Skip to main content

Alcohol and Immune Function

  • Chapter

Abstract

Individuals often drink in response to stress: the more severe and chronic the stressor, the greater the alcohol consumption. Stress is commonly believed to be a factor in the development of alcoholism (alcohol dependence). Whether an individual will drink in response to stress depends on many factors, including genetic determinants, the individual’s usual drinking behavior, coping strategies, expectations regarding the effect of alcohol on stress, the intensity and type of stressor, and the individual’ s sense of control over the stressor (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohorecky LA. Stress and alcohol interaction: an update of human research. Alcoholism: Clin Exp Res 1991; 15 (3): 438–59.

    Article  CAS  Google Scholar 

  2. Jennison KM. The impact of stressful life events and social support on drinking among older adults: a general population survey. Int J Aging Hum Dev 1992; 35 (2): 99–123.

    Article  CAS  Google Scholar 

  3. Chiappelli F, Franceschi C, Ottaviani E, Farné M, Faisal M. Phylog eny of the neuroendocrine-immune system: fish and shellfish as a model system for social interaction stress research in humans. Ann Rev Fish Dis 1993; 3: 327–46.

    Article  Google Scholar 

  4. Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17: 64–102.

    CAS  Google Scholar 

  5. Maier SF, Watkins LR, Fleshner M. Psychonneuroimmunology: the interface between behavior, brain and immunity. Am Psychol 1994; 49: 1004–17.

    Article  CAS  Google Scholar 

  6. Wand G, Froehlich JC. Alterations in hypothalamo-hypophyseal function by ethanol. In: Mueller EE, MacLeod RM, eds, Neuroendo crine Perspectives Vol 9, pp. 45–126. Verlag Publ., New York, 1991.

    Google Scholar 

  7. Eskay RL, Chautard T, Torda T, Hwang D. The effects of alcohol on selected regulatory aspects of the stress axis. In: Zakhari S, ed, Alcohol and Endocrine System. National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 1993.

    Google Scholar 

  8. Mendelson JH, Stein S. Serum cortisol levels in alcoholic and nonal coholic subjects during experimentally induced alcohol intoxication. Psychosom Med 1996; 28: 616–26.

    Google Scholar 

  9. Morgan MY. Alcohol and the endocrine system. Br Med Bull 1982; 38: 17–20.

    Google Scholar 

  10. Adinoff B, Martin PR, Bone GH, et al. Hypothalamic-pituitary- adrenal axis functioning and cerebrospinal fluid corticotropin-releasing hormone and corticotropin levels in alcoholics and recent long-term abstinence. Arch Gen Psychiat 1990; 47: 325–30.

    Article  CAS  Google Scholar 

  11. Chiappelli F, Manfrini E, Franceschi C, Cossarizza A, Black KL. Steroid regulation of cytokines: Relevance for TH1 TH2 shift? Ann NY Acad Sci 1994; 746: 204–16.

    Article  CAS  Google Scholar 

  12. Van Thiel DH, Gavaler J, Lester R. Ethanol inhibition of vitamin A metabolism in the testes: possible mechanism for sterility in alcohol ics. Science 1974; 186 (4167): 941–2.

    Article  Google Scholar 

  13. Wright HI, Gavaler JS, Van Thiel D. Effects of alcohol on the male reproductive system. Alcohol Health Res World 1991; 15 (2): 110–4.

    Google Scholar 

  14. Leo MA, Lieber CS. Hepatic vitamin A depletion in alcoholic liver injury. N Engl J Med 1982; 307 (10): 597–601.

    Article  CAS  Google Scholar 

  15. Mello NK, Mendelson JH, Teoh SK. An overview of the effects of alcohol on neuroendocrine function in women. In: Zakhari S, ed, Alcohol and the Endocrine System, pp. 139–69. National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 1993.

    Google Scholar 

  16. Gordon GG, Lieber CS. Alcohol, hormones, and metabolism. In: Lieber CS, ed, Medical and Nutritional Complications of Alcoholism, pp. 50–90. Plenum, New York, 1992.

    Google Scholar 

  17. Gavaler JS, Van Thiel DH. The association between moderate alco holic beverage consumption and serum estradiol and testosterone levels in normal postmenopausal women: relationship to the literature. Alcoholism: Clin Exp Res 1992; 16 (1): 87–92.

    Article  CAS  Google Scholar 

  18. Willett WC, Stampfer M.1, Colditz GA, Rosner BA, Hennekens CH, Speizer FE. Moderate alcohol consumption and the risk of breast cancer. N Engl J of Med 1987; 316: 1174–80.

    Article  CAS  Google Scholar 

  19. Draca SR. Endocrine-immunological homeostasis: the inter relationship between the immune system and sex steroids involves the hypothalamo-pituitary-gonadal axis. Panminerva Med 1995; 37 (2): 71–6.

    CAS  Google Scholar 

  20. Torpy DJ, Chrousos GP. The three-way interactions between the hypothalamic-pituitary-adrenal and gonadal axes and the immune system. Baillieres Clin Rheum 1996; 10 (2): 181–98.

    Article  CAS  Google Scholar 

  21. Spangelo BL, Judd AM, Call GB, Zumwalt J, Gorospe WC. Role of the cytokines in the hypothalamic-pituitary-adrenal and gonadal axes. Neuroimmunomodulation 1995; 2 (5): 299–312.

    Article  CAS  Google Scholar 

  22. Chiappelli F, Franceschi C, Ottaviani E, Solomon GF, Taylor AN. Neuroendocrine modulation of the immune system. In: Greger R, Koepchen H-P, Mommaerts W, Winhorst U, eds., Human Physiology: From Cellular Mechanisms to Integration. Springer-Verlag, New York, 1996.

    Google Scholar 

  23. Szabo G, Mandrekar P, Girouard L, Catalano D. Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-1 beta and elevated interleukin-10, and transforming growth factor-beta production. Alcoholism: Clin Exp Res 1996; 20 (5): 900–7.

    Article  CAS  Google Scholar 

  24. Mohadjer C, Daniel V, Althof F, Maier H. Immune status studies after one-time alcohol consumption in healthy subjects. Deutsche Med Wochenschr, 1995; 120 (46): 1577–81.

    Article  CAS  Google Scholar 

  25. Romagnani S. Human TH1 and TH2 subjects: regulation of differenti ation and role in protection and immunopathology. Int Arch All Immunol 1992; 98: 279–85.

    Article  CAS  Google Scholar 

  26. Snijdewint FG, Kapsenberg ML, Wauben-Penris PJ, Bos JD, Cortico steroids class-dependently inhibit in vitro Thl-and Th2-type cytokine production. Immunopharmacology 1995; 29: 93–101.

    Article  CAS  Google Scholar 

  27. Del Prete G, de Carli M, Mastromauro C, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigens of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper and Type 2 helper) profile of cytokine production. J Clin Invest 1991; 88: 346–50.

    Article  Google Scholar 

  28. Chiappelli F, Kung MA, Villanueva P, Ong T. Alcohol toxicity of T cell-mediated immunity in the aging population. Alcologia 1997; 9: 1–12.

    Google Scholar 

  29. Chiappelli F, Kung MA, Savage M, Villanueva P, Fiala M. Nicotine and ethanol modulation of cell-mediated immune surveillance of oral squamous cell carcinoma. Int J Oral Biol 1996; 21: 19–27.

    Google Scholar 

  30. Fiala M, Newton T, Chiappelli F, et al. Divergent effects of cocaine on cytokine production by lymphocytes and monocyte/macrophages. In: Friedman H, Madden J, Sharp B, Esenstein T, eds, AIDS, Drugs of Abuse and the Neuroimmune Axis, 1996; 20: 145–56.

    Google Scholar 

  31. Rudd CE. CD4, CD8 and the TcR-CD3 complex: A novel class of protein-tyrosine kinase receptor. Immunol Today 1990; 11: 400–6.

    Article  CAS  Google Scholar 

  32. Rudd CE. Upstream-downstream: CD28 cosignaling pathways and T cell function. Immunity 1996; 4: 527–34.

    Article  CAS  Google Scholar 

  33. Chiappelli F, Kavelaars A, Heijnen CJ. β-endorphin effects on mem brane transduction in human lymphocytes. Ann NY Acad Sci 1992; 650: 211–7.

    Article  CAS  Google Scholar 

  34. Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p561`k. Cell XX; 303–308.

    Google Scholar 

  35. Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. PNAS 1988; 85: 5190–4.

    CAS  Google Scholar 

  36. Rudd CE, Anderson P, Morimoto C, Streuli M, Schlossman SF. Molecular interaction, T-cell subsets and a role of the CD4/CD8:p561’ complex in human T-cell activation. Immunol Rev 1989; 111: 225–65.

    Article  CAS  Google Scholar 

  37. Chiappelli F, Kung MA, Lee P, Pham L, Manfrini E, Villanueva P. Alcohol modulation of T cell activation, maturation and migration. Alcoholism: Clin Exp Res 1995; 19: 539–44.

    Article  CAS  Google Scholar 

  38. Crabtree JR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989; 243: 355–61.

    Article  CAS  Google Scholar 

  39. D’Ambrosio D, Cantrell DA, Frati L, Santoni A, Testi R. Involvement of p21 ras in T cell CD69 expression. Eur L. Immunol 1994; 24: 616–20.

    Article  Google Scholar 

  40. Martins LM, Earnshaw WC. Apoptosis: alive and kicking in 1997. Trends in Cell Biol 1997; 7: 111–4.

    Article  CAS  Google Scholar 

  41. Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Molinoff PB,Ruddon RW, eds, Goodman and Gillman’s The Pharmacological Basis of Therapeutics, 9th ed, pp. 3–27. McGraw-Hill, New York, 1996.

    Google Scholar 

  42. Lieber CS. Metabolic consequences of ethanol. The Endocrinologist 1994; 4 (2): 127–39.

    Article  Google Scholar 

  43. Addolorato G, Capristo E, Greco AV, Stefanini GF, Gasbarrini G.Energy expenditure, substrate oxidation, and body composition insubject with chronic alcoholism: new findings from metabolic assess ment. Alcoholism: Clin Exp Res 1997; 21(6):962–96.

    Google Scholar 

  44. Wallgren H. Absorption, diffusion, distribution and elimination of ethanol: effect of biological membranes. In: International Encyclopedia of Pharmacology and Therapeutics, Vol. 1, pp. 161–88. Pergamon, Oxford, 1970.

    Google Scholar 

  45. Jones AW, Jönsson KA. Food-induced lowering of blood-ethanol profiles and increased rate of elimination immediately after a meal. J Forensic Sci 1994; 39 (4): 1084–93.

    CAS  Google Scholar 

  46. Lieber CS. Interaction of ethanol with other drugs. In: Lieber CS, ed, Medical and Nutritional Complications of Alcoholism: Mechanisms and Management, pp. 165–83. Plenum, New York, 1992.

    Chapter  Google Scholar 

  47. Mac Gregor RR. Alcohol and immune defense. JAMA 1986; 19: 1474–9.

    Google Scholar 

  48. Liu YK: Effects of alcohol on granulocytes and lymphocytes. Semin Hematol 1980; 17: 130.

    CAS  Google Scholar 

  49. Nakao S, Harada M, Knodo K, et al. Reversible bone marrow hypopla- sia induced by alcohol. Am J Hematol 1991; 37: 120–3.

    Article  CAS  Google Scholar 

  50. Imperia PS, Chikkappa G, Phillips PG. Mechanism of inhibition of granulopoiesis by ethanol. Proc Soc Exp Biol Med 1975; 86:24.

    Google Scholar 

  51. Jareo PW, Preheim LC, Gentry MJ. Ethanol ingestion impairs neutro- phil bacteriocidal mechanisms against Streptococcus pneumoniae. Alcoholism: Clin Exp Res 1996; 20: 1646–52.

    Google Scholar 

  52. Adams DH. Leukocyte adhesion molecules and alcoholic liver dis- ease. Alcohol Alcoholism 1994; 29: 249–60.

    CAS  Google Scholar 

  53. Bautista AP. Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver. Hepatology 1997; 25: 335–42.

    Article  CAS  Google Scholar 

  54. Corazza GR, Adolorato G, Biagi F, et al. Splenic function and alcohol addiction. Alcoholism: Clin Exp Res 1997; 21: 197–200.

    Article  CAS  Google Scholar 

  55. Muller AF, Toghill J. Splenic function in alcoholic liver disease. Gut 1992; 33: 1386–9.

    Article  CAS  Google Scholar 

  56. Goldman M, Druet P, Gleichamann E. Th2 cells in systemic autoim- munity: insights from allogenic disease and chemically induced auto- immunity. Immunol. Today 1991; 12: 223–67.

    Article  CAS  Google Scholar 

  57. Mobley JL, Reynolds PJ, Shimizu Y. Regulatory mechanisms underly ing T cell integrin receptor function. Semin Immunol 1993; 5: 227–36.

    Article  CAS  Google Scholar 

  58. Alexander GJM, Nouri-Aria KT, Eddelston ALWF. Contrasting rela tions between suppressor cell function and suppressor cell number in chronic liver disease. Lancet 1993; I: 1291–2.

    Google Scholar 

  59. Kasian MT, Ikematsu H, Casali P. Identification of a novel human surface CD5- B lymphocyte subset producing natural antibodies. J Immunol 1992; 148: 2690–2702.

    Google Scholar 

  60. Cook RT, Waldschmidt TJ, Cook BL, et al. Loss of the CD5+ and CD45RAhi B cell subset in alcoholics. Clin Exp Immunol 1996; 103: 304–10.

    Article  CAS  Google Scholar 

  61. Smith S, Hoy WE. Frequent association of mesangial glomerulonephritis and alcohol abuse: a study of 3 ethnic groups. Mod Pathol 1989; 2: 138–43.

    CAS  Google Scholar 

  62. Paronetto F. Ethanol and the immune system. In: Seitz HK, Kommerell B, eds, Alcohol Related Disease in Gastroenterology. Springer Verlag, New York, 1981.

    Google Scholar 

  63. Clot P, Bellomo G, Tabone M, Aricò S, Allbano E. Detection of antibodies against protein modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology 1995; 108: 201–7.

    Article  CAS  Google Scholar 

  64. Shafer C, Ships I, Landing J, Bode JC, Bode C. Tumor necrosis factor and interleukin 6 response of peripheral blood monocytes to low concentrations of lipopolysaccharide in patients with alcoholic liver disease. J Gastroenterol 1995; 33: 503–8.

    Google Scholar 

  65. McClain G, Hill D, Schmidt J, Diehl AM. Cytokines and alcoholic liver disease. Semin Liver Dis 1993; 13 (2): 170–82.

    Article  CAS  Google Scholar 

  66. Volpes R, Van Den Oord JJ, De Vos R, Desmet VJ. Hepatic expression of type A and type B receptors for tumor necrosis factor. J Hepatol 1992; 14: 361–9.

    Article  CAS  Google Scholar 

  67. Deviere J, Content J, Denys C. Immunoglobulin A and interleukin 6 form a positive secretory feedback loop: a study of normal subjects and alcoholic cirrhotics. Gastroenterology 1992; 103: 1296–301.

    CAS  Google Scholar 

  68. Maltby J, Wright S, Bird G, Sheron N. Chemokine levels in liver homogenates: associations between GROa and histopathological evidence of alcoholic hepatitis. Hepatology 1996; 24: 1156–60.

    CAS  Google Scholar 

  69. Cook RT, Garvey MJ, Booth BM, Goeken JA, Stewart B, Noel M,Activated CD8 cells and HLA-Dr expressionn in alcoholics without liver disease. J Clin Immunol 1991; 11: 246–53.

    Article  CAS  Google Scholar 

  70. Cook RT, Waldschmidt TJ, Ballas ZK, Cook BL, Booth BM, Stewart BC, et al. Fine T cell subsets in alcoholics as determined by the expression of L-selectin, leukocyte common antigen and (3-integrin. J Immunol 1994; 18: 71–80.

    CAS  Google Scholar 

  71. Cook RT, Ballas ZK, Waldschmidt TJ, Cook BL, La Brecque DR,Byers C. Phenotypic alterations of lymphocyte fine subsets in the alcoholic: Implications for function. Adv Biosci 1993; 86: 91–102.

    CAS  Google Scholar 

  72. Diamond I, Wrubel B, Estrin W, Gordon A. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci USA 1987; 84: 1413–6.

    Article  CAS  Google Scholar 

  73. Celadon M, Biagi PL, Bordoni A, Mazzetti M, Castelli E, Stefanini GF, et al. Influence of chronic ethanol consumption on the inositol phospholipid fatty acid composition of human peripheral blood lymphocytes. Immunol Lett 1992; 34: 155–60.

    Article  CAS  Google Scholar 

  74. Hrelia S, Celadon M, Bordoni A, Castelli E, Foschi FG, Stefanini GF, et al. Phosphatidylinositol metabolism in lymphocytes of chronic alcoholic patients anter anti-CD3 stimulation. Immunol Lett 1995; 46: 63–6.

    Article  CAS  Google Scholar 

  75. Hunig T, Tiefenthaler G, Meyer zum Buscehnfelde S, Meuer S. Alternative pathway activation of T cells by binding CD2 to its cellsurface ligand. Nature 1987; 326: 400–5.

    Google Scholar 

  76. Brown MH, Cantrell DA, Brattsand G, Crumpton MJ, Gullberg M. The CD2 antigen associates with the T cell antigen receptor CD3 antigen complex on the surface of human T lymphocytes. Nature 1989; 339: 551–4.

    Article  CAS  Google Scholar 

  77. Chiappelli F, Taylor AN. The fetal alcohol syndrome and fetal alcohol effects on immune competence. Alcohol Alcoholism 1995; 30: 259–63.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chiappelli, F., Kung, M.A., Stefanini, G.F., Foschi, F.G. (2000). Alcohol and Immune Function. In: Gershwin, M.E., German, J.B., Keen, C.L. (eds) Nutrition and Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-709-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-709-3_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-148-6

  • Online ISBN: 978-1-59259-709-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics