Skip to main content

The IGF Binding Protein Superfamily

  • Chapter
The IGF System

Abstract

The conventional definition of an insulin-like growth factor binding protein (IGFBP) is a protein whose major function is to act as a carrier for the insulin-like growth factors (IGFs). Based on this simple criterion, six IGFBPs that bind IGFs with high affinity, designated IGFBP-1 to -6 (33) have been identified to date from numerous biological systems. Although distinct structural differences exist among the six IGFBPs, a key conserved feature is the high number of cysteines (16–20 cysteines) found in IGFBPs. The clustering of the invariant cysteines at the amino (N)-terminal and carboxy (C)-terminal thirds (Fig. 1) of the proteins has led to models proposing that the N-terminus and C-terminus are two domains that, together, form the tertiary site necessary for high-affinity IGF binding. This striking structural feature, as well as the capacity of the proteins to bind IGFs with high affinity, have become the signature criteria for determining whether a protein is a member of the IGFBP family. However, this conventional dogma for IGFBPs has been challenged recently; a group of cysteine-rich proteins (8,28,45) has been identified whose N-terminus is homologous to the IGFBP N-terminal domain, but that deviate from the common IGFBP structure in the mid-region and C-terminus (Fig. 1). The relatedness of these proteins to the IGFBPs is substantiated further by the demonstration that they can also bind IGFs, albeit at a lower affinity than observed with IGFBP-1 to -6 (18,30). These findings suggest that the IGFBP family should be expanded to include those proteins that share significant domain conservation as well as demonstrable abilities to bind IGFs. Furthermore, it is proposed that these new IGFBP-related proteins, together with the conventional IGFBPs, constitute an IGFBP superfamily (18). The concept of a superfamily denotes that members are united by some common structural and functional features that are conserved through evolution. We suggest that the proteins of the IGFBP superfamily be subgrouped into those that bind IGF with high affinity (IGFBP-1 to -6), and those that bind IGF with low affinity (new members).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaogi K, Okabe Y, Funahashi K, Yoshitake Y, Nishikawa K, Yasunitsu H, Umeda M, Miyazaki K. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun 1994; 198: 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  2. Akaogi K, Sato J, Okabe Y, Sakamoto Y, Yasumitsu H, Miyazaki K. Synergistic growth stimulation of mouse fibroblasts by tumor-derived adhesion factor with insulin-like growth factors and insulin. Cell Growth Differ 1996; 7: 1671–1677.

    PubMed  CAS  Google Scholar 

  3. Bartell D, Shapanka R, Greene L. The primary structure of the human pancreatic secretory trypson inhibitor. Amino acid sequence of the reduced S-aminoethylated protein. Arch Biochem Biophys 1997; 179: 189–199.

    Article  Google Scholar 

  4. Baxter RC, Binoux M, Clemmons DR, Conover C, Drop SLS, Holly JMP, Mohan S, Oh Y, Rosenfeld RG. Recommendations for nomenclature for the insulin-like growth factor binding protein (IGFBP) superfamily. J Clin Endocrinol Metab 1998; 83: 8213.

    Article  Google Scholar 

  5. Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V. Major histocompatibility compex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 1996; 183: 1331–1338.

    Article  PubMed  CAS  Google Scholar 

  6. Booth B, Boes M, Dake B, Linhardt R, Caldwell E, Weiler J, Bar R. Structure—function relationships in the heparin-binding C-terminal region of insulin-like growth factor binding protein-3. Growth Regul 1996; 6: 206–213.

    PubMed  CAS  Google Scholar 

  7. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993; 327: 125–130.

    Article  PubMed  CAS  Google Scholar 

  8. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991; 114: 1285–1294.

    Article  PubMed  CAS  Google Scholar 

  9. Dionne CA, Crumley G, Bellot F, Kaplow JM, Searfoss G, Ruta M, Burgess WH, Jaye M, Schlessinger J. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J 1990; 9: 2685–2692.

    PubMed  CAS  Google Scholar 

  10. Fowlkes J, Serra D. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem 1996; 271: 14676–14679.

    Article  PubMed  CAS  Google Scholar 

  11. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-13 action on fibroblasts. Cytokine Growth Factor Rev 1997; 8: 171–179.

    Article  PubMed  CAS  Google Scholar 

  12. Jay P, Berge-Lefranc J, Marsollier C, Mejean C, Taviaux S, Berta P. The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene 1997; 14: 1753–1757.

    Article  PubMed  CAS  Google Scholar 

  13. Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type I-induced nephroblastomas. Mol Cell Biol 1992; 12: 10–21.

    PubMed  CAS  Google Scholar 

  14. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995; 16: 3–34.

    PubMed  CAS  Google Scholar 

  15. Kallunki P, Tryggvason K. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol 1992; 116: 559–571.

    Article  PubMed  CAS  Google Scholar 

  16. Kelley K, Oh Y, Gargosky S, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson D, Rosenfeld R. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 1996; 28: 619–637.

    Article  PubMed  CAS  Google Scholar 

  17. Kiefer MC, Marsiarz FR, Bauer DM, Zapf J. Identification and molecular cloning of two new 30-kDa insulin-like growth factor binding proteins isolated from adult human serum. J Biol Chem 1991; 266: 9043–9049.

    PubMed  CAS  Google Scholar 

  18. Kim H-S, Nagalla SR, Oh Y, Wilson E, Charles J, Roberts T, Rosenfeld RG. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci USA 1997; 94: 129811 2986.

    Google Scholar 

  19. Lenarcic B, Ritonja A, Strukelj B, Turk B, Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-I domain. J Biol Chem 1997; 272: 13899–13903.

    PubMed  CAS  Google Scholar 

  20. Malthiery Y, Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem 1987; 165: 491–498.

    Article  PubMed  CAS  Google Scholar 

  21. Mann K, Deutzmann R, Aumailley M, Timpl R, Raimondi L, Yamada Y, Pan T, Conway D, Chu M. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells. EMBO J 1989; 8: 65–72.

    PubMed  CAS  Google Scholar 

  22. Martinerie C, Huff V, Joubert I, Badzioch M, Saunders G, Strong L, Perbal B. Structural analysis of the human nov proto-oncogene and expression in Wilms tumors. Oncogene 1994; 9: 2729–2732.

    PubMed  CAS  Google Scholar 

  23. Martinerie C, Viegas-Pequignot E, Guenard I, Dutrillaux B, Nguyen V, Bernheim A, Perbal B. Physical mapping of human loci homologous to the chicken nov proto-oncogene. Oncogene 1992; 7: 2529–2534.

    PubMed  CAS  Google Scholar 

  24. Mason E, Konrad K, Webb C, Marsh J. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev 1994; 8: 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  25. Morabito MA, Moczydlowski E. Molecular cloning of bullfrog saxipholin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci USA 1994; 91: 2478–2482.

    Article  PubMed  CAS  Google Scholar 

  26. Morabito MA, Moczydlowski E. Molecular cloning of bullfrog saxiphilin• a unique relative of the transferrin family that binds saxitoxin. (Correction). Proc Natl Acad Sci USA 1995; 92: 6651.

    Article  PubMed  CAS  Google Scholar 

  27. Murdoch AD, Dodge GR, Cohen I, Tuan RS, Iozzo RV. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/Perlecan). J Biol Chem 1992; 267: 8544–8557.

    PubMed  CAS  Google Scholar 

  28. Murphy M, Pykett MJ, Harnish P, Zang KD, George DL. Identification and characterization of genes differentially expressed in Meningiomas. Cell Growth Differ 1993; 4: 715–722.

    PubMed  CAS  Google Scholar 

  29. O’Brien TP, Yang GP, Sanders L, Lau LF. Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 1990; 10: 3569–3577.

    PubMed  Google Scholar 

  30. Oh Y, Nagalla SR, Yamanaka Y, Kim H-S, Wilson E, Rosenfeld RG. Synthesis and characterization of insulin-like growth factor binding protein (IGFBP-7). J Biol Chem 1996; 271: 30322–30325.

    Article  PubMed  CAS  Google Scholar 

  31. Rodakis G, Moschonas N, Regier J, Kafatos F. The B multigene family of chorion proteins in saturniid silkmoths. J Mol Evol 1983; 19: 322–332.

    Article  PubMed  CAS  Google Scholar 

  32. Rosenfeld RG. Editorial: The blind men and the elephant-a parable for the study of insulin-like growth factor binding proteins. Endocrinology 1998; 139: 5–7.

    Article  PubMed  CAS  Google Scholar 

  33. Shimasaki S, Ling N. Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, -2, -3, -4, -5 and -6). Prog Growth Factor Res 1991; 3: 243–266.

    Article  PubMed  CAS  Google Scholar 

  34. Simmons D, Levy D, Yannoni Y, Erikson R. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci USA 1989; 86: 1178–1182.

    Article  PubMed  CAS  Google Scholar 

  35. Smith E, Lu L, Chernausek S, Klein D. Insulin-like growh factor-binding protein-3 (IGFBP-3) concentration in rat Sertoli cell-conditioned medium is regulated by a pathway involving association of IGFBP-3 with cell surface proteoglycans. Endocrinology 1994; 135: 359–364.

    Article  PubMed  CAS  Google Scholar 

  36. Spagnoli A, Rosenfeld RG. The mechanisms by which growth hormone brings about growth. Endocrinol Metab Clin North Am 1996; 25: 615–631.

    Article  PubMed  CAS  Google Scholar 

  37. Szala S, Froehlich M, Scollon M, Kasai Y, Steplewski S, Koprowski H, Linnenbach A. Molecular cloning of cDNA for the carcinoma-associated antigen GA733–2. Proc Natl Acad Sci USA 1990; 87: 3542–3546.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  39. Upton A, Chan S, Steiner D, Wallace J, Ballard F. Evolution of insulin-like growth factor binding proteins. Growth Regul 1993; 3: 29–32.

    PubMed  CAS  Google Scholar 

  40. Vorwerk P, Yamanaka Y, Spagnoli A, Oh Y, Rosenfeld RG. Insulin and IGF binding by IGFBP-3 fragments derived from proteolysis, baculovirus expression and normal human urine. J Clin Endocrinol Metab 1998; 83: 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  41. Yamanaka Y, Wilson EM, Rosenfeld RG, Oh Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J Biol Chem 1997; 272: 30729–30734.

    Article  PubMed  CAS  Google Scholar 

  42. Yamashita M, Konagaya S. A novel cysteine protease inhibitor of the egg of Chum salmon, containing a cysteine-rich thyroglobulin-like motif. J Biol Chem 1996; 271: 1282–1284.

    Article  PubMed  CAS  Google Scholar 

  43. Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H. Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. Biochem J 1994; 303: 591–598.

    PubMed  CAS  Google Scholar 

  44. Ying Z, King ML. Isolation and characterization of xnov, a Xenopus laevis ortholog of the chicken nov gene. Gene 1996; 171: 243–248.

    Article  PubMed  CAS  Google Scholar 

  45. Zumbrunn J, Trueb B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett 1996; 398: 187–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hwa, V. et al. (1999). The IGF Binding Protein Superfamily. In: Rosenfeld, R.G., Roberts, C.T. (eds) The IGF System. Contemporary Endocrinology, vol 17. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-712-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-712-3_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-138-7

  • Online ISBN: 978-1-59259-712-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics