, Meyskens FL Jr. In vitro quantification of melanoma tumor cell invasion. Clin Exp Metastasis 1985; 3: 221–233.

    Article  PubMed  CAS  Google Scholar 

  37. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.

    PubMed  CAS  Google Scholar 

  38. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992; 14: 455–462.

    Article  PubMed  CAS  Google Scholar 

  39. Kleiner DE Jr., Stetler-Stevenson WG. Structural biochemistry and activation of matrix metalloproteases. Curr Opinion Cell Biol 1993; 5: 891–897.

    Article  PubMed  CAS  Google Scholar 

  40. Ray JM, Stetlerstevenson WG. The role of matrix metalloproteases and their inhibitors in tumor invasion, metastasis and angiogenesis. Eur Respir J 1994; 7: 2062–2072.

    PubMed  CAS  Google Scholar 

  41. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. JBiol Chem 1993; 268:23, 824–23, 829.

    Google Scholar 

  42. Sato J, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 1994; 370: 61–65.

    Article  PubMed  CAS  Google Scholar 

  43. Springman EB, Angleton EL, Birkedalhansen H, Vanwart HE. Multiple modes of activation of latent human fibroblast collagenase-evidence for the role of a cys-73 active-site zinc complex in latency and a cysteine switch mechanism for activation. Proc Nat! Acad Sci 1990; 87: 364–368.

    Article  PubMed  CAS  Google Scholar 

  44. Urbanski SJ, Edwards DR, Maitland A, Leco KJ, Watson A, Kossakowska AE. Expression of metalloproteinases and their inhibitors in primary pulmonary carcinomas. Br J Cancer 1992; 66: 1188–1194.

    Article  PubMed  CAS  Google Scholar 

  45. Urbanski SJ, Edwards DR, Hershfield N, Huchcroft SA, Shaffer E, Sutherland L, Kossakowska AE. Expression pattern of metalloproteinases and their inhibitors changes with the progression of human sporadic colorectal neoplasia. Diagn Mol Pathol 1993; 2: 81–89.

    PubMed  CAS  Google Scholar 

  46. Muller D, Wolf C, Abecassis J, Millon R, Engelmann A, Bronner G, Rouyer N, Rio MC, Eber M, Methlin G, et al. Increased stromelysin 3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 1993; 53: 165–169.

    PubMed  CAS  Google Scholar 

  47. Majmudar G, Nelson BR, Jensen TC, Voorhees JJ, Johnson TM. Increased expression of stromelysin-3 in basal cell carcinomas. Mol Carcinog 1994; 9: 17–23.

    Article  PubMed  CAS  Google Scholar 

  48. Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 1994; 269:25, 849–25, 855.

    Google Scholar 

  49. Kusukawa J, Sasaguri Y, Shima I, Kameyama T, Morimatsu M. Expression of matrix metalloproteinase-2 related to lymph node metastasis of oral squamous cell carcinoma. A clinicopathologic study. Am J Clin Pathol 1993; 99: 18–23.

    PubMed  CAS  Google Scholar 

  50. Monteagudo C, Merino MJ, San-Juan J, Liotta LA, Stetler-Stevenson WG. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 1990; 136: 585–592.

    PubMed  CAS  Google Scholar 

  51. Brown PD, Bloxidge RE, Stuart NS, Gatter KC, Carmichael J. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Nat! Cancer Inst 1993; 85: 574–578.

    Article  PubMed  CAS  Google Scholar 

  52. Brown PD, Bloxidge RE, Anderson E, Howell A. Expression of activated gelatinase in human invasive breast carcinoma. Clin Exp Metastasis 1993; 11: 183–189.

    Article  PubMed  CAS  Google Scholar 

  53. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts (published erratum appears in Cancer Res Aug 1, 1993; 53 [15]:3652). Cancer Res 1993; 53: 2087–2091.

    PubMed  CAS  Google Scholar 

  54. Azzam HS, Arand G, Lippman ME, Thompson EW. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Nat! Cancer Inst 1993; 85: 1758–1764.

    Article  PubMed  CAS  Google Scholar 

  55. Emmert-Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Sloane BF, Liotta LA, StetlerStevenson WG. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol 1994; 145: 1285–1290.

    PubMed  CAS  Google Scholar 

  56. Testa JE. Loss of the metastatic phenotype by a human epidermoid carcinoma cell line, HEp-3, is accompanied by increased expression of tissue inhibitor of metalloproteinase 2. Cancer Res 1992; 52: 5597–5603.

    PubMed  CAS  Google Scholar 

  57. Ponton A, Coulombe B, Skup D. Decreased expression of tissue inhibitor of metalloproteinases in metastatic tumor cells leading to increased levels of collagenase activity. Cancer Res 1991; 51: 2138–2143.

    PubMed  CAS  Google Scholar 

  58. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701–708.

    PubMed  CAS  Google Scholar 

  59. Khokha R, Zimmer MJ, Graham CH, Lala PK, Waterhouse P. Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16–F10 melanoma cells. J Natl Cancer Inst 1992; 84: 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  60. Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16–F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinase-1. J Natl Cancer Inst 1994; 86: 299–304.

    Article  PubMed  CAS  Google Scholar 

  61. Montgomery AM, Mueller BM, Reisfeld RA, Taylor SM, DeClerck YA. Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res 1994; 54: 5467–5473.

    PubMed  CAS  Google Scholar 

  62. Ray JM, Stetler-Stevenson WG. Gelatinase-a activity directly modulates melanoma cell-adhesion and spreading. Embo J 1995; 14: 908–917.

    PubMed  CAS  Google Scholar 

  63. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327–336.

    Article  PubMed  CAS  Google Scholar 

  64. Braunhut SJ, Moses MA. Retinoids modulate endothelial cell production of matrix-degrading proteases and tissue inhibitors of metalloproteinases (TIMP). J Biol Chem 1994; 269: 13, 472–13, 479.

    Google Scholar 

  65. Mignatti P, Tsuboi R, Robbins E, Rifkin DB. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989; 108: 671–682.

    Article  PubMed  CAS  Google Scholar 

  66. Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 1990; 171: 1264–1271.

    Article  PubMed  CAS  Google Scholar 

  67. Albini A, Fontanini G, Masiello L, Tacchetti C, Bigini D, Luzzi P, Noonan DM, StetlerStevenson WG. Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. Aids 1994; 8: 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  68. Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D’Orazi G, Murphy AN, Bird RE, Hoythya M, Fuerst TR, French DL, et al. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993; 156: 235–246.

    Article  PubMed  CAS  Google Scholar 

  69. Tsuboi R, Rifkin DB. Bimodal relationship between invasion of the amniotic membrane and plasminogen activator activity. Int J Cncer 1990; 46: 56–60.

    Article  CAS  Google Scholar 

  70. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990; 248: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  71. Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993; 157: 351–358.

    Article  PubMed  CAS  Google Scholar 

  72. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65–71.

    PubMed  CAS  Google Scholar 

  73. Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22: 339–347.

    PubMed  CAS  Google Scholar 

  74. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  75. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma (see comments). J Natl Cancer Inst 1992; 84: 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  76. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993; 143: 401–409.

    PubMed  CAS  Google Scholar 

  77. Huynh HT, Tetenes E, Wallace L, Pollak M. In vivo inhibition of insulin-like growth factor I gene expression by tamoxifen. Cancer Res 1993; 53: 1727–1730.

    PubMed  CAS  Google Scholar 

  78. Falkson G, Gelman R, Glick J, Falkson CI, Harris J. Reinduction with the same cytostatic treatment in patients with metastatic breast cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 1994; 12: 45–49.

    PubMed  CAS  Google Scholar 

  79. Abrams WB, Davies RO, Ferguson RK. Overview: the role of angiotensin-converting enzyme inhibitors in cardiovascular therapy. Fed Proc 1984; 43: 1314–1321.

    PubMed  CAS  Google Scholar 

  80. Ashworth RW. Drugs affecting the renin-angiotensin system. Prog Drug Res 1982; 26: 207–223.

    PubMed  CAS  Google Scholar 

  81. Van Zwieten PA, De Jonge A, Timmermans PB. Inhibitors of the angiotensin I converting enzyme as antihypertensive drugs. Pharm Weekbl (Sci) 1983; 5: 197–204.

    Article  Google Scholar 

  82. Vincenti MP, Clark IM, Brinckerhoff CE. Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis Rheum 1994; 37: 1115–1126.

    Article  PubMed  CAS  Google Scholar 

  83. Schwartz MA, Van Wart HE. Synthetic inhibitors of bacterial and mammalian interstitial collagenases. Prog Med Chem 1992; 29: 271–334.

    Article  PubMed  CAS  Google Scholar 

  84. Beeley NRA, Ansell PRJ, Docherty AJP. Inhibitors of matrix metalloproteinases (MMPP’s). Curr Opinion Ther Patents 1994; 4: 7–16.

    CAS  Google Scholar 

  85. Brown PD. Clinical trials of a low molecular weight matrix metalloproteinase inhibitor in cancer. Ann NY Acad Sci 1994; 732: 217–221.

    Article  PubMed  CAS  Google Scholar 

  86. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM. Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 1994; 54: 4726–4728.

    CAS  Google Scholar 

  87. Naito K, Kanbayashi N, Nakajima S, Murai T, Arakawa K, Nishimura S, Okuyama A. Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Int J Cancer 1994; 58: 730–735.

    Article  PubMed  CAS  Google Scholar 

  88. Okuyama A, Naito K, Morishima H, Suda H, Nishimura S, Tanaka N. Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Ann NY Acad Sci 1994; 732: 408–410.

    Article  PubMed  CAS  Google Scholar 

  89. Tressler RJ, Wee J, Summers B, Galardy R. Galardin, a potent metalloproteinase inhibitor, prolongs survival time in a B16–F10 melanoma experimental metastasis model. Clin Exp Metastasis 1994; 12: 28.

    Google Scholar 

  90. Taraboletti G, Garofalo A, Belotti D, Drudis T, Borsotti P, Scanziani E, Brown PD, Giavazzi R. Inhibition of angiogenesis and murine hemangioma growth by Batimastat, a synthetic inhibitor of matrix metalloproteinases. J Nat Cancer Inst 1995; 87: 293–298.

    Article  PubMed  CAS  Google Scholar 

  91. Galardy RE, Grobelny D, Foellmer HG, Fernandez LA. Inhibition of angiogenesis by the matrix metalloprotease inhibitor N-[2R-2-(hydroxamidocarbonymethyl)-4-methylpentanoyl)jL-tryptoph-an methylamide. Cancer Res 1994; 54: 4715–4718.

    PubMed  CAS  Google Scholar 

  92. Drummond AH, Beckett P, Boone EA, Brown PD, Davis M, Galloway WA, Taupin P, Wood LM, Davidson AH. BB-2516: An orally bioavailable matrix metalloproteinase inhibitor with efficacy in animal cancer models. Proc Am Assoc Cancer Res 1995; 36: 100

    Google Scholar 

  93. Docherty AJP, Cockett MI, Birch ML, Chander S, Willmott N, O’Connell JP, Crabbe T, Mountain A, Morphy JR, Millican TA, Beeley NRA, Murphy G, Hart IR, Stamp G, Mahadevan V. Gelatinase inhibitors for the treatment of cancer. Clin Exp Metastasis 1994; 12: 12.

    Google Scholar 

  94. Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA, et al. 1.56 A structure of mature truncated human fibroblast collagenase. Proteins 1994; 19: 98–109.

    Article  PubMed  CAS  Google Scholar 

  95. Lovejoy B, Hassell AM, Luther MA, Weigl D, Jordan SR. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 1994; 33: 8207–8217.

    Article  PubMed  CAS  Google Scholar 

  96. Lovejoy B, Cleasby A, Hassell AM, Luther MA, Weigl D, McGeehan G, Lambert MH, Jordan SR. Structural analysis of the catalytic domain of human fibroblast collagenase. Ann NYAcad Sci 1994; 732: 375–378.

    Article  CAS  Google Scholar 

  97. Hassell AM, Anderegg RJ, Weigl D, Milburn MV, Burkhart W, Smith GF, Graber P, Wells TN, Luther MA, Jordan SR. Preliminary X-ray diffraction studies of recombinant 19 kDa human fibroblast collagenase. J Mol Biol 1994; 236: 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  98. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J 1994; 13: 1263–1269.

    PubMed  CAS  Google Scholar 

  99. Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W. Structural implications for the role of the N terminus in the “superactivation” of collagenases. A crystallographic study. FEBS Lett 1994; 338: 227–233.

    CAS  Google Scholar 

  100. Stetler-Stevenson WG, Krutzsch HC, Wacher MP, Marguiles IMK, Liotta LA. The activation of human type IV Collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation. J Bio! Chem 1989; 264: 1353–1356.

    CAS  Google Scholar 

  101. Stetler-Stevenson WG, Talano JA, Gallagher ME, Krutzsch HC, Liotta LA. Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment. Am J Med Sci 1991; 302: 163–170.

    Article  PubMed  CAS  Google Scholar 

  102. Van Wart H, Birkedal HH. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 87: 5578–5582.

    Article  PubMed  Google Scholar 

  103. Sanchez-Lopez R, Nicholson R, Gesnel M-C, Matrisian LM, Breathnach R. Structure-function relationships in the collagenase gene family member transin. J Biol Chem 1988; 263: 11, 892–11, 899.

    Google Scholar 

  104. Melchiori A, Albini A, Ray JM, Stetler-Stevenson WG. Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment. Cancer Res 1992; 52: 2353–2356.

    PubMed  CAS  Google Scholar 

  105. Benelli R, Adatia R, Ensoli B, Stetler-Stevenson WG, Santi L, Albini A. Inhibition of AIDSKaposi’s sarcoma cell induced endothelial cell invasion by TIMP-2 and a synthetic peptide from the metalloproteinase propeptide: implications for an anti-angiogenic therapy. Oncol Res 1994; 6: 251–257.

    PubMed  CAS  Google Scholar 

  106. Muir D. Metalloproteinase-dependent neurite outgrowth within a synthetic extracellular matrix is induced by nerve growth factor. Exp Cell Res 1994; 210: 243–452.

    Article  PubMed  CAS  Google Scholar 

  107. Hanglow AC, Lugo A, Walsky R, Finch-Arietta M, Lusch L, Visnick M, Fotouhi N. Peptides based on the conserved predomain sequence of matrix metalloproteinases inhibit human stromelysin and collagenase. Agents Actions 1993; 39 spec no:C148–50.

    Google Scholar 

  108. Fotouhi N, Lugo A, Visnick M, Lusch L, Walsky R, Coffey JW, Hanglow AC. Potent peptide inhibitors of stromelysin based on the prodomain region of matrix metalloproteinases. J Biol Chem 1994; 269:30, 227–30, 231.

    Google Scholar 

  109. Hanglow AC, Lugo A, Walsky R, Visnick M, Coffey JW, Fotouhi N. Inhibition of human stromelysin by peptides based on the N-terminal domain of tissue inhibitor of metalloproteinases-1. Biochem Biophys Res Commun 1994; 205: 1156–1163.

    Article  PubMed  CAS  Google Scholar 

  110. Anderson TC, Shipp MA, Docherty AJP, Teicher BA. Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res 1996; 56: 715–718.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stetler-Stevenson, W.G. (1997). Matrix Metalloproteinase Inhibitors. In: Teicher, B.A. (eds) Cancer Therapeutics. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-717-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-717-8_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-046-5

  • Online ISBN: 978-1-59259-717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics