Skip to main content

Gene Therapy

Practice and Promise

  • Chapter
Management of Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 116 Accesses

Abstract

In the United States prostate cancer is the most commonly diagnosed malignancy in men and has become the second greatest cause of malignant deaths for men (1). Although definitive treatment is available for the organ-confined variant via surgery or radiation therapy, our treatment options for those cancers that have metastasized is limited to only those that offer palliation. Gene therapy offers the promise of a radically different treatment paradigm for both in situ and metastatic prostate cancer. Such therapies will look to reverse the genetic aberrations that are at the root of the malignant cell through the inhibition of oncogenes (abnormal genes that promote tumor cell longevity or proliferation) or through the restoration of tumor suppressor genes (genes that regulate the cell cycle or mediate DNA repair). Alternatively, the immune response of patients with cancers harboring any of these abnormalities can be stimulated by gene therapies based on use of recombinant tumor vaccines. Another avenue looks to target cancer cells selectively and through gene transfer initiate cell death either by apoptosis or direct toxicity. Pivotal to all avenues of gene therapy is the agent for delivering therapeutic genes to target human cells, known as the gene transfer vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wingo PA, Tong T, Bolden S. Cancer statistics 1995. Cancer 1995; 45: 8 - 30.

    CAS  Google Scholar 

  2. Ghosh-Choudhury G, Haj-Ahmad Y, Brinkley P, et al. Human adenovirus cloning vectors based on infectious bacterial plasmids. Gene 1986; 50: 161 - 171.

    Article  PubMed  CAS  Google Scholar 

  3. Moss B. Vaccinia virus: a tool for research and vaccine development. Science 1991; 2252: 1662 - 1667.

    Google Scholar 

  4. Ledley FD. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 1995; 6: 1129 - 1144.

    Article  PubMed  CAS  Google Scholar 

  5. Mulligan RC. The basic science of gene therapy. Science 1993; 260: 926 - 932.

    Article  PubMed  CAS  Google Scholar 

  6. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995; 270: 404 - 410.

    Article  PubMed  CAS  Google Scholar 

  7. Yang NS, Sun WH. Gene gun and other non-viral approaches for cancer gene therapy. Nature Med 1995; 1: 481 - 483.

    Article  PubMed  CAS  Google Scholar 

  8. Miller N, Vile R. Targeted vectors for gene therapy. FASEB J 1995; 9: 190 - 199.

    CAS  Google Scholar 

  9. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570 - 578.

    Article  PubMed  CAS  Google Scholar 

  10. Blaese M. The ADA human gene therapy clinical protocol. Hum Gene Ther 1990; 1: 327 - 362.

    Article  Google Scholar 

  11. Weiss RA. Cellular receptors and viral glycoproteins involved in retrovirus entry. In: Levy JA, ed. The Retroviridae. Plenum, New York, 1993, p. 1.

    Google Scholar 

  12. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific, and long lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539 - 3543.

    Article  PubMed  CAS  Google Scholar 

  13. Simons JW, Jaffee EM, Weber CE, et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 1997; 57 (8): 1537 - 1546.

    PubMed  CAS  Google Scholar 

  14. Simons JW. Phase I/II study of autologous human GM-CSF gene transduced prostate cancer vaccines in patients with metastatic prostate carcinoma. RAC Report 1994.

    Google Scholar 

  15. Yang Y, Nunes F, Berencsi K, et al. Cellular immunity to viral antigens limits El-deleted adeoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407 - 4411.

    Article  PubMed  CAS  Google Scholar 

  16. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins (4135 and av(33 promote adenovirus internalisation but not virus attachment. Cell 1993; 73: 309 - 319.

    Article  PubMed  CAS  Google Scholar 

  17. Seth P. Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 1994; 68: 1204 - 1206.

    PubMed  CAS  Google Scholar 

  18. Addison CL, Braciak T, Ralston R, et al. Intratumoral injection of an adenovirus expressing IL-2 induces regression and immunity in a murine breast cancer model. Proc Natl Acad Sci USA 1995; 92: 8522 - 8526.

    Article  PubMed  CAS  Google Scholar 

  19. Clarke MF, Apel IJ, Benedict MA, et al. A recombinant bcl-xs adenovirus selectively induces apoptosis in cancer cells but not normal bone marrow cells. Proc Natl Acad Sci USA 1995;92:11, 024-11, 028.

    Google Scholar 

  20. Eastham JA, Hall SJ, Sehgal I, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 1995; 55: 5151 - 5155.

    PubMed  CAS  Google Scholar 

  21. Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 1995; 55: 4210 - 4213.

    PubMed  CAS  Google Scholar 

  22. Wang M, Bronte V, Chen PW, et al. Active immunotherapy of cancer with a non-replicating recombinant fowlpox virus encoding a model tumor-associated antigen. J Immunol 1995; 154: 4685 - 4692.

    PubMed  CAS  Google Scholar 

  23. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997; 94 (15): 8099 - 8103.

    Article  PubMed  CAS  Google Scholar 

  24. Sun WH, Burkholder JK, Sun J, et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA 1995; 92: 2889 - 2893.

    Article  PubMed  CAS  Google Scholar 

  25. Vogelzang NJ, Sudakoff G, McKay S, et al. A phase I study of intralesional (IL) gene therapy in metastatic renal cell cancer (RCC). Proc Ann Meet Am Soc Clin Oncol 1995; 14: A641.

    Google Scholar 

  26. Johnson PA, Miyanohara A, Levine F, et al. Cytotoxicity of a replication-defective mutant of herpes simplex virus type I. J Virol 1992; 66: 2952 - 2965.

    PubMed  CAS  Google Scholar 

  27. Dupont F, Tenenbaum L, Guo LP, et al. Use of an autonomous parvovirus vector for selective transfer of a foreign gene into transformed human cells of different origin and its expression therein. J Virol 1994; 68: 1397 - 1406.

    PubMed  CAS  Google Scholar 

  28. Flotte TR, Afione SA, Conrad C, et al. Stable in vivo expression of the cystic fybrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 1993;90: 10, 613-10, 617.

    Google Scholar 

  29. Pan ZK, Ikonomidis G, Lazenby A, et al. A recombinant listeria monocytogenes vaccine expressing a model tumor antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nature Med 1995; 1: 471 - 477.

    Article  PubMed  CAS  Google Scholar 

  30. Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397 - 403.

    Article  PubMed  CAS  Google Scholar 

  31. Gansbacher B, Gansbacher B, Bannerji R, Daniels B, et al. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 1990; 50: 7820 - 7825.

    PubMed  CAS  Google Scholar 

  32. Gansbacher B, Zier K, Daniels B, et al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990; 172: 1217 - 1224.

    Article  PubMed  CAS  Google Scholar 

  33. Golumbek PT, Lazenby AJ, Levitsky HI, et al. Treatment of established renal cell cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254: 713 - 716.

    Article  PubMed  CAS  Google Scholar 

  34. Simons JW, Carducci MA, Weber CE, et al. Bioactivity of autologous irradiated prostate cancer vaccines generated by ex vivo GM-CSF gene transfer [Meeting Abstract]. Proceedings of ASCO 1998; 17: 1205.

    Google Scholar 

  35. Naitoh J, Tso CL, Kaboo R, et al. Intraprostatic interleukin-2 gene therapy: preliminary results of a Phase I clinical trial for the treatment of locally advanced prostate cancer [Meeting Abstract]. J Urol 1998; 159 (Suppl 5): 254.

    Google Scholar 

  36. Sanda MG, Ayyagari SR, Jaffee EM, et al. Demonstration of a rational strategy for human prostate cancer gene therapy. J Urol 1994; 151: 622 - 628.

    PubMed  CAS  Google Scholar 

  37. Moody DB, Robinson JC, Ewing CM, et al. Interleukin-2 transfected prostate cancer cells generate a local antitumor effect in vivo. Prostate 1994; 24: 244 - 251.

    Article  PubMed  CAS  Google Scholar 

  38. Vieweg J, Rosenthal FM, Bannerji R, Heston WDW, Fair WR, Gansbacher B, et al. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res 1994; 54: 1760 - 1765.

    PubMed  CAS  Google Scholar 

  39. Gansbacher B, Motzer R, Houghton A, Bander N. Immunization with Interleukin-2 secreting allogeneic HLA-A2 matched renal cell carcinoma cells in patients with advanced renal cell carcinoma. RAC Report 1992.

    Google Scholar 

  40. Kantor J, Irvine K, Abrams S, et al. Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J Natl Cancer Inst 1992; 84: 1084 - 1091.

    Article  PubMed  CAS  Google Scholar 

  41. Bronte V, Tsung K, Rao JB, et al. I1-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J Immunol 1995; 154: 5282 - 5292.

    PubMed  CAS  Google Scholar 

  42. Lee SS, Eisenlohr LC, McCue PA, et al. Intravesical gene therapy: in vivo gene tranfer using recombinant vaccinia virus vectors. Cancer Res 1994; 54: 3325 - 3328.

    PubMed  CAS  Google Scholar 

  43. Lee SS, Eisenlohr LC, McCue PA, et al. In vivo gene therapy of murine tumors using recombinant vaccinia virus encoding GM-CSF. Proc Ann Meet Am Assoc Cancer Res 1995; 36: A1481.

    Google Scholar 

  44. Chen AP. A phase I study of recombinant vaccinia that expresses PSA in adult patients with adenocarcinoma of the prostate. RAC Report 1995.

    Google Scholar 

  45. Figlin RA. Phase I study of HLA-B7 plasmid DNA/DMRIE/DOPE lipid complex as an immunotherapeutic agent in renal cell carcinoma by direct gene transfer with concurrent low dose bolus IL-2 protein therapy. RAC Report 1995.

    Google Scholar 

  46. Paulson D, Lyerly HK. A phase I study of autologous human IL-2 gene modified tumor cells in patients with locally advanced or metastatic prostate cancer. RAC Report 1995.

    Google Scholar 

  47. Lahn M, Kohler G, Kulmburg P, et al. Parameters for successful establishment of primary and long-term tumor cell cultures from renal cell carcinoma, melanoma and colon carcinoma for cellular immunotherapy. Gene Ther 1994; 1: S15.

    Google Scholar 

  48. Kawakita M, Rao G, Ritchey JK, et al. Canary-pox virus-mediated cytokine gene therapy induces tumor specific and non-specific immunity against mouse prostate tumor. J Urol 1996; 155: 516A.

    Google Scholar 

  49. Harris DT, Matyas G, Mastrangelo MJ et al. OncoVax-P vaccine: pilot studies in prostate cancer patients [Meeting Abstract]. Proceedings of ASCO 1998; 17: 1647.

    Google Scholar 

  50. Sanda MG, Smith DC, Charles LG, et al. Recombinant Vaccinia-PSA (PROSTVAC) can Induce a Prostate-Specific Immune Response in Androgen-Modulated Human Prostate Cancer. Urology, in press.

    Google Scholar 

  51. Eder JP, Kantoff PW, Bubley GJ, et al. A Phase I trial of recombinant vaccinia virus, prostavac that expresses prostate specific antigen (rv-PSA) as a vaccine in men with advanced prostate cancer [Meeting Abstract]. Proceedings of ASCO 1998; 17: 1672.

    Google Scholar 

  52. Chen AP, Bastian A, Dahut W, et al. A Phase I study of recombinant vaccinia virus (RV) that expresses prostate specific antigen (PSA) in adult patients (PTS) with adenocarcinoma of the prostate [Meeting abstract]. Proceedings of ASCO 1998; 17: 1209.

    Google Scholar 

  53. Catalona WJ, Chretien PB, Trahan EE. Abnormalities of cell-mediated immuno-competence in genitourinary cancer. J Urol 1974; 111: 229 - 232.

    PubMed  CAS  Google Scholar 

  54. Freeman SM, Abboud CN, Whartenby KA, et al. The bystander effect: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274 - 5283.

    PubMed  CAS  Google Scholar 

  55. Symonds H, Krall L, Remington L, et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 78: 703 - 711.

    Article  PubMed  CAS  Google Scholar 

  56. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bc1-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609 - 619.

    Article  PubMed  CAS  Google Scholar 

  57. Boise LH, Gonzalez-Garcia M, Postema CE, et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597 - 608.

    Article  PubMed  CAS  Google Scholar 

  58. Raffo AJ, Perlman H, Chen MW, et al. Overexpression of Bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen-depletion in vivo. Cancer Res 1995; 55: 4438 - 4445.

    PubMed  CAS  Google Scholar 

  59. Martin S, Green DR. Apoptosis and cancer: failure of controls on cell death and cell survival. Crit Rev Oncol Hematol 1995; 18: 137 - 153.

    Article  PubMed  CAS  Google Scholar 

  60. Furman PA, McGuirt PV, Keller PM, et al. Inhibition by acyclovir of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information. Virology 1980; 102: 420 - 430.

    Article  PubMed  CAS  Google Scholar 

  61. Hoganson DK, Batra RK, Olsen JC, Boucher RC. Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res 1996; 56: 1315 - 1323.

    PubMed  CAS  Google Scholar 

  62. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550 - 1552.

    Article  PubMed  CAS  Google Scholar 

  63. Hall SJ, Mutchnik SE, Shaker M, et al. Adenovirus mediated HSV-tk gene transduction and gancyclovir treatment for prostate cancer: suppression of metastasis in an orthotopic model and synergism with androgen ablation. J Urol 1996; 155: 528A.

    Google Scholar 

  64. Scardino PT, Thompson TC, Woo SLC. Phase I study of adenoviral vector delivery of the HSV-tk gene and the intravenous administration of gancyclovir in men with local recurrence of prostate cancer after radiation therapy. RAC Report 1996.

    Google Scholar 

  65. Rodriguez R, Carducci MA, Bartkowski LM, Simons JW. Cytoreductive agents for prostate cancer gene therapy. Proc Am Assoc Cancer Res 1996; 37: 346.

    Google Scholar 

  66. Kyprianou N, Isaacs JT. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988; 122: 552 - 562.

    Article  PubMed  CAS  Google Scholar 

  67. Hall SJ, Mutchnik SE, Chen SH, Woo SL, Thompson TC. Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. Int J Cancer 1997; 70 (2): 183 - 187.

    Article  PubMed  CAS  Google Scholar 

  68. Hall SJ, Sanford MA, Atkinson G, Chen SH. Induction of potent antitumor natural killer cell activity by herpes simplexvirus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res 1998; 58 (15): 3221 - 3225.

    PubMed  CAS  Google Scholar 

  69. Scardino PT, Adler HL, Herman JR, et al. Herpes simplex virus-thymidine kinase (HSV-tk) mediated gene therapy is safe and active against locally recurrent prostate cancer after irradiation therapy [Meeting Abstract]. Proceedings of ASCO 1998; 17: 1186.

    Google Scholar 

  70. Steiner MS, Holt JT. Gene therapy for the treatment of advanced prostate cancer by in vivo transduction with prostate-targeted retroviral vectors expressing antisense c-myc RNA. RAC Report 1995.

    Google Scholar 

  71. Thompson JD, Macejak D, Couture L, Stinchcomb DT. Ribozymes in gene therapy. Nature Med 1995; 1: 277, 278.

    Google Scholar 

  72. Kashani-Sabet M, Funato T, Tone T, et al. Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res Dev 1992; 2: 3 - 15.

    PubMed  CAS  Google Scholar 

  73. Feng M, Cabrera G, Deshane J, et al. Neoplastic reversion accomplished by high efficiency adenoviralmediated delivery of an anti-ras ribozyme. Cancer Res 1995; 55: 2024 - 2028.

    PubMed  CAS  Google Scholar 

  74. Kleinerman DI, Zhang WW, Lin SH, et al. Application of a tumor suppressor (C-CAM1)-expressing recombinant adenovirus in androgen-independent human prostate cancer therapy: a preclinical study. Cancer Res 1995; 55: 2831 - 2836.

    PubMed  CAS  Google Scholar 

  75. Yin LH, Fu Sq, Peng XY. Cytosine deaminase (CDA) adenoviral vector (ADV) and administration of the non toxic prodrug 5-fluorocytosine (5FC) used for therapy sensitization (TS) of prostate cancer cells (PCC). [Meeting Abstract]. Proceedings of ASCO 1997; 17: 1344.

    Google Scholar 

  76. Asgari K, Sesterhenn IA, McLeod DG, Cowan K, Moul JW, Seth P, Srivastava S. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer 1997; 71 (3): 377 - 382.

    Article  PubMed  CAS  Google Scholar 

  77. Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 1995; 55 (19): 4210 - 4213.

    PubMed  CAS  Google Scholar 

  78. Dorai T, Olsson CA, Katz AE, Buttyan R. Development of a hammerhead ribozyme against bc1-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer. Prostate 1997; 32 (4): 246 - 258.

    Article  PubMed  CAS  Google Scholar 

  79. Steiner MS, Lerner J, Greenberger M, et al. Clinical Phase I gene therapy trial using BRCA-1 retrovirus is safe TEINER [Meeting Abstract]. J Urol 1998; 159 (Suppl 5): 132.

    Article  Google Scholar 

  80. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7 (4): 546 - 554.

    Article  PubMed  CAS  Google Scholar 

  81. Brooks JD, Bova GS, Ewing CM, Piantadosi S, Carter BS, Robinson JC, et al. An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 1996; 56 (16): 3814 - 3822.

    PubMed  CAS  Google Scholar 

  82. Voeller HJ, Sugars LY, Pretlow T, Gelmann EP. p53 oncogene mutations in human prostate cancer specimens. J Urol 1994; 151 (2): 492 - 495.

    PubMed  CAS  Google Scholar 

  83. Dinjens WN, van der Weiden MM, Schroeder FH, Bosman FT, Trapman J. Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer 1994; 56 (5): 630 - 633.

    Article  PubMed  CAS  Google Scholar 

  84. Wu GY, Zhan P, Sze LL, et al. Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. J Biol Chem 1994;269:11, 542-11, 546.

    Google Scholar 

  85. Chen J, Gamou S, Takayanagi A, Shimuzu N. A novel gene delivery system using EGF receptor mediated-endocytosis. FEBS Lett 1994; 338: 167 - 169.

    Article  PubMed  CAS  Google Scholar 

  86. Michael SI, Huang CH, Romer MU, et al. Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway. J Biol Chem 1993; 268: 6866 - 6869.

    PubMed  CAS  Google Scholar 

  87. Vieweg J, Boczkowski D, Roberson KM, et al. Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res 1995; 55: 2366 - 2372.

    PubMed  CAS  Google Scholar 

  88. Friedman JM, Babiss LE, Clayton DF, Darnell JE. Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunogloobulin expression. Mol Cell Biol 1986; 6: 3791 - 3797.

    PubMed  CAS  Google Scholar 

  89. Taneja SS, Belldegrun A, Dardashti K, et al. In vitro target specific gene therapy for prostate cancer utilizing a prostate specific antigen promoter-driven adenoviral vector. Proc Ann Meet Am Assoc Cancer Res 1994; 35: A2236.

    Google Scholar 

  90. Ko SC, Gotoh A, Kao C, et al. Tissue targeted toxic gene therapy for an androgen-independent and metastatic human prostate cancer model. Proc Am Assoc Cancer Res 1996; 37: 349.

    Google Scholar 

  91. Pang S, Dannull J, Randhir K, et al. Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen. Cancer Res 1997; 57: 495 - 499.

    PubMed  CAS  Google Scholar 

  92. Segawa T, Kakehi Y, Yoshida O, et al. Tissue-specific amplification of the transgene expression: a novel approach for prostate cancer gene therapy [Meeting Abstract]. J Urol 1998: 159 (Suppl 5): 3.

    Google Scholar 

  93. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57 (13): 2559 - 2563.

    PubMed  CAS  Google Scholar 

  94. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al.. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274 (5286): 373 - 376.

    Article  PubMed  CAS  Google Scholar 

  95. Vile RG, Hart IR. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intra-tumoral injection of DNA. Cancer Res 1993; 53: 3860 - 3864.

    PubMed  CAS  Google Scholar 

  96. Harris JD, Gutierrez AA, Hurst HC, et al. Gene therapy for cancer using tumor-specific prodrug activation. Gene Ther 1994; 1: 170 - 175.

    PubMed  CAS  Google Scholar 

  97. Sanda MG, Simons JW. Gene therapy for urological cancer. Urology 1994; 44: 617 - 624.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rashid, M.G., Sanda, M.G. (2000). Gene Therapy. In: Klein, E.A. (eds) Management of Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-714-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-714-7_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9826-4

  • Online ISBN: 978-1-59259-714-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics