Skip to main content

Nutritional Modulation of Inflammation by Polyunsaturated Fatty Acids/Eicosanoids

  • Chapter

Abstract

The first indication that dietary fat may be essential for healthy growing animals was presented in 1918 by Aron, who proposed that butter has a nutrient value that cannot be provided by other dietary components (1). This report suggested that there was a special nutritive value inherent in fat apart from its caloric contribution and that this possibly was related to the presence of certain lipids. In 1929, Burr and Burr (2) presented the first in a series of articles outlining a “new deficiency disease produced by the rigid exclusion of fat from the diet.” In the series of conclusions put forth, they developed the hypothesis that warm-blooded animals, in general, cannot synthesize appreciable quantities of certain fatty acids. In 1930, both investigators significantly added to their earlier work by presenting evidence that the dietary inclusion of linoleic acid alone could reverse all deficiency symptoms resulting from a fat-free diet and thus linoleic acid (LA or 18:2n-6)’ was heralded as an essential fatty acid (EFA) (3). The recognition that some unsaturated fatty acids could not be synthesized from endogenous precursors by mammals and were essential dietary elements led to the designation of essential and nonessential fatty acids. It was originally thought that there are only two essential fatty acids, linoleic acid (9,12-octadecadienoic acid, LA, 18:2n-6) and α-linolenic acid (9,12,15-octadecatrienoic acid [ALA], 18:3n-3), but continued nutritional studies revealed positive essential growth responses not only for linoleic acid and a-linolenic acid, but also for arachidonic acid as well as the long-chain highly unsaturated fatty acids in fish oil (eicosapentaenoic acid, 20:5n-3) and docosahexaenoic acid, 22:n-3) (4–6). More recent reports on the biological significance of the longer-chain n-3 PUFAs do qualify these long-chain fatty acids as essential PUFAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron H. Uber den Nahrwert. Biochem Z. 1918; 92: 211–33.

    CAS  Google Scholar 

  2. Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929; 82: 345–56.

    CAS  Google Scholar 

  3. Burr GO, Burr MM. On the nature of the fatty acids essential in nutrition. J Biol Chem 1930; 86: 587–621.

    CAS  Google Scholar 

  4. Turpeinen O. Further studies on the unsaturated fatty acids essential in nutrition. J Nutr 1937; 15: 351–66.

    Google Scholar 

  5. Burr GO, Brown JB, Kass JP, Lundberg WO. Comparative curative values of unsaturated fatty acids in fat deficiency. Proc Soc Exp Biol Med 1940; 44: 242–5.

    CAS  Google Scholar 

  6. Quackenbush FW, Kummerow FA, Steenbock H. The effectiveness of linoleic, arachidonic, and linolenic acids in reproduction and lactation. J Nutr 1942; 24: 213–24.

    CAS  Google Scholar 

  7. Rivers JP, Frankel TL. Essential fatty acid deficiency. Br Med Bul 1981; 37 (1): 59–64.

    CAS  Google Scholar 

  8. Holman RT, Smythe L, Johnson S. Effect of sex and age on fatty acid composition of human serum lipids. Am J Clin Nutr 1979; 32: 2390–9.

    CAS  Google Scholar 

  9. Homan RT. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirements. J Nutr 1960; 70: 405–10.

    Google Scholar 

  10. Marcel YL, Christiansen K, Holman RT. The preferred metabolic pathway from linoleic acid to arachidonic acid in vitro. Biochim Biophys Acta 1968; 164: 25–34.

    Article  CAS  Google Scholar 

  11. Brenner RR. The oxidative desaturation of unsaturated fatty acids in animals. Mol Cell Biochem 1974; 3: 41–52.

    Article  CAS  Google Scholar 

  12. Crawford MA, Rivers JP, Hassam AG. Comparative studies on the metabolic equivalence of linoleic and arachidonic acids. Nutr Metab 1977; 21: 189–96.

    Article  CAS  Google Scholar 

  13. Leslie CC, Voelker DR, Channon JY, Wall MM, Zelarney PT. Purification and properties of an arachidonyl-hydrolyzing phospholipase A2 from a macrophage cell line, RAW 264.7. Biochim Biophys Acta 1988; 963: 476–92.

    Article  CAS  Google Scholar 

  14. Kramer RM, Roberts EF, Manetta J, Putnam JE. The Cat+-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem 1991; 266: 5268–72.

    CAS  Google Scholar 

  15. Sharp JD, White DL, Chiou SG, Goodson T, Gamboa GC, McClure D. Molecular cloning and expression of human Ca’-sensitive cytosolic phospholipase A2. J Biol Chem 1991; 266: 14, 850–3.

    Google Scholar 

  16. Lin LL, Lin AY, DeWitt DL. IL-la induces the accumulation of cPLA2 and the release of PGE2 in human fibroblasts. J Biol Chem 1992b; 267: 23, 451–4.

    Google Scholar 

  17. Gronich JH, Boventre JV, Nemonoff RA. Purification of a highmolecular-mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem J 1990; 271: 37–43.

    CAS  Google Scholar 

  18. Takayama K, Kudo I, Kim DK, Nagata K, Nozawa Y, Inoue K. Purification and characterization of human platelet phospholipase A2 which preferentially hydroyzes an arachidonoyl residue. FEBS Lett 1991; 282: 326–30.

    Article  CAS  Google Scholar 

  19. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY. A novel arachidonic acid-selective cytosolic PLA2 contains a Cat -dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–51.

    Article  CAS  Google Scholar 

  20. Smith WL, DeWitt DL. Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol 1996; 62: 167–215.

    Article  CAS  Google Scholar 

  21. Carty TJ, Marfat A. The prospect for improved medicines. ( Bowman WC, Fitzgerald JD, and Taylor JB eds.) Emerging Drugs. 1996; 391–411.

    Google Scholar 

  22. Seibert K, Zhang Y, Leahy K, Hauser S, Masferres J, Perkins W. Pharmacological and biochemical demonstration of the role of

    Google Scholar 

  23. cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994; 91: 12, 013–7.

    Google Scholar 

  24. Chan CC, Boyce S, Brideau C, Ford-Hutchinson AW, Gordon R, Guay D. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J Pharmacol Exp Ther 1995; 274: 1531–7.

    CAS  Google Scholar 

  25. Patrono C. Aspirin as an antiplatelet drug. N Engl J Med 1994; 330: 1287–94.

    Article  CAS  Google Scholar 

  26. Showell HJ, Naccache PH, Borgeat P, Picard S, Valley P. Characterization of the secretory activity of LTB4 toward rabbit neutrophils. J Immunol 1982; 128: 811–16.

    CAS  Google Scholar 

  27. Bray MA, Ford-Hutchinson AW, Smith MJH. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins 1981; 22: 213–22.

    Article  CAS  Google Scholar 

  28. Sharon P, Stenson WF. Production of leukotrienes by colonic mucosa from patients with inflammatory blood disease. Gastroenterology 1983; 84: 1306 (A).

    Google Scholar 

  29. Brain SD, Camp RDR, Dowd PM, Black AK, Woolard PM, Mallet, Greaves M. Psoriasis and leukotriene B4. Lancet 1982; 2: 762–63.

    Article  CAS  Google Scholar 

  30. Feldberg W, Kellaway CH. Liberation of histamine and formation of lysolecithin-like substances by cobra venom. J Physiol 1938; 94: 187–226.

    CAS  Google Scholar 

  31. Murphy RC, Hammarström S, Samuelsson B. Leukotriene C. A slow reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 1979; 76: 4275–9.

    Article  CAS  Google Scholar 

  32. Holroyde MC, Altounyan REC, Cole M, Dixon M, Elliott EV. Bronchoconstriction produced in man by leukotrienes C and D. Lancet 1981; 2: 17–8.

    Article  CAS  Google Scholar 

  33. Zakrzewski JT, Barnes NC, Piper PJ, Costello JF. Quantitation of leukotrienes in asthmatic sputum. Br J Pharmacol 1985; 19: 574 P.

    Google Scholar 

  34. Creticos PS, Peters SP, Adkinson NF Jr. Neiclerio RM, Hayes EC, and Notman PS. Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 1984; 310: 1626–30.

    Article  CAS  Google Scholar 

  35. Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 1984; 71: 3400–4.

    Article  Google Scholar 

  36. Hamberg M, Hedqvist P, Radegran K. Identification of 15-hydroxy5,8,11,13-eicosatetraenoic acid (15-HETE) as a major metabolite of arachidonic acid in human lung. Acta Physiol Scand 1980; 110 (2): 219–21.

    Article  CAS  Google Scholar 

  37. Takashi I, Râdmark O, Jörnvall H, Samuelsson B. Purification of two forms of arachidonate 15-lipoxygenase from human leukocytes. Eur J Biochem 1991; 202: 1231–8.

    Article  Google Scholar 

  38. Hunter JA, Finkbeiner WE, Nadel JA, Goetzl EJ, Holtzman MJ. Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epitheial cells from human trachea. Proc Natl Acad Sci USA 1985; 82 (14): 4633–7.

    Article  CAS  Google Scholar 

  39. Henke D, Danilowicz RM, Curtis JF, Boucher RC, Eling TE. Metabolism of arachidonic acid by human nasal and bronchial epithelial cells. Arch Biochem Biophys 1988; 267 (2): 426–36.

    Article  CAS  Google Scholar 

  40. Vanderhoek JY, Karmin MT, Ekborg SL. Endogenous hydroxyeicosatetraenoic acids stimulate the human polymorphonuclear leukocyte 15-lipoxygenase pathway. J Biol Chem 1985; 260 (29): 15482–7.

    CAS  Google Scholar 

  41. Galli C, Socini A. Dietary lipids in pre-and post-natal development in dietary fats and health. In: Perkins EG, Visek WJ, eds, pp. 278–301. American Oil Chemical Society, 1983.

    Google Scholar 

  42. Bourre JM, Durand G, Pascal G, Youyou A. Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. J Nutr 1989; 119: 15–22.

    CAS  Google Scholar 

  43. Farquharson J, Cockburn F, Ainslie PW. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 1992; 340: 810–3.

    Article  CAS  Google Scholar 

  44. Makrides M, Neuman MA, B yard RW, Gibson RA. Fatty acid composition of brain retina and erythrocytes in breast and formula fed infants. Am J Clin Nutr 1994; 60: 189–94.

    CAS  Google Scholar 

  45. Simmons PM, Salmon JA, Moncada S. The release of leukotriene B4 during experimental inflammation. Biochem Pharmacol 1983; 32 (8): 1353–9.

    Article  CAS  Google Scholar 

  46. Brain SD, Camp RD, Cunningham FM, Dowd PM, Greaves MW

    Google Scholar 

  47. Black AK. Leukotriene B4-like material in scale of psoriatic skin lesions. Br J Pharmacol 1984; 83 (1): 313–7.

    Article  Google Scholar 

  48. Belluzzi A, Brignola C, Campieri M, Peya A, Boschi S, Miglioli M. Effect of an enteric-coated fish oil preparation on relapses in Crohn’s disease. N Engl J Med 1996; 334: 1557–1616.

    Article  CAS  Google Scholar 

  49. Robinson DR, Prickett JD, Makoul GT, Steinber AD, Colvin RB. Dietary fish oil reduces progression of established renal disease in (NZBxNZW)F1 mice and delays renal disease in BXSB and MRL/1 strains. Arthrtis Rheum 1986; 29: 539–46.

    Article  CAS  Google Scholar 

  50. Kremer JM, Bigauoette J, Michalek AU. Effects of manipulating dietary fatty acids on clinical manifestations of rheumatoid arthritis. Lancet 1985; 1: 184–7.

    Article  CAS  Google Scholar 

  51. Kremer JM, Lawrence DA, Petrillo GF, Mullaly PM, Rynes RL, et al. The effect of high dose fish oil on rheumatoid arthritis after stopping NSAIDs: clinical and immune correlates in patients with rheumatoid arthritis. Arthritis Rheum 1995; 38: 1107–14.

    Article  CAS  Google Scholar 

  52. Fortin PR, Lian MH, Beckett LA, Wright EAC, Ralmeys TC, Sterling RI. A meta-analysis of the efficacy of fish oil in rheumatoid arthritis. Arthritis Rheum 1992; 35: 5201.

    Google Scholar 

  53. Kroman N, Green A. Epidemiological studies in the Upernavik district, Greenland. Acta Med Scand 1980; 208: 401–6.

    Article  Google Scholar 

  54. Hammarstrom A, Hamberg M, Samuelsson B, Duell EA, Strawiski M, Voorhees JJ. Increased concentration of nonesterified arachidonic acid. 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, prostaglandin E2 and prostagllandin F2,, in epidermis of psoriasis. Proc Natl Acad Sci USA 1975; 72: 5130–4.

    Article  CAS  Google Scholar 

  55. Brain S, Camp R, Dowd P, Black AK, Greaves M. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol 1984; 83: 70–3.

    Article  CAS  Google Scholar 

  56. Ziboh VA, Cohen KA, Ellis CN, Miller C, Hamilton TA, Kragballe K. Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids. Arch Dermatol 1986; 122: 1277–82.

    Article  CAS  Google Scholar 

  57. Maurice PDL, Allen BR, Barkley ASJ, Cockbill SR, Stammers J, Bather PC. The effects of dietary supplementation with fish oil in patients with psoriasis. Br J Dermatol 1987; 117: 599–606.

    Article  CAS  Google Scholar 

  58. Bittiner SB, Cartwright I, Tucker WFG, Bleehen SS. A double-blind randomized placebo-controlled trial of fish oil in psoriasis. Lancet 1988; 1: 378–80.

    Article  CAS  Google Scholar 

  59. BjOrneboe A, Smith AK, BjOrneboe GE, Thune PO, Drevon CA. Effect of dietary supplementation with n-3 fatty acids on clinical manifestations of psoriasis. Br J Dermatol 1988; 118: 77–83.

    Article  CAS  Google Scholar 

  60. Lassus A, Dahlgren AL, Halpern MJ, Santalahti J, Happonen HP. Effects of dietary supplementation with ethyl ester lipids (angiosan) in patients with psoriasis and psoriatic arthritis. J Int Med Res 1990; 18: 68–73.

    CAS  Google Scholar 

  61. Gupta AK, Ellis CN, Tellner DC, Anderson TF, Voorhees H. Double-blind placebo-controlled study to evaluate the efficacy of fish oil and low-dose UVB in the treatment of psoriasis. Br J Dermatol 1989; 120: 801–7.

    Article  CAS  Google Scholar 

  62. Miller CC, Yamaguchi RY, Ziboh VA. Guinea pig epidermis generates putative anti-inflammatory metabolites from fish oil polyunsaturated fatty acids. Lipids 1989; 24: 998–1003.

    Article  CAS  Google Scholar 

  63. Miller CC, Ziboh VA. Human epidermal transforms eicosapentaenoic acid to 15-hydroxy-5,8,11,13,17-eicosapentaenoic acid: a potent inhibitor of 5-lipoxygenase. J Am Oil Chem Soc 1988; 65: 474.

    Google Scholar 

  64. Singer SJ, Nicholson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175: 720–31.

    Article  CAS  Google Scholar 

  65. Horrobin DF. The regulation of prostaglandin biosynthesis by the manipulation of essential fatty acid metabolism. Rev Pure Appl Pharmacol Sci 1983; 4: 339–432.

    CAS  Google Scholar 

  66. Nassar BA, Huang YS, Manku MS, Das UN, Morse N, Horrobin DF. The influence of dietary manipulation with n-3 and n-6 fatty acids on liver and plasma phospholipid fatty acids in rats. Lipids 1986; 21: 652–6.

    Article  CAS  Google Scholar 

  67. Fantone JC, Kunkel SL, Ward PA, Zurier RB. Suppression by prostaglandin E1 of vascular permeability induced by vasoactive inflammatory mediators. J Immunol 1980; 125: 2591–2600.

    CAS  Google Scholar 

  68. Kunkel SL, Thrall RS, Kunkel RG, McCormack JR, Ward PA, Zurier RB. Supression of immune complex vasculitis by prostaglandins. J Clin Invest 1979; 64: 1525–35.

    Article  CAS  Google Scholar 

  69. Miller CC, McCready CA, Jones AD, Ziboh VA. Oxidative metabolism of dihomogammalinolenic acid by guinea pig epidermis. Evidence of generation of anti-inflammatory products. Prostaglandins 1988; 35: 917–38.

    Article  CAS  Google Scholar 

  70. Baker DG, Krakauer KA, Tate GA, Laposata M, Zurier RB. Suppression of human synovial cell proliferation by dihomo-y-linolenic acid. Arthritis Rheum 1989; 32: 1273–81.

    Article  CAS  Google Scholar 

  71. Leventhal LT, Boyce EG, Zurier RB. Treatment of rheumatoid arthritis with gammalinolenic acid. Ann Intern Med 1993; 119: 867–73.

    CAS  Google Scholar 

  72. Belch JJF, Ansell D, Madhok AR, Dowd A, Sturrock RD. Effects of altering dietary essential fatty acids on requirements for non-steroidal anti-inflammatory drugs in patients with rheumatoid arthritis: a double blind placebo controlled study. Ann Rheum Dis 1988; 47: 96–104.

    Article  CAS  Google Scholar 

  73. Chapkin RS, Ziboh VA, Marcelo CL, Voorhees JJ. Metabolism of essential fatty acids by human epidermal perparations: evidence of chain elongation. J Lipid Res 1986; 27: 945–54.

    CAS  Google Scholar 

  74. Hansen HS, Jensen B. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence form feeding studies with oleate, linoleate, arachidonate, columbinate and a-linoleate. Biochim Biophys Acta 1985; 834: 357–63.

    Article  CAS  Google Scholar 

  75. Chapkin RS, Ziboh VA. Inability of skin enzyme preparation to biosynthesize arachidonic acid from linoleic acid. Biochem Biophys Res Commun 1984; 124: 784–92.

    Article  CAS  Google Scholar 

  76. Cho Y, Ziboh VA. Incorporation of 13-hydroxyoctadecadienoic acid (13-HODE) into epidermal ceramides and phospholipids: phospholipase C-catalyzed release of novel 13-HODE-containing diacylglycerol. J Lipid Res 1994; 35: 255–62.

    CAS  Google Scholar 

  77. Cho Y, Ziboh VA. Nutritional modulation of guinea pig skin hyper-proliferation by essential fatty acid deficiency is associated with selective down regulation of protein kinase C-13. J Nutr 1995; 125: 2741–50.

    CAS  Google Scholar 

  78. Fogh K, Sogaard H, Herlin T, Kragballe K. Improvement of psoriasis vulgaris after intralesional injections of 15-hydroxyeicosatetraenoic acid (15-HETE). J Am Acad Dermatol 1988; 18: 279–85.

    Article  CAS  Google Scholar 

  79. Wright S, Buton JL. Oral evening primrose seed oil improves atopic eczema. Lancet 1982; ii:1120–22.

    Google Scholar 

  80. Tate G, Mandell BF, Laposata M, Ohliger D, Baker DG, and Schumacher HR. Suppression of acute and chronic inflammation by dietary gammalinolenic acid. J Rheumatol 1989; 16: 1729–36.

    Google Scholar 

  81. Miller CC, Ziboh VA. Gammalinolenic acid-enriched diet alters cutaneous eicosanoids. Biochim Biophys Res Commun 1988; 154: 967–74.

    Article  CAS  Google Scholar 

  82. Ziboh VA, Fletcher MP. Dose-response effects of dietary y-linolenic acid-enriched oils on human polymorphonuclear-neutrophil biosynthesis of leukotriene B4. J Clin Nutr 1992; 55: 39–45.

    CAS  Google Scholar 

  83. Vanderhoek JY, Bryant RV, Bailey JM. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,5,11,13-eicosatetraenoic acid. J Biol Chem 1980; 225: 10, 064–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ziboh, V.A. (2000). Nutritional Modulation of Inflammation by Polyunsaturated Fatty Acids/Eicosanoids. In: Gershwin, M.E., German, J.B., Keen, C.L. (eds) Nutrition and Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-709-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-709-3_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-148-6

  • Online ISBN: 978-1-59259-709-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics