Skip to main content

Absorption, Distribution, and Biotransformation of the Cannabinoids

  • Chapter

Abstract

This paper describes the occurrence, properties, distribution, metabolism, and excretion of the cannabinoids. Over 60 of these compounds have been identified in the plant Cannabis sativa, the major ones being the pharmacologically active Δ9-tetrahydrocannabinol (Δ9-THC), its biosynthetic precursor, cannabidiol (CBD), and the degradation product, cannabinol (CBN). Once absorbed, usually by smoking, these lipophilic compounds partition into the fatty tissues of the body where they can remain for a considerable time. The half-life of the drug is measured in days or even weeks. Various estimates of the half-life in humans are discussed in the paper.

All cannabinoids are good substrates for the cytochrome P450 mixed function oxidases. Biotransformation of Δ9-THC and its synthetic isomer, Δ8-THC, give mono-, di-, and tri-hydroxy metabolites and further oxidation leads to a series of acids, carbonyl compounds, and their hydroxy derivatives. Primary sites of hydroxylation in both isomers are the side-chain and the allylic carbon atoms of the alicyclic ring leading to Δ9-THC-11-oic acid as the major human metabolite from Δ9-THC. Lower homologues yield greater proportions of acidic metabolites, whereas higher homologs are metabolized mainly to hydroxy compounds. β-Oxidation and related oxidations of the aliphatic chain lead to a series of chain-shortened metabolites, most of which are additionally hydroxylated in the alicyclic ring or at C-11. Large species-related differences in bio-transformation are seen, particularly in the sites of initial hydroxylation. Several of the monohydroxy metabolites, particularly the 11- and 3’-hydroxy THCs show comparable pharmacological activity to that of the parent drug whereas polysubstituted metabolites are inactive. Phase II metabolism is mainly by conjugation with glucuronic acid.

Other cannabinoids are metabolised similarly. CBD yields additional metabolites as the result of hydroxylation and epoxidation of the iso-propene group but CBN yields fewer metabolites as the aromatic rings do not appear to be hydroxylated. Cannabichromene and cannabigerol again show extensive, species-related hydroxylation of their alkyl chains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaoni, Y. and Mechoulam, R. (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647.

    CAS  Google Scholar 

  2. Turner, C. E., ElSohly, M. A., and Boeren, E. G. (1980) Constituents of Cannabis sativa L., XVII. A review of the active constituents. J. Nat. Prods. 43, 169–234.

    CAS  Google Scholar 

  3. Claussen, J. and Korte, F. (1967) Hashish, XIII, behaviour of constituents of Cannabis sativa L. during smoking. Tetrahedron Letts. 2067–2069.

    Google Scholar 

  4. Clarke, R. C. (1981) Marihuana Botany And/Or Press, Berkeley, CA.

    Google Scholar 

  5. Paris, M. and Nahas, G. G. (1984) Botany: the unestablished species, In: Marihuana in Science and Medicine ( Nahas, G. G., ed.) Raven, New York, pp. 3–36.

    Google Scholar 

  6. Mechoulam, R. (1973) Cannabinoid chemistry, in Marihuana, Chemistry, Pharmacology, Metabolism and Clinical Effects (Mechoulam, R., ed.) Academic, New York, pp. 1–99.

    Google Scholar 

  7. Paton, W. D. M. (1975) Pharmacology of marihuana. Annu. Rev. Pharmacol. 15, 191–220.

    PubMed  CAS  Google Scholar 

  8. Nahas, G. G. (1984) In, Marihuana in Science and Medicine (Nahas, G. G., ed.) Raven, New York.

    Google Scholar 

  9. Matsuda, L. A. (1997) Molecular aspects of cannabinoid receptors. Critical Reviews in Neurobiology. 11, 143–166.

    Google Scholar 

  10. Harvey, D. J. (1985) Summary of the session on the adverse effects of the cannabinoids, In: Marihuana 84-Proceedings of the Oxford Symposium on Cannabis ( Harvey, D. J., ed.) IRL Press, Oxford, pp. 667–670.

    Google Scholar 

  11. Harvey, D. J. and Paton, W. D. M. (1984) Metabolism of the Cannabinoids. Rev. Biochem. Toxicol. 6, 221–264.

    CAS  Google Scholar 

  12. Harvey, D. J. (1991) Metabolism and pharmacokinetics of the cannabinoids, In: Biochemistry and Physiology of Substance Abuse. ( Watson, R. R., ed.) CRC Press, Boca Raton, FL pp. 279–365.

    Google Scholar 

  13. Yamamoto, I. Watanabe, K., Narimatsu, S., and Yoshimura, H. (1995) Recent advances in the metabolism of cannabinoids. Int. J. Biochem. Cell Biol. 27 741–746.

    Google Scholar 

  14. Harvey, D. J. (1984) Analysis of the cannabinoids, In: Analytical Methods in Human Toxicology ( Curry, A. S., ed.) MacMillan Press, London, pp. 257–310.

    Google Scholar 

  15. Harvey, D. J. (1985) Advances in methods for detection and measurement of the cannabinoids, In: Marihuana 84-Proceedings of the Oxford Symposium on Cannabis ( Harvey, D. J., ed.) IRL Press, Oxford, pp. 121–136.

    Google Scholar 

  16. Harvey, D. J. (1987) Mass spectrometry of the cannabinoids and their metabolites. Mass Spectrom. Rev. 6, 135–229.

    CAS  Google Scholar 

  17. Musty, R. E., Reggio, P., and Consroe, P. (1995) A review of recent advances in cannabis research and the 1994 International Symposium on Cannabis and the Cannabinoids. Life Sci. 56, 1933–1940.

    PubMed  CAS  Google Scholar 

  18. Lawrence, D. K. and Gill, E. W. (1975) The effect of 49-tetrahydrocannabinol and other cannabinoids on spin-labelled liposomes and their relationships to mechanisms of general anaesthesia. Molec. Pharmacol. 11,595–602.

    Google Scholar 

  19. Leuschner, J. T. A., Wing, D. R., Harvey, D. J., Brent, G. A., Demsey, C. E., Watts, A., and Paton, W. D. M. (1984) The partitioning of 49-tetrahydrocannabinol into erythrocyte membranes in vivo and its effect on membrane fluidity. Experientia. 40, 866–868.

    PubMed  CAS  Google Scholar 

  20. Makriyannis, A., Yang, D. R, Griffin, R. G., and Dasgupta, S. K. (1990) The perturbation of model membranes by (-)-delta-9-tetrahydrocannabinol-studies using solid-state H-2-NMR and C-13-NMR. Biochim. Biophys. Acta. 1028, 31–42.

    PubMed  CAS  Google Scholar 

  21. Gill, E. W. and Jones, G. (1972) Brain levels of delta-1-tetrahydrocannabinol and its metabolites in mice-correlation with behaviour and the effect of the metabolic inhibitors SKF 525A and piperonyl butoxide. Biochem. Pharmacol. 21, 2237–2248.

    PubMed  CAS  Google Scholar 

  22. Thomas, B. F., Compton, D. R., and Martin, B. R. (1990) Characterization of the lipophilicity of natural and synthetic analogues of delta-9-tetrahydrocannabinol and its relationship to pharmacological potency. J. Pharmacol. Exptl. Therap. 255, 624–630.

    CAS  Google Scholar 

  23. Harvey, D. J. (1985) Examination of a 140 year old ethanolic extract of Cannabis: identification of new cannabitriol homologues and the ethyl homologue of cannabinol, In: Marihuana 84-Proceedings of the Oxford Symposium on Cannabis ( Harvey, D. J., ed.) IRL Press, Oxford, pp. 23–30.

    Google Scholar 

  24. Harvey, D. J. (1990) Stability of cannabinoids in dried samples of cannabis dating from around 1896–1905. J. Ethnopharmacol. 28, 117–128.

    PubMed  CAS  Google Scholar 

  25. Turner, C. E., Hadley, K. W., Fetterman, P. S., Doorenbos, N. J., Quimby, M. W., and Waller, C. (1973) Constituents of Cannabis sativa L., IV-Stability of cannabinoids in stored plant material. J. Pharm. Sci. 62, 1601–1605.

    PubMed  CAS  Google Scholar 

  26. Fairbaim, J. W., Liebmann, J. A., and Rowan, M. G. (1976) The stability of cannabis and its preparations on storage. J. Pharm. Prarmacol. 28, 1–7.

    Google Scholar 

  27. Garrett, E. R., Gouyette, A. J., and Roseboom, H. (1978) Stability of tetrahydrocannabinols, II. J. Pharm. Sci. 67, 27–32.

    PubMed  CAS  Google Scholar 

  28. Garrett, E. R. and Tsau, J. (1974) Stability of tetrandrocannabinols, I. J. Pharm. Sci. 63, 1563–1574.

    PubMed  CAS  Google Scholar 

  29. Lindgren, J. E., Ohlsson, A., Agurell, S., Hollister, L., and Gillespie, H. (1981) Clinical effects and plasma levels of A9-tetrahydrocannabinol (49-THC) in heavy and light users of cannabis. Psychopharmacologia. 74, 208–212.

    CAS  Google Scholar 

  30. Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H. K. (1982) Single-dose kinetics of deuterium-labelled A’-tetrahydrocannabinol in heavy and light cannabis users. Biomed. Mass Spectrom. 9, 6–10.

    PubMed  CAS  Google Scholar 

  31. Barnett, G., Chiang, C.-W. N., Perez-Reyes, M., and Owens, S. M. (1982) Kinetic study of smoking marihuana. J. Pharmacokinetics Biopharmaceut. 10, 495–506.

    CAS  Google Scholar 

  32. Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H. K. (1980) Plasma A9tetrahydrocannabinol concentration and clinical effects after oral and intravenous administration and smoking. Clin. Pharmacol. Ther. 28, 409–416.

    PubMed  CAS  Google Scholar 

  33. Ohlsson, A., Widman, M., Carlsson, S., Ryman, T., and Strid, C. (1980) Plasma and brain levels of 46-THC and seven monohydroxy metabolites correlated to the cataleptic effect in the mouse. Acta Pharmacol. Toxicol. 47, 308–317.

    CAS  Google Scholar 

  34. Perez-Reyes, M., Lipton, M. A., Timmons, M. C., Wall, M. E., Brine, D. R., and Davis, K. H. (1973) Pharmacology of orally administered tetrahydrocannabinol. Clin. Pharmacol. Ther. 14, 48–55.

    PubMed  CAS  Google Scholar 

  35. Litterst, C. L., Flora, K. P., and Cradock, J. C. (1982) Bioavailability of A9–tetrahydrocannabinol–derived radioactivity following intramuscular administration of A9–11–14C–tetrahydrocannabinol to rabbits. Res. Commun. Substance Abuse. 3, 453.

    CAS  Google Scholar 

  36. Agurell, S., Halldin, M., Lindgren, J.-E., Ohlsson, A., Widman, M., Gillespie, H., and Hollister, L. (1986) Pharmacokinetics and metabolism of A’-tetrahydrocannabinol and other cannabinoids with emphasis on man Pharmacol. Rev. 38, 21–43.

    PubMed  CAS  Google Scholar 

  37. Huestis, M. A., Henningfield, J. E., and Cone, E. J. (1992) Absorption of THC and formation of 11-OH-

    Google Scholar 

  38. THC and THCCOOH during and after smoking marihuana. J. Anal. Toxicol. 16, 276–282.

    Google Scholar 

  39. Chiang, C. W. N. and Barnett, G. (1984) Marihuana effect and A9-tetrahydrocannabinol plasma level, Clin.

    Google Scholar 

  40. Pharmacol. Ther. 36, 234–238.

    Google Scholar 

  41. Reeve, V. C., Grant, J. D., Robertson, W., Gillespie, H. K., and Hollister, L. E. (1983) Plasma concentrations of A9-tetrahydrocannabinol and impaired motor function. Drug Alcohol Dependence 11, 167–175.

    CAS  Google Scholar 

  42. Garrett, E. R. and Hunt, C. A. (1977) Pharmacokinetics of A9-tetrahydrocannabinol in dogs. J. Pharm. Sci. 66, 395–407.

    PubMed  CAS  Google Scholar 

  43. Widman, M., Agurell, S., Ehrnebo, M., and Jones, G. (1974) Binding of (+)- and (-)-A’-tetrahydrocannabinols and (-)-7-hydroxy-4’-tetrahydrocannabinol to blood cells and plasma proteins. J. Pharm. Pharmacol. 26, 914–916.

    PubMed  CAS  Google Scholar 

  44. Wahlqvist, M., Nilsson, I. M., Sandberg, F., Agurell, S., and Grandstrand, B. (1970) Binding of A’-tetrahydrocannabinol to human plasma proteins. Biochem. Pharmacol. 19, 2579–2589.

    PubMed  CAS  Google Scholar 

  45. Klausner, H. K., Wilcox, H. G., and Dingell, J. V. (1975) The use of zonal centrifugation in the investigation of the binding of 49-tetrahydrocannabinol to plasma lipoproteins. Drug Metab. Dispos. 3, 314–319.

    PubMed  CAS  Google Scholar 

  46. Widman, M., Nilsson, I. M., Nilsson, J. L. G., Agurell, S., Borg, H., and Grandstrand, B. (1973) Plasma protein binding of 7-hydroxy-A’-tetrahydrocannabinol an active A’-tetrahydrocannabinol metabolite. J. Pharm. Pharmacol. 25, 453–457.

    PubMed  CAS  Google Scholar 

  47. Lemberger, L., Axelrod, J., and Kopin, I. J. (1971) Metabolism and distribution of tetrahydrocannabinol in naive and chronic marihuana users. Ann. NYAcad. Sci. 191, 142–154.

    CAS  Google Scholar 

  48. Ho, B. T., Fritchie, G. E., Kralik, P. M., Englert, F. L., Mclsaac, W. M., and Idänpään-Hekkila, J. (1970) Distribution of tritiated A9-tetrahydrocannabinol in rat tissues after inhalation. J. Pharm. Pharmacol. 22, 538–539.

    PubMed  CAS  Google Scholar 

  49. Freudenthal, R. I., Martin, J., and Wall, M. E. (1972) Distribution of A9-tetrahydrocannabinol in the mouse. Br. J. Pharmacol. 44 244–249.

    Google Scholar 

  50. Burstein, S. H. (1973) Labelling and metabolism of the tetrahydrocannabinols, In: Marihuana: Chemistry, Pharmacology, Metabolism and Clinical Effects. (Mechoulam, R., ed.) Academic, New York, pp. 167–190.

    Google Scholar 

  51. Ryrfeldt, A., Ramsay, C. H., Nilsson., I. M., Widman, M., and Agurell, S. (1973) Metabolism of cannabis, XIII, Whole body autoradiography of A’-tetrahydrocannabinol in the mouse. Pharmacokinetic aspects of A’ tetrahydrocannabinol and its metabolites. Acta Pharm. Suec. 10, 13–28.

    CAS  Google Scholar 

  52. Just, W. W., Erdmann, G., Thel, S., Werner, G., and Wiechmann, M (1975) Metabolism and autoradiographic distribution of A8- and A9-tetrahydrocannabinol in some organs of the monkey. Callithrix jaccus, Naunyn Schmiedebergs Arch. Pharmacol. 287, 219–225.

    PubMed  CAS  Google Scholar 

  53. Erdmann, G., Just, W. W., Thel, S., Werner, G., and Wiechmann, M. (1976) Comparative autoradiographic and metabolic study of A8- and A9-tetrahydrocannabinol in the brain of the marmoset. Callithrix. jaccus. Psychopharmacology 47, 53–58.

    CAS  Google Scholar 

  54. Gill, E. W. and Lawrwnce, D. K. (1973) The distribution of A’-tetrahydrocannabinol and 7-hydroxy-A1tetrahydrocannabinol in the mouse brain after intraventricular injection. J. Pharm. Pharmacol. 25, 948–952.

    PubMed  CAS  Google Scholar 

  55. Martin, B. R., Dewey, W. L., Harris, L. S., and Beckner, J. S. (1977) 3H-A9-tetrahydrocannabinol distribution in pregnant dogs and their fetuses. Res. Commun. Chem. Pathol. Pharmacol. 17, 457–470.

    Google Scholar 

  56. Nahas, G. G., Leger, C., Toque, B., and Hoellinger, H. (1981) The kinetics of cannabinoid distribution and storage with special reference to brain and testis. J. Clin. Pharmacol. 21, 208s - 214s.

    Google Scholar 

  57. Agurell, S., Nilsson, I. M., Ohlsson, A., and Sandberg, F. (1969) Elimination of tritium-labelled cannabinoids in the rat with special reference to the development of tests for the identification of cannabis users. Biochem. Pharmacol. 18, 1195–1201.

    PubMed  CAS  Google Scholar 

  58. Kreuz, D. S. and Axelrod, J. (1973) A9-Tetrahydrocannabinol localization in body fat. Science. 179, 391–393.

    PubMed  CAS  Google Scholar 

  59. Rawich, B. Rohrer, G., and Vardaris, R. M. (1979) A9-Tetrahydrocannabinol uptake by adipose tissue; preferential accumulation in gonadal fat organs. Gen. Pharmacol. 10 525.

    Google Scholar 

  60. Leuschner, J. T. A., Harvey, D. J., Bullingham, R. E. S., and Paton, W. D. M. (1986) Pharmacokinetics of A’tetrahydrocannabinol in rabbits following single or multiple intravenous doses. Drug Metab. Dispos. 14, 230–238.

    Google Scholar 

  61. Johansson, E., Sjovall, J., Noren, K., Agurell, S., Hollister, L. E., and Halldin, M. M. (1988) Analysis of A’tetrahydrocannabinol (A’-THC) in human plasma and fat after smoking, In: Marihuana: An Interdisciplinary Research Report (Chesher, G., Consroe, P and Musty, R., eds.) National Canpaign Against Drug Abuse, Australian Government Printing Services, Canberra, pp. 291–296.

    Google Scholar 

  62. Lemberger, L. and Rubin A. (1975) The physiologic distribution of marihuana in man. Life Sci. 17, 1637–1642.

    PubMed  CAS  Google Scholar 

  63. Lemberger, L., Silberstein, S. D., Axelrod, J., and Kopin, I. J. (1970) Marihuana: Studies on the disposition and metabolism of A9-tetrahydrocannabinol in man. Science 170, 1320–1322.

    PubMed  CAS  Google Scholar 

  64. Hunt, C. A. and Jones, R. T. (1980) Tolerance and disposition of tetrahydrocannabinol in man. J. Pharmacol. Exp. Ther. 215, 35–44.

    PubMed  CAS  Google Scholar 

  65. Johansson, E., Halldin, M. M., Agurell, S., Hollister, L. E., and Gillespie, H. K. (1989) Terminal elimination plasma half-life of A’-tetrahydrocannabinol (A’-THC) in heavy users of marihuana, Eur. J. Clin. Pharmacol. 37, 273–277.

    PubMed  CAS  Google Scholar 

  66. Ellis, G. M., Jr., Mann, M. A., Judson, B. A., Schramm, N. T., and Tashchian, A. (1985) Excretion patterns of cannabinoid metabolites after last use in a group of chronic users. Clin. Pharmacol. Ther. 38, 572–578.

    PubMed  CAS  Google Scholar 

  67. Cridland, J. S., Rottanburg, D., and Robins, A. H. (1983) Apparent half-life of excretion of cannabinoids in man Human Toxicol. 2 641–644.

    Google Scholar 

  68. Agurell, S., Carlsson, S., Lindgren, J.-E., Ohlsson, A., Gillespie, H., and Hollister, L. (1981) Interaction of A’-tetrahydrocannabinol with cannabidiol following oral administration in man-assay of cannabinol and cannabidiol by mass fragmentography. Experientia 37, 1090–1092.

    PubMed  CAS  Google Scholar 

  69. Ohlsson, A., Lindgren, J. E., Andersson, S., Agurell, S., Gillespie, H., and Hollister, L. E. (1986) Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed. Environ. Mass Spectrom. 13, 77–83.

    PubMed  CAS  Google Scholar 

  70. Burstein, S. and Kupfer, D. (1971) Hydroxylation of trans-A’-tetrahydrocannabinol by hepatic microsomal oxygenases. Ann. NYAcad. Sci. 191, 61–67.

    CAS  Google Scholar 

  71. Harvey, D. J. and Brown, N. K. (1990) Comparative in vitro cannabinoid metabolism in several species. Life Sci. Adv. Pharmacology 9, 763–771.

    Google Scholar 

  72. Widman, M., Nordqvist, M., Dollery, C. T., and Briant, R. H. (1975) Metabolism of A’-tetrahydrocannabinol by the isolated perfused dog lung, comparison with in vitro liver metabolites. J. Pharm. Pharmacol. 27, 842–848.

    PubMed  CAS  Google Scholar 

  73. Halldin, M. M., Isaac, H., Widman, M., Nilsson, E., and Ryrfeldt, A. (1984) A comparison between the metabolism of A’-tetrahydrocannabinol by perfused lung and liver of rat and guinea pig. Xenobiotica. 14, 277–282.

    PubMed  CAS  Google Scholar 

  74. Marriage, H. J. and Harvey, D. J. (1986) Metabolism of A’-tetrahydrocannabinol by fractionated isozymes of mouse hepatic cytochrome P-450. Res. Commun. Substance Abuse. 7, 89–97.

    CAS  Google Scholar 

  75. Narimatsu, S., Watanabe, K., Matsunage, T, Yamamoto, I., Imaoka, S., Funae, Y., and Yoshimura, H. (1992) Cytochrome P-450 isozymes in metabolic activation of A9-tetrahydrocannabinol by liver microsomes of adult female rats. Drug Metab. Dispos. 20, 79–83.

    PubMed  CAS  Google Scholar 

  76. Matsunaga, T., Iwawaki, Y., Watanabe, K., Yamamoto, I., Kageyama, T., and Yoshimura, H. (1995) metabolism of A9-tetrahydrocannabinol by cytochrome P-450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 56, 2089–2095.

    Google Scholar 

  77. Bornheim, L. M., Lasker, J. M., and Raucy, J. L. (1992) Human hepatic microsomal metabolism of A’tetrahydrocannabinol. Drug Matab. Dispos. 20, 241–246.

    Google Scholar 

  78. Watanabe, K., Matsunaga, T., Yamamoto, I. Funae, Y., and Yoshimura, H. (1995) Involvement of CYP2C in the metabolism of cannabinoids by hepatic microsomes from an old woman Biol. Pharm. Bull. 18 1138–1141.

    Google Scholar 

  79. Harvey, D. J. and Paton, W. D. M. (1977) The in vivo metabolism of A’0’-tetrahydrocannabinol produced by the mouse via the epoxide-diol pathway. J. Pharm. Pharmacol. 29, 498–500.

    PubMed  CAS  Google Scholar 

  80. Harvey, D. J., Gill, E. W., Slater, M., and Paton, W. D. M. (1980) Identification of the in vivo liver metabolites of (-)-A7-tetrahydrocannabinol produced by the mouse. Drug Metab. Dispos. 8, 439–445.

    PubMed  CAS  Google Scholar 

  81. Glatt, H., Ohlsson, A., Agurell, S., and Oesch, F. (1979) A’-Tetrahydrocannabinol and la,2a-epoxytetrahydrocannabinol: mutagenicity investigation in the Ames test. Mutation Res. 66, 329–335.

    PubMed  CAS  Google Scholar 

  82. Harvey, D. J. and Leuschner, J. T. A. (1985) Studies on the beta-oxidative metabolism of A’- and A6-tetrahydrocannabinol in the mouse: the in vivo biotransformation of metabolites oxidised in the side-chain. Drug Metab. Dispos. 13, 215–219.

    PubMed  CAS  Google Scholar 

  83. Nordqvist, M., Lindgren, J. E., and Agurell, S. (1979) Acidic metabolites of A’-tetrahydrocannabinol isolated from rabbit urine. J. Pharm. Pharmacol. 31, 231–237.

    PubMed  CAS  Google Scholar 

  84. Nordqvist, M., Agurell, S., Rydberg, M., Falk, L., and Ryman, T. (1979) More acidic metabolites of A’tetrahydrocannabinol isolated from rabbit urine. J. Pharm. Pharmacol. 31, 238–243.

    PubMed  CAS  Google Scholar 

  85. Harvey, D. J. and Paton, W. D. M. (1976) Examination of the metabolites of A’-tetrahydrocannabinol in mouse liver, heart and lung by combined gas chromatography and mass spectrometry, In: Marihuana: Chemistry, Biochemistry and Cellular Effects ( Nahas, G. G., ed.) Springer-Verlag, New York, pp. 93–109.

    Google Scholar 

  86. Brown, N. K. and Harvey, D. J. (1988) In vivo metabolism of the methyl homologues of A8-tetrahydrocannabinol, A9-tetrahydrocannabinol and abn-A8-tetrahydrocannabinol in the mouse. Biomed. Environ. Mass Spectrom. 15, 389–398.

    CAS  Google Scholar 

  87. Brown, N. K. and Harvey, D. J. (1988) In vivo metabolism of the n-propyl homologues of A8- and A9-tetrahydrocannabinol in the mouse. Biomed. Mass Spectrom. 15,403–410.

    Google Scholar 

  88. Brown, N. K. and Harvey, D. J. (1988) Metabolism of n-hexyl homologues of A’-tetrahydrocannabinol and A9-tetrahydrocannabinol in the mouse. Eur. J. Drug Metab. Pharmacokinetics. 13, 165–176.

    Google Scholar 

  89. Harvey, D. J. (1985) Identification of hepatic metabolites of n-heptyl-A’-tetrahydrocannabinol in the mouse. Xenobiotica 15, 187–197.

    PubMed  CAS  Google Scholar 

  90. Harvey, D. J., Martin, B. R., and Paton, W. D. M. (1977) Identification of glucuronides as in vivo liver conjugates of seven cannabinoids and some of their hydroxy and acid metabolites. Res. Commun. Chem. Pathol. Pharmacol. 16, 265–279.

    PubMed  CAS  Google Scholar 

  91. Williams, P. L. and Moffat, A. C. (1980) Identification in human urine of A9-tetrahydrocannabinol-11-oic acid glucuronide, a tetrahydrocannabinol metabolite. J. Pharm. Pharmacol. 32, 445–448.

    PubMed  CAS  Google Scholar 

  92. Levy, S., Yagen, H., and Mechoulam, R. (1978) Identification of a C-glucuronide of A’-tetrahydrocannabinol as a mouse liver conjugate in vivo. Science 200, 1391–1392.

    CAS  Google Scholar 

  93. Leighty, E. G., Fentiman, Jr., A. F., and Foltz, R. L. (1976) Long-retained metabolites of A8- and A9-tetrahydrocannabinol identified as novel fatty acid conjugates. Res. Commun. Chem. Pathol. Pharmacol. 14, 13–28.

    Google Scholar 

  94. Martin, B., Nordqvist, M., Agurell, S., Lindgren, J. E., Leander, K., and Binder, M. (1976) Identification of monohydroxy metabolites of cannabidiol formed by a rat liver. J. Pharm. Pharmacol. 28, 275–279.

    PubMed  CAS  Google Scholar 

  95. Martin, M., Agurell, S., Nordqvist, M., and Lindgren, J. E. (1976) Dioxygenated metabolites of cannabidiol formed by rat liver. J. Pharm. Pharmacol. 28, 603–608.

    PubMed  CAS  Google Scholar 

  96. Harvey, D. J. and Brown, N. K. (1990) In vitro metabolism of cannabidiol in the rabbit: identification of seventeen new metabolites including thirteen dihydroxylated in the isopentenyl chain, Biomed. Environ. Mass Spectrom. 19, 559–567.

    CAS  Google Scholar 

  97. Harvey, D. J. and Brown, N. K. (1990) In vitro metabolism of cannabidiol in seven common laboratory mammals. Res. Commun. Substance Abuse. 11, 27–37.

    CAS  Google Scholar 

  98. Samara, E., Bialer, M., and Harvey, D. J. (1990) Identification of urinary metabolites of cannabidiol in the dog. Drug Metab. Dispos. 18, 571–579.

    PubMed  CAS  Google Scholar 

  99. Samara, E. Bialer, M., and Harvey, D. J. (1990) Identification of glucose conjugates as the major urinary metabolites of cannabidiol in the dog. Xenobiotica 20, 177–183.

    Google Scholar 

  100. Harvey, D. J. and Mechoulam, R. (1990) Metabolites of cannabidiol identified in human urine, Xenobiotica. 20, 303–320.

    PubMed  CAS  Google Scholar 

  101. Paton, W. D. M. and Pertwee, R. G. (1972) Effects of cannabis and certain of its constituents on pentobarbitone sleeping time and phenazone metabolism. Br. J. Pharmacol. 23, 250–261.

    Google Scholar 

  102. Fernandes, M., Warning, N., Christ, W., and Hill, R. (1973) Interactions of several cannabinoids with the hepatic drug metabolizing system. Biochem. Pharmacol. 22, 2981–2987.

    PubMed  CAS  Google Scholar 

  103. Bornheim, L. M., Borys, H. K., and Karler, R. (1981) Effect of cannabidiol on cytochrome P-450 and hexobarbital sleep time. Biochem. Pharmacol. 30, 503–507.

    PubMed  CAS  Google Scholar 

  104. Watanabe, K., Arai, M., Narimatsu, S., Yamamoto, I., and Yoshimura, H. (1987) Self-catalysed inactivation of cytochrome P-450 during microsomal metabolism of cannabidiol. Biochem. Pharmacol. 36, 3371–3377.

    PubMed  CAS  Google Scholar 

  105. Hunt, C. A., Jones, R. T., Herning, R. I., and Bachman, J. (1981) Evidence that cannabidiol does not significantly alter the pharmacokinetics of tetrahydrocannabinol in man J. Pharmacokinetics, Biopharmaceut. 9, 245–260.

    CAS  Google Scholar 

  106. Narimatsu, S., Watanabe, K., Yamamoto, I., and Yoshimura, H. (1988) Mechanism for inhibitory effect of cannabidiol on microsomal testosterone oxidation in male rat liver. Drug Metab. Dispos. 16, 880–889.

    PubMed  CAS  Google Scholar 

  107. Bornheim, L. M. and Correia, M. A. (1989) Effect of cannabidiol on cytochrome P-450 isozymes. Biochem. Pharmacol. 28, 2789–2794.

    Google Scholar 

  108. Bornheim, L. M. and Correia, M. A. (1989) Purification and characterization of a mouse liver cytochrome P450 induced by cannabidiol. Molec. Pharmacol. 36, 377–383.

    CAS  Google Scholar 

  109. Jaeger, W., Benet, L. Z., and Bornheim, L. M. (1996) Inhibition of cyclosporine and tetrahydrocannabinol metabolism by cannabidiol in mouse and human microsomes. Xenobiotica 26, 275–284.

    Google Scholar 

  110. Bornheim, L. M., Kim, K. Y., Li, J., Perotti, B. Y., and Benet, L. Z. (1995) Effect of cannabidiol pretreatment on the kinetics of tetrahydrocannabinol metabolites in mouse brain. Drug. Metab. Dispos. 23, 825–831.

    Google Scholar 

  111. Bornheim, L. M., Everhart, E. T., Li, J., and Correia, M. A. (1993) Characterization of cannabidiol-mediated cytochrome P-450 inactivation. Biochem. Pharmacol. 45, 1323–1331.

    PubMed  CAS  Google Scholar 

  112. Bornheim, L. M., Everhart, E. T., Li, J., and Correia, M. A. (1994) Induction and genetic regulation of mouse hepatic cytochrome P-450 by cannabidiol. Biochem. Pharmacol. 48, 161–171.

    PubMed  CAS  Google Scholar 

  113. Yamamoto, I., Kuzuoka, K., Watanabe, K., Narimatsu, S. and Yoshimura, H. (1988) Metabolic formation and pharmacological effects of 11-hydroxy-cannabinol, In: Marihuana: An Interdisciplinary Research Report ( Chesher, G., Consroe, P. and Musty, R., eds.) National Campaign Against Drug Abuse, Australian Government Printing Services, Canberra, pp. 135–140.

    Google Scholar 

  114. Brown, N. K. and Harvey, D. J. (1990) Comparative in vitro metabolism of cannabinol in rat, mouse, rabbit, guinea pig, hamster, gerbil and cat. Eur. J. Drug Metab. Pharmacokinetics 15, 253–258.

    CAS  Google Scholar 

  115. Yisak, W., Widman, M., and Agurell, S. (1978) Acidic in vivo metabolites of cannabinol isolated from rat faeces. J. Pharm. Pharmacol. 30, 554–557.

    PubMed  CAS  Google Scholar 

  116. Harvey, D. J., Martin, B. R. and Paton, W. D. M. (1977) In vivo metabolism of cannabinol by the mouse and rat and a comparison with the metabolism of A’-tetrahydrocannabinol and cannabidiol. Biomed Mass Spectrom. 4 364–370.

    Google Scholar 

  117. Burstein, S. H. and Varanelli, C. (1975) Transformations of cannabinol in the mouse. Res. Commun. Chem. Pathol. Pharmacol. 11, 343–354.

    PubMed  CAS  Google Scholar 

  118. Yisak, W., Agurell, S., Lindgren, J. E., and Widman, M. (1978) In vivo metabolites of cannabinol identified as fatty acid conjugates. J. Pharm. Pharmacol. 30, 462–463.

    PubMed  CAS  Google Scholar 

  119. Harvey, D. J. and Brown, N. K. (1990) In vitro metabolism of cannabigerol in the mouse, rat, guinea pig, rabbit, hamster, gerbil and cat. Biomed. Environ. Mass Spectrom. 19, 545–553.

    PubMed  CAS  Google Scholar 

  120. Brown, N. K. and Harvey, D. J. (1990) In vitro metabolism of cannabichromene in 7 common laboratory animals. Drug Metab. Dispos. 16, 1065–1070.

    Google Scholar 

  121. Harvey, D. J. and Brown, N. K. (1991) Identification of cannabichromene metabolites by mass spectrometry-identification of eight new dihydroxy metabolites in the rabbit. Biological Mass Spectrometry 20, 275–285.

    Google Scholar 

  122. Klausner, H. K. and Dingell, J. V. (1971) The metabolism and excretion of 6.9-tetrahydrocannabinol in the rat. Life Sci. 10, 49–59.

    CAS  Google Scholar 

  123. Lemberger, L., Weiss, J. L., Watanobe, A. M., Galanter, I. M., Wyatt, R. J., and Cardon, P. V. (1972) 49Tetrahydrocannabinol: temporal correlation of the psychological effects and blood levels after various routes of administration. New Engl. J. Med. 286, 685–688.

    Google Scholar 

  124. Hollister, L. E., Kanter, S. L., Moore, F., and Green, D. E. (1972) Marihuana metabolites in urine of man Clin. Pharmacol. Ther. 13, 849–855.

    PubMed  CAS  Google Scholar 

  125. Halldin, M. M., Karlsson, S., Kanter, S. L., Widman, M., and Agurell, S. (1982) Urinary metabolites of 4’ tetrahydrocannabinol in man. Arzneim. Forsch. 32, 764–768.

    Google Scholar 

  126. Halldin, M. M., Andersson, L. K. R., Widman, M., and Hollister, L. E. (1982) Further urinary metabolites of 41-tetrahydrocannabinol in man. Arzneim. Forsch. 32, 1135–1138.

    CAS  Google Scholar 

  127. Huestis, M. A., Mitchell, J. M., and Cone, E. J. (1996) Urinary excretion profiles of 11-nor-9-carboxy-A9tetrahydrocannabinol in humans after single smoked doses of marihuana. J. Anal. Toxicol. 20, 441–452.

    PubMed  CAS  Google Scholar 

  128. Moody, D. E., Monti, K. M., and Crouch, D. J. (1992) Analysis of forensic specimens for cannabinoids. II. Relationship between blood 49-tetrahydrocannabino1 and blood and urine 11-nor-A9-tetrahydrocannabinol9-carboxylic acid concentrations. J. Anal. Toxicol. 16, 302–306.

    PubMed  CAS  Google Scholar 

  129. Huestis, M. A., Henningfield, J. E., and Cone E. J. (1992) Models for the prediction of time of marihuana exposure from plasma concentrations of A9-tetrahydrocannabinol (THC) and 11-nor-carboxy-49-tetrahydrocannabinol (THCCOOH). J. Anal. Toxicol. 16, 283–290.

    PubMed  CAS  Google Scholar 

  130. Yoo, S. D., Fincher, T. K., and Holladay, J. W. (1994) Mammary excretion of cannabidiol in rabbits after intravenous administration. J. Pharm. Pharmacol. 46, 926–928.

    PubMed  CAS  Google Scholar 

  131. Hollister, L. E. (1973) Cannabidiol and cannabinol in man. Experientia 29, 825–826.

    PubMed  CAS  Google Scholar 

  132. Christensen, H. D., Freudenthal, R. I., Gidley, J. T., Rosenfeld, R., Boegli, G., Testino, L., Brine, D. R., Pitt, C. G., and Wall, M. E. (1971) Activity of 48- and A9-tetrahydrocannabinol and related compounds in the mouse. Science 172, 165–167.

    Google Scholar 

  133. Perez-Reyes, M., Timmons, M. C., Lipton, M., Davis, K. H., and Wall, M. E. (1972) Intravenous injection in man of A9-tetrahydrocannabinol and 11-hydroxy-A9-tetrahydrocannabinol. Science 177, 633–635.

    Google Scholar 

  134. Jones, G., Widman, M., Agurell, S., and Lindgren, J. E. (1974) Monohydroxylated metabolites of A’tetrahydrocannabinol in mouse brain. Comparison with in vitro liver metabolites. Acta Pharm. Suec. 11, 283–294.

    PubMed  CAS  Google Scholar 

  135. Narimatsu, S., Matsubara, K., Shimonishi, T., Watanabe, K., Yamamoto, I. and Yoshimura, H. (1985) Pharmacological activities in the mouse of A9-tetrahydrocannabinol metabolites oxidized in the 8-position. Chem. Pharm. Bull. 33, 392–395.

    PubMed  CAS  Google Scholar 

  136. Ohlsson, A., Agurell, S., Leander, K., Dahmen, J., Edery, H., Porath, G., Levy, G., and Mechoulsm, R. (1979) Synthesis and psychotropic activity of side-chain hydroxylated A6-tetrahydrocannabinol metabolites. Acta Pharm. Suec. 16, 21–33.

    PubMed  CAS  Google Scholar 

  137. Yamamoto, I., Tanaka, T., Watanabe, K., Narimatsu, S., and Yoshimura, H. (1986) Pharmacological activity of side-chain hydroxylated metabolites of A9-tetrahydrocannabinol in mice. Res. Commun. Substance Abuse 7, 19.

    CAS  Google Scholar 

  138. Narimatsu, S., Yamamoto, I., Watanabe, K., and Yoshimura, H. (1983) 9a,10a-epoxyhexahydrocannabinol formation from 49-tetrahydrocannabinol by liver microsomes of phenobarbital-treated mice and its pharmacological activities in mice J. Pharmacobio-Dyn. 6 558–564.

    Google Scholar 

  139. Magour, S., Coper, H., and Fahndrich, C. (1977) Is tolerance to A9-tetrahydrocannabinol cellular or metabolic? The subcellular distribution of A9-tetrahydrocannabinol and its metabolites in brain of tolerant and non-tolerant rats. Psychopharmacology. 51, 141–145.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harvey, D.J. (1999). Absorption, Distribution, and Biotransformation of the Cannabinoids. In: Nahas, G.G., Sutin, K.M., Harvey, D., Agurell, S., Pace, N., Cancro, R. (eds) Marihuana and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-710-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-710-9_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5717-0

  • Online ISBN: 978-1-59259-710-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics