Skip to main content

Historical Perspective

The Origins and Development of the Somatomedin Hypothesis

  • Chapter
The IGF System

Part of the book series: Contemporary Endocrinology ((COE,volume 17))

  • 171 Accesses

Abstract

The initial stimulus for the study of the role of the anterior pituitary gland in the regulation of growth arose from clinical observations. Marie is generally given the credit for characterizing and naming the syndrome of acromegaly in his 1886 paper (1). In a review only 3 yr later (2) he described one characteristic of the pathologic anatomy as “hypertrophy of the pituitary body with enormous dilatation of the sella turcica.” However, pituitary tumor and sellar enlargement were not always present, and there were various theories on the possible relationship of pituitary abnormalities to the growth disturbance. Harvey Cushing of Johns Hopkins Medical School introduced the terms hyperpituitarism and hypopituitarism, and in 1912 he championed the “hyperpituitarism conception of acromegaly” in his monograph on the pituitary (3). The argument was based on a review of the literature and his own extensive clinical, pathological, and experimental observations. He concluded, “Certainly most of the circumstantial evidence in our possession points in the direction of an oversecretion, whether normal or pathological....” He added, “One point at least is now generally accepted, namely, that the skeletal changes in gigantism and acromegaly are expressions of the same morbid influence....”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marie P. Sur deux cas d’ acromégalie. Hypertrophie singulière non congénitale des extrémités supérieures, inférieures et céphalique. Rev Méd (Paris) 1886; 6: 297–333.

    Google Scholar 

  2. Marie P. Acromegaly (translated by Dudley, W.). Brain 1889; 12: 59–81.

    Article  Google Scholar 

  3. Cushing H. The Pituitary Body and Its Disorders. Clinical States Produced by Disorders of the Hypophysis Cerebri. Lippincott, Philadelphia.

    Google Scholar 

  4. Grumbach MM. Herbert McLean Evans, revolutionary in modern endocrinology: a tale of great expectations. J Clin Endocrinol Metab 1982; 55: 1240–1247.

    Article  PubMed  CAS  Google Scholar 

  5. Evans HM, Long JA. The effect of the anterior lobe administered intraperitoneally upon growth, maturity, and oestrus cycles of the rat. Anat Rec 1921; 21: 62–63.

    Google Scholar 

  6. Evans HM, Long JA. Characteristic effects upon growth, oestrus and ovulation induced by the intra-peritoneal administration of fresh anterior hypophyseal substance. Proc Natl Acad Sci USA 8: 38–39.

    Google Scholar 

  7. Putnam TJ, Benedict EB, Teel HM. Studies in acromegaly. VIII. Experimental canine acromegaly produced by injection of anterior lobe pituitary extract. Arch Surg 1929; 18: 1708–1736.

    Article  Google Scholar 

  8. Smith PE. Hypophysectomy and a replacement therapy in the rat. Am J Anat 45: 205–273.

    Google Scholar 

  9. Evans HM, Simpson ME, Marx W, Kibrick E. Bioassay of the pituitary growth hormone. Width of the proximal epiphysial cartilage of the tibia in hypophysectomized rats. Endocrinology 1943; 32: 13–16.

    Article  CAS  Google Scholar 

  10. Li CH, Evans HM, Simpson ME. Isolation and properties of the anterior hypophyseal growth hormone. J Biol Chem 1945; 159: 353–366.

    CAS  Google Scholar 

  11. Greenspan FS, Li CH, Simpson ME, Evans HM. Bioassay of hypophyseal growth hormone: the tibia test. Endocrinology 1949; 45: 455–463.

    Article  PubMed  CAS  Google Scholar 

  12. Kinsell LW, Michaels GD, Li CH, Larsen WE. Studies in growth. I. Interrelationship between pituitary growth factor and growth-promoting androgens in acromegaly and gigantism. II. Quantitative evaluation of bone and soft tissue growth in acromegaly and gigantism. J Clin Endocrinol Metab 1948; 8: 1013 1036.

    Google Scholar 

  13. Gemzell CA, Heijkenskjöld F, Ström L. A method for demonstrating growth hormone activity in human plasma. J Clin Endocrinol Metab 1955; 15: 537–546.

    Article  PubMed  CAS  Google Scholar 

  14. Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J 1992; 6: 861–870.

    PubMed  CAS  Google Scholar 

  15. Ruoslahti E. Proteoglycans in cell regulation. J Biol Chem 1989; 264: 13369–13372.

    PubMed  CAS  Google Scholar 

  16. Hodgkinson SC, Napier JR, Spencer GSG, Bass JJ. Glycosaminoglycan binding characteristics of the insulin-like growth factor-binding proteins. J Mol Endocrinol 1994; 13: 105–112.

    Article  PubMed  CAS  Google Scholar 

  17. Ellis S, Hublé J, and Simpson ME. Influence of hypophysectomy and growth hormone on cartilage sulfate metabolism. Proc Soc Exp Biol Med 1953; 84: 603–605.

    PubMed  CAS  Google Scholar 

  18. Denko CW, Bergenstal DM. The effect of hypophysectomy and growth hormone on S35 fixation in cartilage. Endocrinology 1955; 57: 76–86.

    Article  PubMed  CAS  Google Scholar 

  19. Murphy WR, Daughaday WH, Hartnett C. The effect of hypophysectomy and growth hormone on the incorporation of labeled sulfate into tibial epiphyseal and nasal cartilage of the rat. J Lab Clin Med 1956; 47: 715–722.

    PubMed  CAS  Google Scholar 

  20. Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 1957; 49: 825–836.

    PubMed  CAS  Google Scholar 

  21. Park CR, Brown DH, Cornblath M, Daughaday, WH, Krahl ME. The effect of growth hormone on glucose uptake by the isolated rat diaphragm. J Biol Chem 1952; 197: 151–166.

    PubMed  CAS  Google Scholar 

  22. Bornstein J, Park CR. Inhibition of glucose uptake by the serum of diabetic rats. J Biol Chem 1953; 205: 503–511.

    PubMed  CAS  Google Scholar 

  23. Daughaday WH, Reeder C. Synchronous activation of DNA synthesis in hypophysectomized rat cartilage by growth hormone. J Lab Clin Med 1966; 68: 357–368.

    PubMed  CAS  Google Scholar 

  24. Upton Z, Webb H, Tomas FM, Ballard FJ, Francis GL. Characterization of serum-derived and recombinant rat IGF-1 and their use for measuring true concentrations of IGF-1 in rat plasma. J Endocrinol 1996; 149: 379–387.

    Article  PubMed  CAS  Google Scholar 

  25. Zapf J, Walter H, Froesch ER. Radioimmunological determination of insulinlike growth factors I and II in normal subjects and in patients with growth disorders and extrapancreatic tumor hypoglycemia. J Clin Invest 1981; 68: 1321–1330.

    Article  PubMed  CAS  Google Scholar 

  26. Glasscock GF, Gin KKL, Kim JD, Hintz RL, Rosenfeld RG. Ontogeny of pituitary regulation of growth in the developing rat: comparison of effects of hypophysectomy and hormone replacement on somatic and organ growth, serum insulin-like growth factor-I (IGF-1) and IGF-II levels, and IGF-binding protein levels in the neonatal and juvenile rat. Endocrinology 1991; 128: 1036–1047.

    Article  PubMed  CAS  Google Scholar 

  27. Daughaday WH, Salmon WD Jr., Alexander F. Sulfation factor activity of sera from patients with pituitary disorders. J Clin Endocrinol Metab 1959; 19: 743–758.

    Article  PubMed  CAS  Google Scholar 

  28. Almqvist S. Studies on sulfation factor (SF) activity of human serum. Evaluation of an improved method of the in vitro bioassay of SF and the effects of glutamine and human growth hormone in the system. Acta Endocrinol (Copenh) 1961; 36: 31–50.

    CAS  Google Scholar 

  29. Hall K. Quantitative determination of the sulphation factor activity in human serum. Acta Endocrinol (Copenh) 1970; 63: 338–350.

    CAS  Google Scholar 

  30. Van den Brande JL, Du Caju MVL. An improved technique for measuring somatomedin activity in vitro. Acta Endocrinol (Copenh) 1974; 75: 233–242.

    Google Scholar 

  31. Bala RM, Hankins C, Smith GR. A somatomedin assay using normal rabbit cartilage in clinical studies. Can J Physiol Pharmacol 1975; 53: 403–409.

    Article  PubMed  CAS  Google Scholar 

  32. Daughaday WH, Laron Z, Pertzelan A, Heins JN. Defective sulfation factor generation: a possible etiological link in dwarfism. Trans Assoc Am Physicians 1969; 82: 129–140.

    PubMed  CAS  Google Scholar 

  33. Daughaday WH, Hall K, Raben MS, Salmon WD Jr, Van den Brande JL, Van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature 1972; 235: 107.

    Article  PubMed  CAS  Google Scholar 

  34. Furlanetto RW, Underwood LE, Van Wyk JJ, D’Ercole AJ. Estimation of somatomedin-C levels in normals and patients with pituitary disease by radioimmunoassay. J Clin Invest 1977; 60: 648–657.

    Article  PubMed  CAS  Google Scholar 

  35. Randle Pi. Plasma-insulin activity in acromegaly. Assayed by the rat-diaphragm method. Lancet 1954; i:441–444.

    Article  Google Scholar 

  36. Randle PJ. Plasma-insulin activity in hypopituitarism. Assayed by the rat-diaphragm method. Lancet, 1954; i:809–810.

    Article  Google Scholar 

  37. Froesch ER, Bürgi H, Ramseier EB, Bally P, Labhart A. Antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J Clin Invest 1963; 42: 1816–1834.

    Article  PubMed  CAS  Google Scholar 

  38. Jakob A, Hauri C, Froesch ER. Nonsuppressible insulin-like activity in human serum. III. Differentiation of two distinct molecules with nonsuppressible ILA. J Clin Invest 1968; 47: 2678–2688.

    Article  PubMed  CAS  Google Scholar 

  39. Zingg AE, Froesch ER. Effects of partially purified preparations with nonsuppressible insulin-like activity (NSILA-S) on sulfate incorporation into rat and chicken cartilage. Diabetologia 1973; 9: 472–476.

    Article  PubMed  CAS  Google Scholar 

  40. Hall K, Uthne K. Some biological properties of purified sulfation factor (SF) from human plasma. Acta Med Scand 1971; 190: 137–143.

    Article  PubMed  CAS  Google Scholar 

  41. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253: 2769–2776.

    PubMed  CAS  Google Scholar 

  42. Rinderknecht E, Humbel RE Primary structure of human insulin-like growth factor II. FEBS Lett 1978; 89: 283–286.

    Article  PubMed  CAS  Google Scholar 

  43. Klapper DG, Svoboda ME, Van Wyk JJ. Sequence analysis of somatomedin-C: confirmation of identity with insulin-like growth factor I. Endocrinology 1983; 112: 2215–2217.

    Article  PubMed  CAS  Google Scholar 

  44. D’Ercole AJ, Applewhite GT, Underwood LE. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol 1980; 75: 315.

    Article  PubMed  Google Scholar 

  45. Isaksson OGP, Jansson J-O, Gause IAM. Growth hormone stimulates longitudinal bone growth directly. Science 1982; 216: 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  46. Russell SM, Spencer EM. Local injections of human or rat growth hormone or of purified human somatomedin-C stimulate unilateral tibial epiphyseal growth in hypophysectomized rats. Endocrinology 1985; 116: 2563–2567.

    Article  PubMed  CAS  Google Scholar 

  47. Schlechter NL, Russell SM, Spencer EM, Nicoll CS. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proc Natl Acad Sci USA 1986; 83: 7932–7934.

    Article  PubMed  CAS  Google Scholar 

  48. Nilsson A, Isgaard J, Lindahl A, Dahlström A, Skottner A, Isaksson OGP. Regulation by growth hormone of number of chondrocytes containing IGF-1 in rat growth plate. Science 1986; 233: 571–574.

    Article  PubMed  CAS  Google Scholar 

  49. Isgaard J, Möller C, Isaksson OGP, Nilsson A, Mathews LS, Norstedt G. Regulation of insulin-like growth factor messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology 1988; 122: 1515–1520.

    Article  PubMed  CAS  Google Scholar 

  50. Guler HP, Zapf J, Scheiwiller E, Froesch ER. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA 1988 85: 4889–4893.

    Article  PubMed  CAS  Google Scholar 

  51. Guevara-Aguirre J, Rosenbloom AL, Vasconez O, Martinez V, Gargosky SE, Allen L, Rosenfeld RG. Two-year treatment of growth hormone (GH) receptor deficiency with recombinant insulin-like growth factor 1 in 22 children: comparison of two dosage levels and to GH-treated GH deficiency. J Clin Endocrinol Metab 1997; 82: 629–633.

    Article  PubMed  CAS  Google Scholar 

  52. Isaksson OGP, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr Rev 1987; 8: 426–438.

    Article  PubMed  CAS  Google Scholar 

  53. Hunziker EB, Wagner J, Zapf J. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest 1994; 93: 1078–1086.

    Article  PubMed  CAS  Google Scholar 

  54. Behringer RR, Lewin TM, Quaife CJ, Palmiter RD, Brinster RL, D’Ercole AJ. Expression of insulin-like growth factor I stimulates normal somatic growth in growth hormone-deficient transgenic mice. Endocrinology 1990; 127: 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  55. Orlowski CC, Chernausek SD. Discordance of serum and tissue somatomedin levels in growth hormone-stimulated growth in the rat. Endocrinology 1988; 122: 44–49.

    Article  Google Scholar 

  56. Gargosky SE, Tapanainen P, Rosenfeld RG. Administration of growth hormone (GH), but not insulin-like growth factor-I (IGF-I), by continuous infusion can induce the formation of the 150-kilodalton IGFbinding protein-3 complex in GH-deficient rats. Endocrinology 1994, 134: 2267–2276.

    Article  PubMed  CAS  Google Scholar 

  57. Fielder PJ, Mortensen DL, Mallet P, Carlsson B, Baxter RC, Clark RG. Differential long-term effects of insulin-like growth factor-I (IGF-I), growth hormone (GH), and IGF-I plus GH on body growth and IGF binding proteins in hypophysectomized rats. Endocrinology 1996; 137: 1913–1920.

    Article  PubMed  CAS  Google Scholar 

  58. Salmon WD Jr., Burkhalter VJ. Stimulation of sulfate and thymidine incorporation into hypophysectomized rat cartilage by growth hormone and insulin-like growth factor-I in vitro: the somatomedin hypothesis revisited. J Lab Clin Med 1997; 129: 430–438.

    Article  PubMed  CAS  Google Scholar 

  59. Liu J-P, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (/g f-1) and type 1 IGF receptor (Ig fl r). Cell 1993; 75: 59–72.

    PubMed  CAS  Google Scholar 

  60. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990; 345: 78–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daughaday, W.H., Salmon, W.D. (1999). Historical Perspective. In: Rosenfeld, R.G., Roberts, C.T. (eds) The IGF System. Contemporary Endocrinology, vol 17. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-712-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-712-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-138-7

  • Online ISBN: 978-1-59259-712-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics