Skip to main content

Molecular Genetics and Markers of Progression

  • Chapter
Book cover Management of Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 118 Accesses

Abstract

Prostate cancer (CaP) is the most common solid tumor in American males (1). The wide spectrum of biological behavior (2) exhibited by prostatic neoplasms poses the difficulty of predicting the clinical course in the individual patient (3,4). Because of increasing public awareness and screening efforts, the enhanced incidence has translated into a large increase in the use of radical prostatectomy as well as four other treatment modalities for localized disease (5). With this incremental rise in surgical intervention has come the frustrating realization of the inability to predict organ-confined disease and clinical outcome for a given patient (5, 6). Traditional markers, such as grade, clinical stage, and pretreatment prostate-specific antigen (PSA), are of limited prognostic value for individual men. There is clearly a need to recognize and develop molecular and genetic biomarkers to improve prognostication and the management of the patient with clinically localized CaP. As with other common human neoplasia (7), the search for molecular genetic markers to better define the genesis and progression of CaP, is the key focus for cancer research investigations worldwide.

The opinions and assertions contained herein are the private views of the authors and are not to be constructed as reflecting the views of the US Army or the Department of Defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin 1996; 46: 5 - 27.

    Article  PubMed  CAS  Google Scholar 

  2. Visakorpi T, Kallioniemi OP, Koivula T, Isola J. New prognostic factors in prostate carcinoma. Eur Urol 1993; 24: 438 - 449.

    PubMed  CAS  Google Scholar 

  3. Mostofi FK. Grading of prostate carcinoma. Cancer Chemotherapy Rep 1975; 59: 111.

    CAS  Google Scholar 

  4. Lu-Yao GL, McLerran D, Wasson J, Wennberg JE. An assessment of radical prostatectomy. Time trends, geographical variations and outcomes. JAMA 1993; 269: 2633 - 2636.

    Article  PubMed  CAS  Google Scholar 

  5. Partin AW, Oesterling JE. The clinical usefulness of prostate-specific antigen: update 1994, J Urol 1994; 152: 1358 - 1368.

    PubMed  CAS  Google Scholar 

  6. Wasson JH, Cushman CC, Bruskewit RC, Littenberg B, Mulley AG, Wennberg JE. A structured literature review of treatment for localized prostate cancer. Arch Fam Med 1993; 2: 487 - 493.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg RA. How cancer arises. Sci Am 1996; 9: 62 - 70.

    Article  Google Scholar 

  8. Bostwick DG. High grade prostatic intraepithelial neoplasia: the most likely precursor of prostate cancer. Cancer 1995; 75: 1823 - 1836.

    Article  Google Scholar 

  9. Bostwick DG, Pacelli A, Lopez-Beltran A. Molecular biology of prostatic intraepithelial neoplasia. The Prostate 1996; 29: 117 - 134.

    Article  PubMed  CAS  Google Scholar 

  10. Sah-See accompanying article.

    Google Scholar 

  11. Pannek J, Partin AW: Prostate specific antigen: what s new in 1997. Oncology 1997; 11: 1273 - 1278.

    PubMed  CAS  Google Scholar 

  12. Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, et al. Combination of prostate specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997; 277: 1445 - 1451.

    Article  PubMed  CAS  Google Scholar 

  13. Gomella LG, Raj GV, Moreno JG. Reverse transcriptase polymerase chain reaction for prostate specific antigen in the management of prostate cancer. J Urol 1997; 158: 326 - 337.

    Article  PubMed  CAS  Google Scholar 

  14. Gao CL, Dean RC, Pinto A, Mooneyhan R, Connelly RR, McLeod DG, et al. Detection of PSAexpressing prostatic cells in bone marrow of radical prostatectomy patients by sensitive reverse transcriptase-polymerase chain reaction (RT-PCR).1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 83.

    Google Scholar 

  15. Moul JW. Increased risk of prostate cancer in African American men. Mol Urol 1997; 1: 119 - 127.

    Google Scholar 

  16. Smith JR, Freije D, Carpten JD, Gronberg H, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 276: 1371 - 1374.

    Article  Google Scholar 

  17. Hakimi JM, Rondinelli RH, Schoenberg MP, Barrack ER. Androgen receptor gene structure and function in prostate cancer. World J Urol 1996; 14: 329 - 337.

    Article  PubMed  CAS  Google Scholar 

  18. Chan JM, Stampter MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-1 and prostate cancer risk: a prospective study. Science 1998; 279: 563 - 566.

    Article  PubMed  CAS  Google Scholar 

  19. Moul JW, Gaddipati J, Srivastava S. Molecular biology of prostate cancer. Oncogenes and tumor suppressor genes. In: Dawson NA, Vogelzang NJ, eds. Current Clinical Oncology: Prostate Cancer. Wiley-Liss, New York, 1994, pp. 19 - 46.

    Google Scholar 

  20. Lalani E-N, Laniado ME, Abel PD. Molecular and cellular biology of prostate cancer. Cancer Mets Rev 1997; 16: 29 - 66.

    Article  Google Scholar 

  21. Shi XB, Gumerlock PH, deVere White RW. Molecular biology of prostate cancer. World J Urol 1996; 14: 318 - 328.

    Article  PubMed  CAS  Google Scholar 

  22. Heidenberg HB, Bauer JJ, McLeod DG, Moul JW, Srivastava S: The role of p53 tumor suppressor gene in prostate cancer: A possible biomarker? Urology 1996; 48: 971 - 979.

    Article  PubMed  CAS  Google Scholar 

  23. Issacs WB, Bova GS. Prostate cancer. In: Vogelstein B, Kinzler KW, eds. The Genetic Basis of Human Cancer. McGraw-Hill, New York, 1998, pp. 653 - 660.

    Google Scholar 

  24. Brothman AR, Williams BJ. Prostate cancer. In: Wolman S, Sell S, eds. Human Cytogenetic Cancer Markers. Humana Press, Totowa, NJ, 1997, pp. 223 - 246.

    Chapter  Google Scholar 

  25. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PA, Pinn SS, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allotyping. Cancer Res 1996; 56: 3091 - 3102.

    PubMed  CAS  Google Scholar 

  26. Oshimura M, Sandberg AA. Isochromosome 17 in prostatic cancer. J Urol 1975;114:249,250.

    Google Scholar 

  27. Konig JJ, Teubel W, Kamst E, Ronijn JC, Schroder FH, Hagemeijer A. Cytogenetic analysis of 39 prostate carcinomas and evaluation of short-term tissue culture techniques. Cancer Genet Cytogenet 1998; 101: 116 - 122.

    Article  PubMed  CAS  Google Scholar 

  28. Sandberg AA. Cytogenetic and molecular genetic aspects of human prostate cancer: Primary and metastatic. In: Karr JP, Yamanaka H, eds. Prostate Cancer and Bone Metastasis. Plenum, New York, 1992, pp. 45 - 75.

    Chapter  Google Scholar 

  29. Arps S, Rodewald A, Schmalenberger B, Carl P, Bressel M, Kastendiek H. Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet 1993; 66: 93 - 99.

    Article  PubMed  CAS  Google Scholar 

  30. Lundgren R, Mandahl N, Hein S, Limon J, Herrikson H, Mitelman F. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chrom Cancer 1992; 4: 16 - 24.

    Article  PubMed  CAS  Google Scholar 

  31. Sandberg AA. Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 1992; 23: 368 - 380.

    Article  PubMed  CAS  Google Scholar 

  32. Visakorpi T, Hyytinen E, Kallioniemi A, Isola J, Kallioniemi OP. Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situhybridization. Am J Pathol 1994; 145: 624 - 630.

    PubMed  CAS  Google Scholar 

  33. Visakorpi T, Killioniemi AH, Syvänen AC, Hyytinen ER, Karhu R, Tammela T, et al. Genetic Changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995; 55: 342 - 347.

    PubMed  CAS  Google Scholar 

  34. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP. Genome screening by comparative genomic hybridization. TIG 1997; 13: 405 - 409.

    Article  PubMed  CAS  Google Scholar 

  35. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Gen 1995; 9: 401 - 406.

    Article  CAS  Google Scholar 

  36. Bova GS, Carter BS, Bussemakers MJ,Emi M, Fujiwara Y, Kyprianou N, et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869 - 3873.

    PubMed  CAS  Google Scholar 

  37. MacGrogan D, Levy A, Bostwick D, Wagner M, Wels D, Bookstein R. Loss of chromosome arm 8p in loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151 - 159.

    Article  PubMed  CAS  Google Scholar 

  38. Cher ML, MacGrogan D, Bookstein R, Brown JA, et. al. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosome Cancer 1994; 11 (3): 153 - 162.

    Article  CAS  Google Scholar 

  39. Emmert-Buck M, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, et al. Allelic Loss on Chromosome 8p 12-21 in Microdissected Prostatic Intraepithelial Neoplasia. Cancer Res 1995; 55: 2959 - 2962.

    PubMed  CAS  Google Scholar 

  40. Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 1997; 57 (3): 524 - 531.

    PubMed  CAS  Google Scholar 

  41. Bergerheim US, Kunimi K, Collins VP, Ekman P. Deletion mapping of chromosomes 8, 10 and 16 in human prostatic carcinoma. Genes Chromosomes Cancer 1991; 3: 215 - 220.

    Article  PubMed  CAS  Google Scholar 

  42. Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD, et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 1995; 55: 5390 - 5395.

    PubMed  CAS  Google Scholar 

  43. Trapman J, Sleddens HF, Weiden MM van der, Dinjens WN, Koing JJ, et al. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 1994; 54: 6061 - 6064.

    PubMed  CAS  Google Scholar 

  44. Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, et al. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p21-22. Cancer Res 1996; 56: 2411 - 2416.

    PubMed  CAS  Google Scholar 

  45. Sakr WA, Macoska JA, Benson P, Gringnon DJ, Wolman SR, Pontes JE, et al. Analysis of 99 micro-dissected prostate carcinomas reveal a high frequency of allelic loss on chromosome 8p12-21. Cancer Res 1994; 54: 3273 - 3277.

    PubMed  CAS  Google Scholar 

  46. Bookstein R, Bova GS, MacGrogan, Levy A, Issacs WB. Tumor-suppressor genes in prostate oncogenesis: a positional approach. Br J Urol 1997; 79: 28 - 36.

    Article  PubMed  Google Scholar 

  47. Ichikawa T, Nihei N, Suzuki H, Oshimura M, Emi M, Nakamura Y, et al. Suppression of metastasis of rat prostatic cancer by introducing human chromosome 8. Cancer Res 1994; 54: 2299 - 2302.

    PubMed  CAS  Google Scholar 

  48. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner SP, et al. A novel human prostate specific androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 1997; 43: 69 - 77.

    Article  PubMed  CAS  Google Scholar 

  49. Bieberich CJ, Fujita K, He WW, Jay G. Prostate specific androgen dependent expression of a novel homeobox gene. J Biol Chem 1996;271:31,779-31,782.

    Google Scholar 

  50. Sciavolino PJ, Abrams EW, Yang L, Austenberg LP, Shen MM, Abate-Shen C. Tissue specific expression of murine Nkx3.1 in the male urogenital sinus. Dev Dyn 1997; 209: 127 - 138.

    Article  PubMed  CAS  Google Scholar 

  51. Prescott JL, Blok L, Tindall DJ. Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate 1998; 35: 71 - 80.

    CAS  Google Scholar 

  52. Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP: Coding region of NKX3.1, a prostate specific homeobox gene on 8p21 is not mutated in human prostate cancers. Cancer Res 1997; 57: 4455 - 4459.

    PubMed  CAS  Google Scholar 

  53. Gaur-Bhatia R, Sciavolino P, Desai N, Gridley T, Abate-Shen C, Shen MM. The Nkx3.1 homeobox gene is required for normal prostate development. 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 110.

    Google Scholar 

  54. Xu LL, Srikantan V, Sesterhenn IA, Augustus M, Dean R, Moul JW, et al. Evaluation of expression of an androgen regulated prostate specific homeobox gene, NKX3.1 in human prostate cancer. 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998; p. 110.

    Google Scholar 

  55. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science (Washington, DC) 1997; 275: 1943 - 1947.

    Article  CAS  Google Scholar 

  56. Steck PA, Pershouse MA, Jasser SA, Yung WAK, Lin H, Ligon AH, et al. Identification of a candidate tumor suppressor gene, MMACI, at chromosome 10g23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356 - 362.

    Article  PubMed  CAS  Google Scholar 

  57. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997 - 5000.

    PubMed  CAS  Google Scholar 

  58. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, et al. Interfocal heterogeneity of PTEN/MMACI gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998; 58: 204 - 209.

    PubMed  CAS  Google Scholar 

  59. Becker RL Jr, Mikel UV, Oliver WR, Sesterhenn IA. Enumeration of interphase chromosomes: comparison of visual in situ hybridization and confocal fluorescence in situ hybridization. Anal Quant Cytol Histol 1996; 18: 405 - 409.

    PubMed  Google Scholar 

  60. Ried T. Interphase cytogenetics and its role in molecular diagnostics of solid tumors. Am J Pathol 1998; 152: 325 - 327.

    PubMed  CAS  Google Scholar 

  61. Brothman AR. Cytogenetic studies in prostate cancer: are we making progress? Cancer Genet Cytogenet 1997; 95 (1): 116 - 121.

    Article  PubMed  CAS  Google Scholar 

  62. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Issacs JT, et al. KAII, a metastasis suppressor gene for prostate cancer on human chromosome I Ip11.2. Science 1995; 268: 864 - 866.

    Article  Google Scholar 

  63. Dong JT, Suzuki H, Pin SS, Bova GS, Schalker JA, Issacs WB, et al. Down regulation of KAI1 metastasis suppressor gene during the progression of human cancer infrequently involves gene mutations or allelic loss. Cancer Res 1996; 56: 4387 - 4390.

    PubMed  CAS  Google Scholar 

  64. Nihei N, Ichikawa T, Kawana Y, Kuramoochi H, Kugo H, Oshimura M, et al. Localization of metastasis suppressor genes (s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chrom Can 1995; 14: 112 - 119.

    Article  CAS  Google Scholar 

  65. Schröck E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, et al. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet 1997; 101: 255 - 262.

    Article  PubMed  Google Scholar 

  66. Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, et al. Multicolor spectral karyotyping of mouse chromosomes. Nature Genet 1996; 14: 312 - 315.

    Article  PubMed  CAS  Google Scholar 

  67. Veldman T, Vignon C, Schröck E, Rowley JD, Ried T. Hidden chromosomal abnormalities in hematological malignancies detected by multicolor spectral karyotyping. Nature Genet 1997; 15: 406 - 410.

    Article  PubMed  CAS  Google Scholar 

  68. Ried T, Liyanage M, du Manoir S, Heselmeyer K, Auer G, Macville M, et al. Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J Mol Med 1997; 75: 801 - 814.

    Article  PubMed  CAS  Google Scholar 

  69. Augustus M, Schröck E, Davis L, Heselmeyer K, Moul J, Srivastava S, et al. Landmarking the prostate genome by spectral karyotyping (SKY) and comparative genomic hybridization (CGH). 1998 International Symposium on Biology of Prostate Growth, National Institutes of Health, 1998, p. 71.

    Google Scholar 

  70. Park M. Oncogenes. In: Vogelstein B, Kinzler K, eds. The Genetic Basis of Human Cancer. McGraw Hill, New York, 1998, pp. 205 - 228.

    Google Scholar 

  71. Carter BS, Epstein JI, Isaacs WB. rasgene mutations in human prostate cancer. Cancer Res 1990; 50: 6830 - 6832.

    PubMed  CAS  Google Scholar 

  72. Gumerlock PH, Poonmallee UR, Meyers FJ, deVere White RW. Activated rasalleles in human carcinoma of the prostate are rare. Cancer Res 1991; 51: 1632 - 1637.

    PubMed  CAS  Google Scholar 

  73. Moul JW, Lance RS, Friedrichs PA, Theune SM, Chang EH. Infrequent rasoncogene mutations in human prostate cancer. Prostate 1992; 20: 327 - 338.

    Article  PubMed  CAS  Google Scholar 

  74. Watanabe M, Shiraishi T, Yatanti R, Nomura AM, Stemmermann GN. International comparison on ras gene mutations in latent prostate carcinoma. Int. J Cancer 1994; 58: 174 - 178.

    Article  PubMed  CAS  Google Scholar 

  75. Konishi N, Enomoto T, Buzard G, Ohsima M, Ward JM, Rice JM. K-rasactivation and ras p21 expression in latent prostatic carcinomas in Japanese men. Cancer 1992; 69: 2293 - 2299.

    Article  PubMed  CAS  Google Scholar 

  76. Parda DS, Thraves PJ, Kuettel MR, Lee MS, Armstein P, Kaighn ME, et al. Neoplastic transformation of human prostate epithelial cell line by V-K-rasoncogene. Prostate 1993; 23: 91 - 98.

    Article  PubMed  CAS  Google Scholar 

  77. Cooke DB, Quarmby VE, Petrusz P, Mickey DD, Der CJ, Isaacs JT, et al. Expression of ras protooncogenes in the Dunning R3227 rat prostatic adenocarcinoma system. Prostate 1988; 13: 273 - 289.

    Article  PubMed  CAS  Google Scholar 

  78. Bussemakers MJ, Isaacs JT, Debruyne FMJ, Van de Ven WJM, Schalken JA. Oncogene expression in prostate cancer. World J Urol 1991; 9: 58 - 63.

    Article  Google Scholar 

  79. Voeller, HJ, Wilding G, Gelman EP. v-rasesexpression confers hormone independent in vitrogrowth to LNCaP prostate carcinoma cells. Mol Endocrinol 1991; 5: 209 - 211.

    Article  PubMed  CAS  Google Scholar 

  80. Danes R, Nardini D, Basolo F, Tacca MD, Samid D, Myers CE. Phenylacetae inhibits protein isoprenylation and growth of the androgen-independent LNCaP prostate cancer cells transfected with T24 Ha-ras oncogene. Mol. Pharmacol 1996;49:972,973.

    Google Scholar 

  81. Shih C, Padhy LC, Murray M, et al. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261.

    Article  PubMed  CAS  Google Scholar 

  82. Semba K, Kamata N, Toyoshima K, et al. A V-erbrelated proto-oncogene, c-erbB-2is distinct from the c-erbB-1epidermal growth factor receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 1985; 82: 6497.

    Article  PubMed  CAS  Google Scholar 

  83. King CR, Kruas MH, Aaronson SA. Amplification of a novel c-erbBrelated gene in a human mammary carcinoma. Science 1985; 229: 974.

    Article  PubMed  CAS  Google Scholar 

  84. Maguire HC, Greene MI. The neu (c-erbB-2)oncogene. Semin Oncol 1989; 16: 148.

    PubMed  CAS  Google Scholar 

  85. Yokota J, Toyoshima K, Sugimura T, et al. Amplification of c-erbB-2oncogene in human adenocarcinomas in vivo. Lancet 1986; 1: 765.

    Article  PubMed  CAS  Google Scholar 

  86. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the erbB-2 neuoncogene. Science 1987; 235: 177.

    Article  PubMed  CAS  Google Scholar 

  87. Slamon DJ, Clark GM, Wong SG, et al. Studies of HER-2/neuproto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707.

    Article  PubMed  CAS  Google Scholar 

  88. Reese DM, Slamon DJ. HER-2/neusignal transduction in human breast and ovarian cancer. Stem Cells 1997; 15: 1 - 8.

    Article  PubMed  CAS  Google Scholar 

  89. Zhau HE, Wan DS, Zhou J, Miller GJ, Von Eschenbach AC. Expression of c-erbB-2/neuproto-oncogene in human prostatic cancer tissues and cell lines. Mol Carcinog 1992; 5: 320 - 327.

    Article  PubMed  CAS  Google Scholar 

  90. Ware JL, Maygarden SJ, Koontz WW, Strom SC. Immunohistochemical detection of c-erbB-2protein in human benign and neoplastic prostate. Hum Pathol 1991; 22: 254.

    Article  PubMed  CAS  Google Scholar 

  91. Mellon K, Thompson S, Charlton RG, et al. p53, c-erb-B2and the epidermal growth factor receptor in the benign and malignant prostate. J Urol 1992; 147: 496 - 499.

    PubMed  CAS  Google Scholar 

  92. Visakorpi T, Kallioniemi OP, Koivula T, Harvey J, Isola J. Expression of epidermal growth factor receptor and ERBB2 (HER-2/neu) oncoprotein in prostatic carcinomas. Mod Pathol 1992; 5: 643 - 648.

    PubMed  CAS  Google Scholar 

  93. Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R, et al. Over-expression of HER-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 1993; 150: 126 - 131.

    PubMed  CAS  Google Scholar 

  94. Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW. Expression of the c-erbB-2(HER-2 neu)oncoprotein in human prostatic carcinoma: Prognostic determinants? J Urol 1993; 150: 1427 - 1433.

    PubMed  CAS  Google Scholar 

  95. Fox SB, Persad RA, Collins CC, Royds J, Silcocks SB. EGFR, c-erbB-2, p53 and c-mycexpression in stage Al prostate adenocarcinoma: prognostic determinants? J Urol 1993; 149: 331A, (Abstract 475).

    Google Scholar 

  96. Ross JS, Sheehan CE, Haynor-Buchan AM, Ambros RA, Kallakury BV, Kauffman RP, et al. HER2/neugene amplification status in prostate cancer by fluorescence in situhybridization. Hum Pathol 1997; 28: 827 - 833.

    Article  PubMed  CAS  Google Scholar 

  97. Ross JS, Sheehan CE, Haynor-Buchan AM, Ambros RA, Kallakury BV, Kauffman RP, et al. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situhybridization of prostate carcinoma. Cancer 1997; 79: 162 - 170.

    Article  Google Scholar 

  98. Myers RB, Brown D, Oelschlager DK, Waterbor JW, Marshall ME, Srivastava S, et al. Elevated serum levels of p105 (c-erbB-2)in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 1996; 69: 398 - 402.

    Article  PubMed  CAS  Google Scholar 

  99. Arai Y, Yoskiki T, Yoshida O. c-erbB-2oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 1997; 30: 195 - 201.

    Article  PubMed  CAS  Google Scholar 

  100. Molina R, Jo J, Filella X, Bruix J, Castells A, Hague M, et al. Serum levels of c-erbB-2 (HER-2/neu) in patients with malignant and nonmalignant disease. Tumor Biol 1997; 18: 188 - 196.

    Article  CAS  Google Scholar 

  101. Zhau HY, Zhou J, Symmans WF, Chen BQ, Chang SM, Sikes RA, et al. Transfected neu oncogene induces human prostate cancer metastasis. Prostate 1996; 28: 73 - 83.

    Article  PubMed  CAS  Google Scholar 

  102. Marengo SR, Sikes RA, Anezinis P, Chang SM, et al. Metastasis induced by overexpression of p 185 neu-Tafter orthotopic injection into a prostatic epithelial cell line (NbE). Mol Carcinog 1997; 19: 165 - 175.

    Article  PubMed  CAS  Google Scholar 

  103. Zhau HY, Chang SM, Chen BQ, Wang Y, Zhang H, Kao C, et al. Androgen repressed phenotype in human prostate cancer. Proc Natl Acad Sci USA 1996;93:15,152-15,157.

    Google Scholar 

  104. Ware JL. Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metastasis Rev 1993; 12: 287.

    Article  PubMed  CAS  Google Scholar 

  105. Myers RB, Kudlow JE, Grizzle WE. Expression of transforming growth factor-alpha, epidermal growth factor and the epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Mod Pathol 1993; 6: 733.

    PubMed  CAS  Google Scholar 

  106. Moul JW, Maygarden SJ, Ware JL, Mohler JL, Maher PD, Schenkman NS, et al. Cathepsin D and epidermal growth factor receptor immunohistochemistry does not predict recurrence of prostate cancer in patients undergoing radical prostatectomy. J Urol 1996; 155: 982 - 985.

    Article  PubMed  CAS  Google Scholar 

  107. Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Sensibar JA, Kim JH, et al. Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res 1996; 56: 44 - 48.

    PubMed  CAS  Google Scholar 

  108. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Hittmair A, Zhang J, Thurnher M, et al. Regulation of prostatic growth and function by peptide growth factors. Prostate 1996; 28: 392 - 405.

    Article  PubMed  CAS  Google Scholar 

  109. Cohen P, Peehl DM, Stamey TA, Wilson KF, Clemmons DR, Rosenfeld RG. Elevated levels of insulin-like growth factor-binding protein-2 in the serum of prostate cancer patients. J Clin Endocrinol Metab 1993; 76: 1031 - 1035.

    Article  PubMed  CAS  Google Scholar 

  110. Grandori C, Eisenman RN. Myctarget genes. Trends Biochem Sci 1997; 22: 177 - 181.

    Article  PubMed  CAS  Google Scholar 

  111. Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myconcogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situhybridization Cancer Res 1997; 57: 524 - 531.

    CAS  Google Scholar 

  112. Eagle LR, Yun X, Brothman AR, Williams BJ, Atkins NB, Prochownik EV. Mutations of the MX/-1gene in prostate cancer. Nat Genet 1995; 9: 249 - 255.

    Article  PubMed  CAS  Google Scholar 

  113. Gray IC, Phillips SMA, Lee SJ, Neoptolemos JP, Weisssenbach J, Sparr NK. Loss of the chromosomal region 10g23-25 in prostate cancer. Cancer Res 1995; 55: 4800 - 4803.

    PubMed  CAS  Google Scholar 

  114. Kawamata N, Park D, Wilczynski S, Yokota J, Koeffler HP. Point mutations of the MX/-1gene are rare in prostate cancers. Prostate 1996; 29: 191 - 193.

    Article  PubMed  CAS  Google Scholar 

  115. Katz AE, Benson ME, Wise GJ, Olsson CA, Bandyk MG, Sawczuk IS, et al. Gene activity during the early phase of androgen stimulated rat prostate re-growth. Cancer Res 1989; 49: 5889 - 5894.

    PubMed  CAS  Google Scholar 

  116. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by rasand myconcogenes in a reconstituted organ. Cell 1989; 56: 917 - 930.

    Article  PubMed  CAS  Google Scholar 

  117. Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multi-step development of prostate cancer. J Urol 1990; 143: 742 - 746.

    PubMed  CAS  Google Scholar 

  118. Korsmeyer SJ. Molecular thanatopsis: discourse on the bc1-2 family and cell death. Blood 1996; 88: 386 - 401.

    PubMed  Google Scholar 

  119. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of proto-oncogene bc1-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940 - 1944.

    PubMed  CAS  Google Scholar 

  120. Colombel M, Symmans F, Gil S, Toole KM, Chopin D, Benson M, et al. Detection of apoptosissuppressing oncoprotein bc1-2 in hormone refractory human prostate cancer. Am J Pathol 1993; 143: 390 - 400.

    PubMed  CAS  Google Scholar 

  121. Moul JW, Bettencourt M-C, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, et al. Protein expression of p53, bc1-2 and KI-67 (MIB-1) as prognostic biomarkers in patients with surgically treated, clinically localized prostate cancer. Surgery 1996; 120: 159 - 167.

    Article  PubMed  CAS  Google Scholar 

  122. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bc1-2 protects prostate cancer cells from apoptosis in vitroand confers resistance to androgen ablation in vivo. Cancer Res 1995; 55: 4438 - 4445.

    PubMed  CAS  Google Scholar 

  123. Liu AY, Corey E, Bladou F, Lange PH, Vessella RL. Prostatic cell lineage markers: emergence of bc12+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int J Cancer 1996; 65: 85 - 89.

    Article  PubMed  CAS  Google Scholar 

  124. Taiguchi J, Moriyama N, Kasimoto S, Kameyama S, Kawabe K. Histochemical detection of intra-nuclear DNA fragmentation and its relation to the expression of bc1-2 oncoprotein in human prostate cancer. Br J Urol 1996; 74: 719 - 723.

    Google Scholar 

  125. Apakama I, Robinson MC, Walter NM, Charlton RG, Royd JA, Fuller CE, et al. bc1-2 overexpression combined with p53 accumulation correlates with hormone refractory prostate cancer. Br J Cancer 1996; 74: 1258 - 1262.

    Article  PubMed  CAS  Google Scholar 

  126. BauerJJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW. Elevated levels of apoptosis regulator proteins p53 and bc1-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer patients. J Urol 1996; 156: 1511 - 1516.

    Article  Google Scholar 

  127. Krajewska M, Krajewska S, Epstein JL, Shabaik A, Sauvagest J, Song K, et al Immunohistochemical analysis of bd-2, bax, bd-xand mcl-1expression in prostate cancer. Am J Pathol 1996; 148: 1567 - 1576.

    PubMed  CAS  Google Scholar 

  128. Shen R, Su ZZ, Olsson LA, Fisher PB. Identification of the human prostate carcinoma oncogene PTI-1. Proc Natl Acad Sci USA 1995; 92: 6778 - 6782.

    Article  PubMed  CAS  Google Scholar 

  129. Emmert-Buck MR, Bonner RF, Smith PD, Chaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996; 274: 928 - 1001.

    Article  Google Scholar 

  130. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotech 1996; 14: 1675 - 1680.

    Article  CAS  Google Scholar 

  131. Kuska B. Cancer genome anatomy project. J Natl Cancer Inst 1996; 88: 1801 - 1803.

    Article  PubMed  CAS  Google Scholar 

  132. Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043 - 1050.

    Article  PubMed  CAS  Google Scholar 

  133. Newsham IF, Hadjistilianou T, Cavenee WK. Retinoblastoma. In: Vogelstein B, Kinzler K, eds. The Genetic Basis of Human Cancer. McGraw Hill, New York, 1998, pp. 363 - 392.

    Google Scholar 

  134. Bookstein R, Rio P, Madreperla SA, Hong F, et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990; 87: 7762 - 7766.

    Article  PubMed  CAS  Google Scholar 

  135. Bookstein R, Shew JY, Chen PL, Scully P, Lee WH. Suppression of tumorgenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 1990; 247: 712 - 715.

    Article  PubMed  CAS  Google Scholar 

  136. Brooks JD, Bova GS, Isaacs WB. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinoma. Prostate 1995; 26: 35 - 39.

    Article  PubMed  CAS  Google Scholar 

  137. Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR, et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostate tumorigenesis. Br J Cancer 1994; 70: 1252 - 1257.

    Article  PubMed  CAS  Google Scholar 

  138. Kubota Y, Fujinamic K, Uemura H, Dobashi Y, Miyamoto H, Iwasaki Y, et al. Retinoblastoma gene mutations in primary human prostate cancer. Prostate 1995; 27: 314 - 320.

    Article  PubMed  CAS  Google Scholar 

  139. Harris CC. Structure and function of p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88: 1442 - 1455.

    Article  PubMed  CAS  Google Scholar 

  140. Levine A. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323 - 331.

    Article  PubMed  CAS  Google Scholar 

  141. Hartwell LH, Kastan MD. Cell cycle control and cancer. Science 1994; 266: 1821 - 1828.

    Article  PubMed  CAS  Google Scholar 

  142. Hermeking H, Lengauer C, Polyak K, He T-C, Zhang L, Thiagalingam S, et al. 14-3-3a is a p53 regulated inhibitor of G2M progression. Mol Cell 1997; 1: 3 - 11.

    Article  PubMed  CAS  Google Scholar 

  143. Greenblatt MS, Bennett, WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855 - 4878.

    PubMed  CAS  Google Scholar 

  144. Harris CC, Hollstein M. Clinical implications of the p53 tumor suppressor gene, N Engl J Med 1993; 329: 1318 - 1327.

    Article  PubMed  CAS  Google Scholar 

  145. Visakorpi T, Kallioniemi OP, Heikinen A, Koivula T, Isola J Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 1992; 84: 883 - 887.

    CAS  Google Scholar 

  146. Bookstein R, MacGrogan D, Hisenbeck SG, Sharkey F, Allred DC. p53 mutated in a subset of advanced stage prostate cancers. Cancer Res 1993; 53: 3369 - 3373.

    PubMed  CAS  Google Scholar 

  147. Berner A, Harvei S, Treti S, Fossa SD, Nesland JM. Prostate carcinoma: a multivariate analysis of prognostic factors. Br J Cancer 1994; 69: 924 - 930.

    Article  PubMed  CAS  Google Scholar 

  148. Brooks JD, Bova GS, Ewing CM, Piantadosi SP, Carter BS, Robinson JC, et al. An uncertain role of p53 gene alterations in human prostate cancers. Cancer Res 1996; 56: 3814 - 3822.

    PubMed  CAS  Google Scholar 

  149. Stricker HJ, Jay JK, Linder MD, Tamboli P, Amin MB. Determining prognosis of clinically localized prostate cancer by immunohistochemical detection of mutant p53. Urology 1996; 47: 366 - 269.

    Article  PubMed  CAS  Google Scholar 

  150. Van Veldhuizen PJ, Sadasivan R, Garcia F, Austenfield MD, Stephens RL. Mutant p53 expression in prostate carcinoma. Prostate 1993; 22: 23 - 30.

    Article  PubMed  Google Scholar 

  151. Van Veldhuizen PZ, Sadasivan R, Cherian R, Dwyer T, Stephens RL. p53 expression in incidental prostatic cancer. Am J Med Sci 1993; 305: 275 - 279.

    Article  PubMed  Google Scholar 

  152. Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P, Huland H. Immunohistochemical detection of p53 protein in human prostatic cancer. J Urol 1994; 152: 1296 - 1301.

    Google Scholar 

  153. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW. p53 nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1995; 1: 1295 - 1300.

    PubMed  CAS  Google Scholar 

  154. Stapelton AMF, Timme TL, Gousse AE, Li Q-F, Tobon AA, Kattan MW, et al. Primary prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin Cancer Res 1997; 3: 1389 - 1397.

    Google Scholar 

  155. Yang G, Stapleton AMF, Wheeler TM, Truong LD, Timme TL, Scardino PT, et al. Clustered p53 immunostaining: a novel pattern associated with prostate cancer progression. Clin Cancer Res 1996; 2: 399 - 401.

    PubMed  CAS  Google Scholar 

  156. Chi, S-G, deVere White R, Meyers FJ, Siders DB, Lee F, Gumerlock PH. p53 in prostate cancer: frequent expression transition mutations J Natl Cancer Inst 1994; 86: 926 - 933.

    CAS  Google Scholar 

  157. Ittman M, Wieczorek R, Helle P, Dave A, Provet J, Krolewski J. Alterations in the p53 and MDM-2 genes are infrequent in clinically localized, stage B prostate adenocarcinomas. Am J Pathol 1994; 145: 287 - 293.

    Google Scholar 

  158. Heidenberg HB, Sesterhenn IA, Gaddipati P, Weghorst CM, Buzard GS, Moul JW, et al. Alterations of the tumor suppressor gene p53 in a high fraction of treatment resistant prostate cancer. J Urol 1995; 154: 414 - 421.

    Article  PubMed  CAS  Google Scholar 

  159. Zhang X, Colombel M, Raffo A, Buttyan R. Enhanced expression of p53 mRNA and protein in regressing rate ventral prostate gland. Biochem Biophys Res Commun 1994; 198: 1189 - 1194.

    Article  PubMed  CAS  Google Scholar 

  160. Berges RR, Ruruya Y, Remington L, English HF, Jacks T, Issacs J. Cell proliferation, DNA repair, and p53 function are not required for programmed cell death of prostatic glandular cells induced by androgen ablation. Proc Natl Acad Sci USA 1993; 90: 8910 - 8914.

    Article  PubMed  CAS  Google Scholar 

  161. Colombel M, Radvanyi F, Blanche M, Abbou C, Buttyan R, Donehower LA, et al. Androgen suppressed apoptosis is modified in p53 deficient mice. Oncogene 1995; 10: 1269 - 1274.

    PubMed  CAS  Google Scholar 

  162. Srivastava S, Katayose D, Tong YA, Craig CR, McLeod DG, Moul JW, et al. Recombinant adenovirus vector expressing wild-type p53 is a potent inhibitor of prostate cancer cell proliferation. Urology 1995; 46: 843 - 848.

    Article  PubMed  CAS  Google Scholar 

  163. Eastham JA, Hall SJ, Sehgal I, Wang J, Timmie TL, Yang G, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 1995; 55: 5151 - 5155.

    PubMed  CAS  Google Scholar 

  164. Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induced apoptosis and suppresses tumorigenesis of prostatic tumors cells. Cancer Res 1995; 55: 4210 - 4213.

    PubMed  CAS  Google Scholar 

  165. Ko SC, Gotoh A, Thalmann GN, Zhau HE, Jhonston DA, Zhang WW, et al. Molecular therapy with recombinant p53 adenovirus in androgen independent metastatic human prostate cancer model. Hum Gene Ther 1996; 7: 1683 - 1691.

    Article  PubMed  CAS  Google Scholar 

  166. Asgari K, Sesterhenn IA, McLeod DG, Cowan K, Moul JW, Seth P, et al. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer 1997; 71: 377 - 382.

    Article  PubMed  CAS  Google Scholar 

  167. Foulkes WD, Flanders TV, Pollock PM, Hayward NK. The CDKN2A (pl 6) gene and human cancer. Mol Med 1997; 3: 5 - 20.

    PubMed  CAS  Google Scholar 

  168. Liu Q, Neuhausen S, McClure M, Frye C, Weaver-Feldhaus J, Gruis NA, et al. CDKN2 (MTS 1) tumor suppressor gene alterations in human tumor cell lines. Oncogene 1995; 10: 1061 - 1067.

    PubMed  CAS  Google Scholar 

  169. Komiya A, Suzuki H, Aida S, Yatani R and Shimazaki J Mutational analysis of CDKN2 (CDK4/MTS 1) gene in tissues and cell lines of human prostate cancer. Jpn J Cancer Res 1995; 86: 622 - 625.

    Article  PubMed  CAS  Google Scholar 

  170. Tanimi Y, Bringuier PP, Smit F, van Bokhoven A, Debruyne FM, Schalken JA. p16 mutations/ deletions are not frequent events in prostate cancer. Br J Cancer 1996; 74: 120 - 122.

    Article  Google Scholar 

  171. Chen W, Weghorst CM, Sabourin CL, Wang Y, Wang D, Bostwick DG, et al. Absence of p16 MTS1 gene mutations in human prostate cancer. Carcinogenesis 1996; 17: 2603 - 2607.

    Article  PubMed  CAS  Google Scholar 

  172. Gaddipati JP, McLeod DG, Sesterhenn IA, Hussussian CJ, Tong YA, Seth P, et al. Mutations of p16 gene product are rare in prostate cancer. Prostate 1997; 30: 188 - 194.

    Article  PubMed  CAS  Google Scholar 

  173. Jarard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, et al. Deletional, mutational, and methylation analysis of CDKN2 (p16/MTS 1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 1997; 19: 90 - 96.

    Article  Google Scholar 

  174. Heidenreich B, Heidenreich A, Moul JW, Srivastava S, Sesterhenn IA. Personal communication. (unpublished)

    Google Scholar 

  175. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, et al. Frequency of homozygous deletions at p16/CDKN2 in primary human tumors. Nat Genet 1995; 11: 210 - 212.

    Article  PubMed  CAS  Google Scholar 

  176. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of CDKN2/p16/ MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525 - 4530.

    PubMed  CAS  Google Scholar 

  177. Chi S-G, deVere White R, Muenzer JT, Gumerlock PH. Frequent alteration of CDKN2 (p16INK4A/ MTS1) expression in primary prostate carcinomas. Clin Can Res 1997; 3: 1889 - 1897.

    CAS  Google Scholar 

  178. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751 - 8755.

    Article  PubMed  CAS  Google Scholar 

  179. Giroldi LA, Schalken JA. Decreased expression of the intercellular adhesion molecule E. cadherin in prostate cancer: Biological significance and implications. Cancer Met Rev 1993; 12: 29 - 37.

    CAS  Google Scholar 

  180. Cher ML, Ito T, Weidner N, Carroll PR, Jensen RH. Mapping of regions of physical deletion on chromosome 16q in prostate cancer cells by fluorescence in situhybridization (FISH): J Urol 1995; 153: 249 - 254.

    Article  PubMed  CAS  Google Scholar 

  181. Cooney KA, Wetzel JC, Consolino CM, Wojno KJ. Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 1996; 56: 4150 - 4153.

    PubMed  CAS  Google Scholar 

  182. Cunningham JM, Shan A, Wick MJ, McDonnell SK, Schaid DJ, Tester DJ, et al. Allelic imbalance and microsatellite instability in prostate adenocarcinoma. Cancer Res 1996; 56: 4475 - 4482.

    PubMed  CAS  Google Scholar 

  183. Srikantan V, Sesterhenn IA, Davis L, Hankins GR, Mostofi FK, McLeod DG, et al. Allelic loss of chromosome 6q in human prostate cancer. J Urol 1997;175 (Abstract #873).

    Google Scholar 

  184. Takahashi S, Shan AL, Ritland SR, Delacey KA, Bostwick DG, Lieber MM, et al. Frequent loss of heterozygosity at 7g31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res 1995; 55: 4114 - 4119.

    PubMed  CAS  Google Scholar 

  185. Latil A, Anssenot O, Fournier G, Baron JC, Lidereau R. Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin Cancer Res 1995; 11: 1385 - 1389.

    Google Scholar 

  186. Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ. Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7831.1. Cancer Res 1994; 54: 6370 - 6373.

    PubMed  CAS  Google Scholar 

  187. Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 1995; 55: 1002 - 1005.

    PubMed  CAS  Google Scholar 

  188. Williams BJ, Jones E, Zhu XL, Steele MR, Stephenson RA, Rohr RL, et al. Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol 1996; 155: 720 - 725.

    Article  PubMed  CAS  Google Scholar 

  189. Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, et al. Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 1994; 11: 119 - 125.

    Article  PubMed  CAS  Google Scholar 

  190. Brewster SF, Browne S, Brown KW. Somatic allelic loss at the DCC, APC, nm23-H 1, and p53 tumor suppressor gene loci in human prostatic carcinoma. J Urol 1994; 151: 1073 - 1077.

    PubMed  CAS  Google Scholar 

  191. Melamed J, Einhorn JM, Ittman MM. Allelic loss of chromosome 13q in human prostate carcinoma. Clin Can Res 1997; 3: 1867 - 1872.

    CAS  Google Scholar 

  192. Huggins C, Hodges CV. Studies on prostatic cancer, effects of castration, of estrogens and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293 - 297.

    CAS  Google Scholar 

  193. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 1989; 321: 419 - 424.

    Article  PubMed  CAS  Google Scholar 

  194. Coffey DS. The molecular biology, endocrinology and physiology of the prostate and seminal vesicle. In: Walsh PC, Retik AB, Stamey TA, Vaughan ED Jr, eds. Campbells Urology. W.B. Sanders, New York, 1992, pp. 221 - 266.

    Google Scholar 

  195. Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, Barrack ER. Androgen receptor variants with short glutamine or glycine repeats may identify unique sub-populations of men with prostate cancer. Clin Can Res 1997; 3: 1599 - 1602.

    CAS  Google Scholar 

  196. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241 - 253.

    Article  PubMed  CAS  Google Scholar 

  197. Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55: 1937 - 1940.

    PubMed  CAS  Google Scholar 

  198. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77 - 79.

    Article  PubMed  Google Scholar 

  199. Suzuki H, Sato N, Watabe Y, Msai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46: 759 - 765.

    Article  PubMed  CAS  Google Scholar 

  200. Castagnaro M, Yandell DW, Dockhorn-Dworhiczak B, Wolfe HJ, Poremba C. Human androgen receptor gene mutations and p53 gene analysis in advanced prostate cancer. Verh Dtsch Ges Pathol 1993; 77: 119 - 123.

    PubMed  CAS  Google Scholar 

  201. Cullig Z, Hobisch A, Cronauer MV, Cuto ACB, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541 - 1550.

    Article  Google Scholar 

  202. Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW, et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancer. Cancer Res 1994; 54: 2861 - 2864.

    PubMed  CAS  Google Scholar 

  203. Taplin M-E, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393 - 1398.

    Article  PubMed  CAS  Google Scholar 

  204. Tilley WD, Buchanan G, Hickey TE, Bentel JM. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Can Res 1996; 2: 277 - 285.

    CAS  Google Scholar 

  205. Suzuki H, Koichiro A, Komiya A, Aida S, Akimoato S, Shimazaki J Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: Relation to antiandrogen withdrawal syndrome. Prostate 1996; 29: 153 - 158.

    CAS  Google Scholar 

  206. Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)„ expanded neuronopathies. Hum Mol Genet 1995; 4: 523 - 527.

    Article  PubMed  CAS  Google Scholar 

  207. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994; 22: 3181 - 3186.

    Article  PubMed  CAS  Google Scholar 

  208. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, et al. Microsatellite mutation (CAG24_,18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994; 198: 74 - 80.

    Article  PubMed  CAS  Google Scholar 

  209. Giovannucci, E, Stampfer MJ, Kiothivas K, Brown M, Brufsky A, Talcott J, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320 - 3323.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Augustus, M., Moul, J.W., Srivastava, S. (2000). Molecular Genetics and Markers of Progression. In: Klein, E.A. (eds) Management of Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-714-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-714-7_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9826-4

  • Online ISBN: 978-1-59259-714-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics