Skip to main content

Mechanisms of Action of Biotherapeutic Agents

  • Chapter
Biotherapeutic Agents and Infectious Diseases

Abstract

Although crude mixtures of microorganisms (e.g., fermented milk products or poultices of moldy bread) have been used since antiquity to treat infections, the first scientific description of a biotherapeutic effect was made at the beginning of this century by the Russian Metchnikoff for which he received the Nobel Prize in 1908. Metchnikoff demonstrated that certain species of bacteria were able to enhance the proliferation of Vibrio cholerae, whereas other species inhibited its growth (1). A preliminary, but fundamental distinction needs to be made between the concept of “prebiotic” and “probiotic.” A “prebiotic” can be defined as a nonmetabolized, nonabsorbed substrate that is useful for the host by selectively enhancing the growth and/or the metabolic activity of a bacterium or of a group of bacteria (e.g., lactulose effect on the colonic flora) (2). A “probiotic” or a “biotherapeutic agent” (BTA) is a living microorganism administered to promote the health of the host by treating or preventing infections owing to strains of pathogens (3,4). Both terms of “probiotic” and “biotherapeutic agent” have been used in the literature to describe microorganisms that exert antagonistic activity against pathogens in vivo (4,5). BTA seems to be the more appropriate term, because it denotes a microorganism having therapeutic properties (3). Ideally, BTA should be innocuous, act against pathogens by multiple mechanisms to minimize the development of resistance (Table 1), and marshal host defenses to destroy the invading pathogen. An additional desirable property would be an immediate onset of action (in contrast to a vaccine that takes several weeks to stimulate antibody production).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altwegg, M. (1992) La biothérapie dans la diarrhée. Der Informiete Arz 13, 1–16.

    Google Scholar 

  2. Gibson, G. R., and Roberfroid, M. B. (1995) Dietary modulation of the human colonic microflora: Introducing the concept of prebiotics. J. Nutr. 125, 1405–1412.

    Google Scholar 

  3. Elmer, G. W., Surawicz, C. M., and McFarland, L. V. (1996) Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. DAMA 275, 870–876.

    Article  CAS  Google Scholar 

  4. Fuller, R. (1991) Probiotics in human medicine. Gut 32, 489–492.

    Article  Google Scholar 

  5. McFarland, L. V. and Elmer, G. W. (1995) Biotherapeutic agents: past, present and future. Microecology Ther 23, 46–73.

    Google Scholar 

  6. Roffe, C. (1996) Biotherapy for antibiotic-associated and other diarrhoeas. J. Infect. 32, 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Tvede, M. and Rask-Madsen, J. (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 27, 1156–1160.

    Article  Google Scholar 

  8. Marteau, P. and Rambaud, J. C. (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12, 207–220.

    Article  PubMed  CAS  Google Scholar 

  9. Alm, L. and Petterson, L. (1980) Survival rate of Lactobacilli during digestion. An in vitro study. Am. J. Clin. Nutr. 33, 2543–2550.

    Google Scholar 

  10. Bergogne-Bérézin, E. (1995) Impact écologique de l’antibiothérapie, place des microorganismes de substitution dans le contrôle des diarrhées et colites associées aux antibiotiques. Presse Med. 24, 145–156.

    PubMed  Google Scholar 

  11. Goldin, B. R., Gorbach, S. L., Saxelin, M., Barakat, S., Gualtieri, L., and Salminen, S. (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37, 121–128.

    Article  PubMed  CAS  Google Scholar 

  12. Lidbeck, A., Gustafsson, J. A., and Nord, C. E. (1987) Impact of Lactobacillus acidophilus supplements on the human oropharyngeal and intestinal microflora. Scand. J. Infect. Dis. 19 , 531-537.

    Google Scholar 

  13. Bouhnik, Y., Pochart, P., Marteau, P., Arlet, G., Goderel, I., and Rambaud, J. C. (1992) Fecal recovery in humans of viable Bifidobacterium sp. ingested in fermented milk. Gastroenterology 102, 875–878.

    PubMed  CAS  Google Scholar 

  14. Silva, M., Jacobus, N. V., Deneke, C., and Gorbach, S. L. (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31, 1231–1233.

    Article  PubMed  CAS  Google Scholar 

  15. Vandenbergh, P. A. (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12, 221–238.

    Article  CAS  Google Scholar 

  16. Ramare, F., Nicoli, J., Dabard, J. et al. (1993) Trypsin-dependent production of an antimicrobial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro. Appl. Environ. Microbiol. 59, 2876–2883.

    CAS  Google Scholar 

  17. Kotz, C. M., Peterson, L. R., Moody, J. A., Savaiano, D. A., and Levitt, M. D. (1992) Effect of yoghurt on Clindamycin-induced Clostridium difficile colitis in hamsters. Dig. Dis. Sci. 37, 129–132.

    Article  PubMed  CAS  Google Scholar 

  18. Blomberg, L., Henmiksson, A., and Conway, P. L. (1993) Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl. Environ. Microb. 59, 34–39.

    CAS  Google Scholar 

  19. Bernet, M. F, Brassart, D., Neeser, J. R., and Servin, A. L. (1994) Lactobacillus acidophilus LAI binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35, 483–489.

    CAS  Google Scholar 

  20. Coconnier, M. H., Francoise, B., Chauvière, G., and Servin, A. L. (1993) Adhering heat-killed human Lactobacillus acidophilus. Strain LB inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells. J. Diarrhoea! Dis. Res. 11, 235–242.

    CAS  Google Scholar 

  21. Chauvière, G, Coconnier, M. H., Kernies, S., Darfeville-Michaud, A., Joly, B., and Servin, A. L. (1992) Competitive exclusion of diarrhoeagenic Escherichia coli ETEC from human enterocyte-like CACO-2 cells by “heat-killed Lactobacillus.” FEMS Microbiol. Lett. 91, 213–218.

    Article  Google Scholar 

  22. Clements, M. L., Levine, M. M., Black, R. E., Robins-Browne Luis, A., Cisneros, R. M., et al. (1981) Lactobacillus prophylaxis for diarrhoea due to enterotoxigenic Escherichia coli. Antimicrob. Agents Chemother. 20, 104–108.

    Article  CAS  Google Scholar 

  23. Pozo-Olano, J. D., Warram, J. H., Gomez, R. G., and Cavazos, M. G. (1978) Effect of a Lactobacilli preparation on traveller’s diarrhoea. Gastroenterology 74, 829, 830.

    Google Scholar 

  24. Peetermans, W. (1991) Reizigerdiarree. Tijschr voor Geneeskunde 47, 895–903.

    Google Scholar 

  25. Perdigon, G., De Macias, M. E. N., Alvarez, S., Olivier, G., and De Ruiz Holgada, A. A. P. (1986) Effect of perorally administered Lactobacilli on macrophage activation in mice. Infect. Immun. 3, 404–410.

    Google Scholar 

  26. Kaila, M., Isolauri, E., Soppi, E., Virtanen, E., Laine, S., and Arvilommi, H. (1992) Enhancement of the circulating antibody secreting cell response in human diarrhoea by a human Lactobacillus strain. Pediatr Res. 32, 141–144.

    Article  PubMed  CAS  Google Scholar 

  27. Kaila, M., Isolauri, E., Saxelin, M., Arvilommi, H., and Vesikari, T. (1995) Viable versus inactivated Lactobacillus strain GG in acute Rotavirus diarrhea. Arch. Dis. Child. 72, 51–53.

    Article  PubMed  CAS  Google Scholar 

  28. Majamaa. (1995) Lactic acid bacteria in the treatment of acute Rotavirus gastroenteritis. J. Med. Gastroenterol. Nutr. 20, 333–338.

    Article  CAS  Google Scholar 

  29. McFarland, L. V. and Bernasconi, P. (1993) Saccharomyces boulardii: A review of an innovative biotherapeutic agent. Microbial. Ecology Health Dis. 6, 157–171.

    Article  Google Scholar 

  30. McFarland, L. V. (1996) Saccharomyces boulardii is not Saccharomyces cerevisiae. Clin. Infect. Dis. 22, 200, 201.

    Google Scholar 

  31. Berg, R., Bernasconi, P., Fowler, D., and Gautreaux, M. (1993) Inhibition of Candida albicans translocation from the gastrointestinal tract of immunosuppressed mice by oral treatment with Saccharomyces boulardii. J. Infect. Dis. 168, 1314–1318.

    Article  CAS  Google Scholar 

  32. Blehaut, H., Massot, J., Elmer, G. W., and Levy, R. H. (1989) Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm. Drug Dispos. 10, 353–364.

    Article  PubMed  CAS  Google Scholar 

  33. Boddy, A. V., Elmer, G. W., McFarland, L. V., and Levy, R. H. (1991) Influence of antibiotics on the recovery and kinetics of Saccharomyces boulardii in rats. Pharm. Res. 8, 796–800.

    Article  PubMed  CAS  Google Scholar 

  34. Ducluzeau, R. and Bensaada, M. (1982) Effet comparé de l’administration unique ou en continu du Saccharomyces boulardii sur l’établissement de diverses souches de Candida dans le tractus digestif de souris gnotoxéniques. Annales de Microbiologie (Paris) 133, 491–501.

    CAS  Google Scholar 

  35. Klein, S. M., Elmer, G. W., McFarland, L. V., Surawicz, C. M., and Levy, R. H. (1993) Recovery and elimination of the biotherapeutic agent, Saccharomyces boulardii, in healthy human volunteers. Pharm. Res. 10, 1615–1619.

    Article  PubMed  CAS  Google Scholar 

  36. Elmer, G. W., Moyer, K. A., Vega, R., Surawicz, C. M., Collier, A. C., Hooton, T. M., et al. (1995) Evaluation of Saccharomyces boulardii for patients with HIV-related diarrhea and healthy volunteers receiving antifungals. Microecology Ther. 25, 23–31.

    Google Scholar 

  37. Rigothier, M. C., Maccario, J., and Gayral, P. (1994) Inhibitory activity of Saccharomyces yeasts on the adhesion of Entamoeba histolytica trophozoites to human erythrocytes in vitro. Parasitol. Res. 80, 10–15.

    Article  CAS  Google Scholar 

  38. Rigothier, M. C., Maccario, J., Vuong, P. N., and Gayral, P. (1990) Effets des levures Saccharomyces boulardii sur les trophozoites d’Entamoeba histolytica in vitro et dans l’amibiase caecale du jeune rat. Ann. de Parasitologie Humaine et Comparée 65, 51–60.

    CAS  Google Scholar 

  39. Knause, W., Matheis, H., and Wulf, K. (1969) Fungaemia and funguria after oral administration of Candida albicans. Lancet i, 598–600.

    Google Scholar 

  40. Vincent, P., Colombel, J. F., Lescut, D., Fournier, L., Savage, C, Cortot, A., et al. (1988) Bacterial translocation in patients with colorectal cancer. J. Infect. Dis. 158, 1395, 1396.

    Google Scholar 

  41. Vidon, N., Huchet, B., and Rambaud, J. C. (1986) Influence de Saccharomyces boulardii sur la sécrétion jéjunale induite chez le rat par la toxine cholérique. Gastroentérol. Clin. Biol. 10, 13–16.

    PubMed  CAS  Google Scholar 

  42. Czerucka, D., Roux, I., and Rampal, P. (1994) Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3’,5’-cyclic monophosphate induction in intestinal cells. Gastroenterology 106, 65–72.

    CAS  Google Scholar 

  43. Delmée, M. and Buts, J. P. (1993) Clostridium difficile-associated diarrhoea in children, in Management of Digestive and Liver Disorders in Infants and Children. Textbook (Buts, J. P. and Sokal, E., eds.), Elsevier Sciences, Amsterdam, pp. 371–379.

    Google Scholar 

  44. Buts, J. P., Corthier, G., and Delmée, M. (1993) Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J. Pediatr. Gastroenterol. Nutr. 16, 419–425.

    Article  CAS  Google Scholar 

  45. Buts, J. P., Weber, A. M., Roy, C. C., and Morin, C. L. (1977) Pseudomembranous enterocolitis in childhood. Gastroenterology 73, 823–827.

    CAS  Google Scholar 

  46. Bartlett, J. G., Chang, T. W., Gurwith, M., Gorbach, S. L., and Onderdonck, A. B. (1978) Antibiotic-associated pseudomembranous colitis due to toxin-producing Clostridia. N. Engl. J. Med. 298, 531–534.

    Article  CAS  Google Scholar 

  47. McFarland, L. V., Mulligan, M. E., Kwok, R. Y. Y, and Stamm, W. E. (1989) Nosocomial acquisition of Clostridium difficile infection. N. Engl. J. Med. 320, 204–210.

    Article  PubMed  CAS  Google Scholar 

  48. McFarland, L. V., Surawicz, C. M., and Stamm, W. E. (1991) Risk factors for Clostridium difficile carriage and C. difficile-associated diarrhea in a cohort of hospitalized patients. J. Infect. Dis. 162, 678–684.

    Article  Google Scholar 

  49. Johnson, S., Gerding, D. N., Olson, M. M., Weiler, M. D., Hughes R. A., Clabots, C. R., et al. (1990) Prospective controlled study of vinyl glove use to interrupt Clostridium difficile nosocomial transmission. Am. J. Med. 88, 137–140.

    Article  PubMed  CAS  Google Scholar 

  50. Delmée, M., Verellen, G., Avesani, V., and François, G. (1988) Clostridium difficile in neonates: serogrouping and epidemiology. Eur. J. Pediatr. 147, 36–40.

    Google Scholar 

  51. Corthier, G., Dubos, F., and Ducluzeau, R. (1986) Prevention of Clostridium difficile induced mortality in gnotobiotic mice by Saccharomyces boulardii. Can. J. Microbiol. 32, 894–896.

    Article  CAS  Google Scholar 

  52. Elmer, G. W., and Corthier, G. (1991) Modulation of Clostridium difficile induced mortality as a function of the dose and the viability of the Saccharomyces boulardii used as a preventative agent in gnotobiotic mice. Can. J. Microbiol. 37, 315–317.

    Article  PubMed  CAS  Google Scholar 

  53. Elmer, G. W. and McFarland, L. V. (1987) Suppression by Saccharomyces boulardii of toxinogenic Clostridium difficile overgrowth after vancomycin treatment in hamsters. Antimicrob. Agents Chemother. 31, 129–131.

    Article  PubMed  CAS  Google Scholar 

  54. Massot, J., Sanchez, O., Couchy, R., Astoin, J., and Parodi, A. L. (1984) Bakteriopharmakologische aktivität von Saccharomyces boulardii bei der Clindamycininduzierten kolitis in hamster. Arzneimittel Forshung 794–797.

    Google Scholar 

  55. Corthier, G., Dubos-Ramare, F., Muller, M. C., Mahé, S., Vernet, A., Elmer, G. W., et al. (1991) Etude expérimentale chez les souris à flore contrôlée, des moyens écologiques de lutte contre la pathologie à Clostridium difficile, in Clostridium difficile-Associated Intestinal Diseases ( Rambaud, J. C., and Ducluzeau, R., eds.), Springer-Verlag, Paris, pp. 105–113.

    Google Scholar 

  56. Castex, F., Corthier, G., Jouvert, S., Elmer, G. W., Guibal, J., Lucas, F., et al. (1989) Prevention of experimental pseudomembranous cecitis by Saccharomyces boulardii: topographical histology of the mucosa, bacterial counts and analysis of toxin production, in Microecology and Therapy, vol. 19 (Dougherty, S. J., Hentges, D. L., Lyerly, D. M., et al., eds.), Institute for Microbiology Herborn-Hill, p. 241.

    Google Scholar 

  57. Corthier, G., Lucas, R., Jouvert, S., and Castex, F. (1992) Effect of oral Saccharomyces boulardii treatment on the activity of Clostridium difficile toxins in mouse digestive tract. Toxicon 30, 1583–1589.

    Article  PubMed  CAS  Google Scholar 

  58. Czerucka, D., Nano, J. L., Bernasconi, P., and Rampal, P. (1991) Réponse aux toxines A et B de Clostridium difficile d’une lignée de cellules épithéliales intestinales de rat: IRD 98. Effet de Saccharomyces boulardii. Gastroentérol. Clin. Biol. 15, 22–27.

    CAS  Google Scholar 

  59. Pothoulakis, C., Kelly, C. P., Joshi, M. A., Gao, N., O’Keane, C. J., Castagliuolo, I., et al. (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104, 1108–1115.

    CAS  Google Scholar 

  60. Pothoulakis, C., LaMont, J. T., Eglow, R., Gao, N., Rubbins, J. B., Theoharides, T. C., et al. (1991) Characterization of rabbit ileal receptors for Clostridium difficile toxin A. Evidence for a receptor-coupled G protein. J. Clin. Invest. 88, 119–125.

    Article  PubMed  CAS  Google Scholar 

  61. Castagliuolo, I., LaMont, J. T., Nikulasson, S. T., and Pothoulakis, C. (1996) Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun. 64, 5225–5232.

    CAS  Google Scholar 

  62. Machado, P., Caetano, J. A., Parames, M. T., Babo, M. J., Santos, A., Bandeira Ferreira, A., et al. (1986) Immunopharmacological effects of Saccharomyces boulardii in healthy volunteers. Int. J. Immunopharmacol. 8, 245–249.

    Article  Google Scholar 

  63. Buts, J. P., Bernasconi, P., Vaerman, J. P., and Dive, C. (1990) Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig. Dis. Sci. 35, 251–256.

    Article  CAS  Google Scholar 

  64. Caetano, J. A., Parames, M. T., Babo, M. J., et al. (1986) Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers. Int. J. Immunopharmacol. 8, 249–259.

    Google Scholar 

  65. Buts, J. P., Bernasconi, P., Van Craynest, M. P., Maldague, P., and De Meyer, R. (1986) Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr. Res. 20, 192–196.

    Article  CAS  Google Scholar 

  66. Jahn, H. U., Ullrich, R., Schneider, T., Liehr, R. M., Schieferdecker, H. M., Holst, H., et al. (1996) Immunological and trophical effects of Saccharomyces boulardii on the small intestine of healthy human volunteers. Digestion 57, 95–104.

    Article  PubMed  CAS  Google Scholar 

  67. Buts, J. P., De Keyser, N., Marandi, S., Hermans, D., Chae Yhe, Lambotte, L., et al. (1997) Saccharomyces boulardii upgrades cellular adaptation following proximal enterectomy in rats. Am. J. Physiol,submitted.

    Google Scholar 

  68. Miret, W., Solari, A. J., Barderi, P. A., and Goldenberg, S. H. (1992) Polyamines and cell wall organization in Saccharomyces boulardii. Yeast 8, 1033–1041.

    Article  CAS  Google Scholar 

  69. Buts, J. P., De Keyser, N., and De Raedemaeker, L. (1994) Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res. 36, 522–527.

    CAS  Google Scholar 

  70. Buts, J. P., De Keyser, N., Kolanowski, J. Sokal, E. M., and Van Hoof, F. (1993) Maturation of villus and crypt cell functions in rat small intestine: role of dietary polyamines. Dig. Dis. Sci. 38, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi, M., Iseki, K., Saitoh, H., and Miyazaki, K. (1992) Uptake characteristics of polyamines into rat intestinal brush border membrane. Biochem. Biophys. Acta. 1105, 177–183.

    Article  PubMed  CAS  Google Scholar 

  72. Iseki, K., Kobayashi, M., and Miyazaki, K. (1991) Spermine uptake by rat brush border membrane vesicles. Biochem. Biophys. Acta. 1068, 105–110.

    Article  PubMed  CAS  Google Scholar 

  73. Kumagai, J. and Johnson, L. R. (1988) Characteristics of putrescine uptake in isolated rat enterocytes. Am. J. Physiol. 254, G81–G86.

    PubMed  CAS  Google Scholar 

  74. Buts, J. P., De Keyser, N., Romain, N., Dandrifosse, G., Sokal, E. M., and Nsengiyumva, T. (1994) Response of rat immature enterocytes to insulin: regulation by receptor binding and endoluminal polyamine uptake. Gastroenterology 106, 58–68.

    Google Scholar 

  75. Kelly, D., King, T. P., Brown, D. S., and McFadyen, M. (1991) Polyamine profiles of porcine milk and of intestinal tissue of pigs during suckling. Reprod. Nutr. Rev. 31, 73–80.

    Article  CAS  Google Scholar 

  76. Buts, J. P., De Keyser, N., and De Raedemaeker, L. (1995) Polyamine profile in human milk, infant artificial formulae and semi-elemental diets. J. Pediatr. Gastroenterol. Nutr. 21, 44–49.

    Article  PubMed  CAS  Google Scholar 

  77. Buts, J. P. (1996) Polyamines in milk, in Bioactive Factors in Milk. Ann. Nestlé 54, 98–104.

    Google Scholar 

  78. Osbourne, D. L. and Seidel, E. R. (1989) Microflora derived polyamines modulate obstruction-induced mucosal hypertrophy. Am. J. Physiol. 256, G1049 — G1057.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buts, JP. (1999). Mechanisms of Action of Biotherapeutic Agents. In: Elmer, G.W., McFarland, L.V., Surawicz, C.M. (eds) Biotherapeutic Agents and Infectious Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-711-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-711-6_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4652-5

  • Online ISBN: 978-1-59259-711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics