Skip to main content

Impact of Nutritional Status on Immune Integrity

  • Chapter

Abstract

Nutritional immunology remains an area ripe for further investigation. Many important relationships between specific nutrients and immune function remain to be identified. In some cases, these studies will reveal new biological roles for the nutrient or new modes of regulation of the immune system, thereby making important contributions to basic as well as clinical sciences. Although many nutritionists have a keen interest in the interrelationships between nutrients and the immune function, this area has not been widely embraced by the immunological community. Thus, nutritional immunology was left for many years in the hands of those investigators brave enough to try to master two separate and complex disciplines. As a result, only a few areas of nutritional immunology have received extensive investigation. Although some like to point out that hundreds of articles can be found describing the impact of diet on the immune function, the bulk of the early literature was a patchwork of studies. Interesting data often of limited scope received little follow-up investigation. There were, however, some persistent and wonderful pioneering efforts put forth by Chandra, Beisel, Scrimshaw, and Newberne to name a few (1-3). Joined by other labs, these investigators have provided extensive detail regarding the effects of deficiencies in zinc, copper, and protein calories on a number of facets of immune defense in both humans and animal models. These early studies, along with more recent investigations to be discussed, provide compelling evidence that nutritional status and immune status are tightly linked and that immune integrity can be rapidly altered by changes in nutritional status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandra R, Newberne P. Nutrition Immunity and Infection. Plenum, New York, 1977.

    Book  Google Scholar 

  2. Beisel W. Impact of infectious disease in the interaction between nutrition and immunity. In: Cunningham-Rundles S, ed, Nutritional Modulation of the Immune Response, pp. 475–80. New York, 1993.

    Google Scholar 

  3. Scrimshaw N, Taylor C, Gordon J. Interaction of nutrition and infection. Am J Med Sci 1959; 237: 367–72.

    Article  CAS  Google Scholar 

  4. Endre L, Beck F, Prasad A. The role of zinc in human health. J Trace Element Exp Med 1990; 3: 337–75.

    CAS  Google Scholar 

  5. Fraker PJ, King L, Garvy B, Medina C. Immunopathology of zinc deficiency: a role for apoptosis. In: Klurfeld D, ed, Human Nutrition-A Comprehensive Treatise, Vol. 8, pp. 267–83. Plenum, New York, 1993.

    Google Scholar 

  6. Cohen J, Duke R. Apoptosis and programmed cell death in immunity. Annu Rev Immunol 1992; 10: 267–93.

    Article  CAS  Google Scholar 

  7. Fraker P, Telford W. Reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 1997; 215: 229–36.

    CAS  Google Scholar 

  8. Keen CL, Gershwin ME. Zinc deficiency and immune function. Annu Rev Nutr 1990; 10: 415–31.

    Article  CAS  Google Scholar 

  9. Fraker PJ, Haas SM, Luecke RW. Effect of zinc deficiency on the immune response of the young adult A/J mouse. J Nutr 1977; 107: 1889–95.

    CAS  Google Scholar 

  10. Fernandes G, Nair M, Onoe K, Tanaka T, Floyd R, Good R. Impairment of cell mediated immunity function by dietary zinc deficiency in mice. Proc Natl Acad Sci USA 1979; 76: 457–61.

    Article  CAS  Google Scholar 

  11. Cook-Mills J, Fraker PJ. Functional capacity of residual lymphocytes from zinc deficient adult mice. Br J Nutr 1993; 69: 835–48.

    Article  CAS  Google Scholar 

  12. Dardenne M, Pleau J, Nabarra B, LeFrancier P, Derrien M, Choay J, et al. Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA 1982; 79: 370–6.

    Article  Google Scholar 

  13. Dowd P, Kelleher J, Guillou P. T lymphocyte subsets and interleukin2 production in zinc deficient rats. Br J Nutr 1986; 55: 59–69.

    Article  CAS  Google Scholar 

  14. Wirth JJ, Fraker PJ, Kierszenbaum F. Zinc requirement for macrophage function: effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology 1989; 68: 114–9.

    CAS  Google Scholar 

  15. Cook-Mills J, Wirth J, Fraker PJ. Possible roles for zinc in destruction of Trypanosoma cruzi by toxic oxygen metabolites produced by mononuclear phagocytes. In: Phillips M, ed, Antioxidant Nutrients and Immune Function, pp. 111–21. Plenum, New York, 1990.

    Chapter  Google Scholar 

  16. Bettger W, O’Dell B. A critical physiological role for zinc in the structure and function of biomembranes. Life Sci 1981; 28: 1425–36.

    Article  CAS  Google Scholar 

  17. DePasquale-Jardieu P, Fraker PJ. Further characterization of the role of corticosterone in the loss of humoral immunity in zinc-deficient A/J mice as determined by adrenalectomy. J Immunol 1980; 124: 2650–5.

    CAS  Google Scholar 

  18. Kuvibidila S, Yu L, Ode D, Warner RP. The immune response in protein-energy malnutrition and single nutrient deficiencies. In: Klurfeld DM, ed, Human Nutrition-A Comprehensive Treatise, Vol. 8, pp. 121–57. Plenum, New York, 1993.

    Google Scholar 

  19. Garvy B, King L, Telford W, Morford L, Fraker PJ. Chronic levels of corticosterone reduces the number of cycling cells of the B-lineage in murine bone marrow and induces apoptosis. Immunology 1993; 80: 587–92.

    CAS  Google Scholar 

  20. Garvy B, Telford W, King L, Fraker PJ. Glucocorticoids and irradiation induced apoptosis in normal murine bone marrow B-lineage lymphocytes as determined by flow cytometry. Immunology 1993; 79: 270–7.

    CAS  Google Scholar 

  21. McCabe M, Jiang S, Orrenuis S. Chelator of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest 1993; 69: 101–10.

    CAS  Google Scholar 

  22. King LE, Osati-Ashtiani F, Fraker P. Depletion of cells of the B-lineage in the bone marrow of zinc deficient mouse. Immunology 1995; 85: 69–73.

    CAS  Google Scholar 

  23. Osati F, King L, Fraker P. Survival of pro B-cells in zinc deficient mice. Immunology, 1998; 94: 94–100.

    Article  Google Scholar 

  24. Merino R, Ding L, Veis D, Korsmeyer S, Nunez G. Development regulation of the Bcl-2 protein and susceptibility to death in B-lymphocytes. EMBO 1994; 13: 683–9.

    CAS  Google Scholar 

  25. Fraker P, King L. Changes in regulation of lymphopoiesis and myelopoiesis in the zinc deficient mouse. Nutr Rev 1998; 56: 565–9.

    Google Scholar 

  26. de Bruijn M, Slieker W, van der Loo J, Voerman J, van Ewijk W, Leenen P. Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 1994; 24: 2279–84.

    Article  Google Scholar 

  27. Liles W, Dale D, Klebanoff S. Glucocorticoids inhibit apoptosis of human neutrophils. Blood 1995; 86: 3181–8.

    CAS  Google Scholar 

  28. Dexter T, Allen T, Lajtha L. Conditions controlling the proliferation of hemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335–44.

    Article  CAS  Google Scholar 

  29. Cohen J, Duke R. Glucocorticoid activation of calcium dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 1984; 132: 38–43.

    CAS  Google Scholar 

  30. Waring P, Egan M, Braithwaite A, Mullbacher N, Siarda A. Apoptosis induced in macrophages and T blasts by the mycotoxin sporodismin and protection by Zn+2 salts. Int J Pharmacol 1990; 12: 445–57.

    CAS  Google Scholar 

  31. Flieger D, Riethmuller G, Ziegler-Hutbrock H. Zn’’ inhibits both tumor necrosis factor mediated DNA fragmentation and cytolysis. Int J Cancer 1989; 44: 315–9.

    Article  CAS  Google Scholar 

  32. Shimuzu T, Kubota M, Tanizawa A, Sano H, Kasai Y, Hashimoto H, Akiyama Y, Mikawa H. Inhibition of both etoposide-induced DNA fragmentation and activation of poly (ADP)-ribose synthesis by zinc ion. Biochem Biophys Res Commun 1990; 169: 1172–7.

    Article  Google Scholar 

  33. Carson-Jurica M, Shrader W, O’Malley B. Steroid receptor family: structure and function. Endocr Rev 1990; 11: 201–20.

    Article  CAS  Google Scholar 

  34. Simmons S, Chakraborti P, Cavanaugh A. Arsenite and cadmium as probes of glucocorticoid receptor structure and function. J Biol Chem 1990; 265: 1938–45.

    Google Scholar 

  35. Telford W, Fraker P. Zinc reversibility inhibits steroid binding to the glucocorticoid receptor. Biochem Biophys Rev Commun 1998; 283: 86–91.

    Google Scholar 

  36. Telford W, Fraker P. Preferential induction of apoptosis in mouse CD4’CD8’al3TCRI°CD3s1° thymocytes by zinc. J Cel Physiol 1995; 164: 259–70.

    Article  CAS  Google Scholar 

  37. Wyllie A, Morris R, Smith A, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984; 142: 67–77.

    Article  CAS  Google Scholar 

  38. Lu J, Kaeck M, Jiang C, Wilson A, Thompson H. Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochem Pharmacol 1994; 47: 1531–5.

    Article  CAS  Google Scholar 

  39. Nobel C, Kimland M, Lind B, Orrenius, Slater A. Dithiocarbamates induce apoptosis in thymocytes in raising the intracellular level of redox active copper. J Biol Chem 1995; 270: 26, 202–8.

    Google Scholar 

  40. Kovar J, Stunz L, Stewart B, Kriegerbeckova K, Ashman R, Kemp J. Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. Pathobiology 1977; 65: 61–8.

    Article  Google Scholar 

  41. Simboli-Campbell M, Narvaez C, Tenniswood M, Welsh J. 1,25Dihydroxyvitamin D3 induces morphological and biochemical markers of apoptosis in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 1996; 58: 367–76.

    Article  CAS  Google Scholar 

  42. Prasad A. Discovery and importance of zinc in human nutrition. Fed Proc 1984; 43: 2829–35.

    CAS  Google Scholar 

  43. Oleske J, Westphal ML, Shore S, Gordon D, Bogden J, Nahmias A. Zinc therapy of depressed cellular immunity in Acrodermatitis Enteropathica. Am J Dis Childh 1979; 133: 915–18.

    CAS  Google Scholar 

  44. Duchateau J, Delepesse G, Vrijins R, Collet H. Beneficial effects of oral zinc supplementation on the immune response of old people. Am J Med 1981; 70: 1001–4.

    Article  CAS  Google Scholar 

  45. Bogden JD, Oleske JM, Lavenhar MA, Muhves IM, Kemp FW, Bruening KS, Holding KJ, et al. Zinc supplementation in elderly people: effects of zinc supplementation for 3 months. Am J Clin Nutr 1988; 48: 655–63.

    CAS  Google Scholar 

  46. Castillo-Duran C, Heresi G, Fisberg M, Uaury R. Controlled trial of zinc supplementation during recovery from malnutrition: effects on growth and immune function. Am J Clin Nutr 1987; 45: 602–8.

    CAS  Google Scholar 

  47. Fraker PJ, De Pasquale-Jardieu P, Zwickl CM, Luecke RW. Regeneration of T-cell helper function in zinc-deficient adult mice. Proc Natl Acad Sci USA 1978; 75: 5660–5.

    Article  CAS  Google Scholar 

  48. Mocchegiani E, Veccia S, Ancarani F, Scalise G, Fabris N. Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Int J Immunopharmacol 1995; 17: 719–27.

    Article  CAS  Google Scholar 

  49. Jackson J, Peterson C, Lesko E. A meta-analysis of zinc salt lozenges and the common cold. Arch Intern Med 1997; 157: 2373–6.

    Article  CAS  Google Scholar 

  50. Eby G, Davis D, Halcomb W. Reduction in derivative of common colds by zinc gluconate lozenges in a double blind study. Antimicrob Agents Chemother 1984; 25: 20–4.

    Article  CAS  Google Scholar 

  51. Walsh C, Sandstead H, Prasad A, Newberne P, Fraker P. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 1994; 102: 5–46.

    CAS  Google Scholar 

  52. Smith HF, Latham MC, Azaburke JA, Butler W, Phillips L, Pend W, et al. Blood plasma levels of cortisol, insulin, growth hormone, and somatomedin in children with marasmus, kwashiorkor and intermediate forms of protein-energy malnutrition. Proc Soc Exp Biol Med 1981; 167: 607–11.

    CAS  Google Scholar 

  53. Alleyne GA, Young VH. Adrenocortical function in children with severe protein-calorie malnutrition. Clin Sci 1967; 33: 189–200.

    CAS  Google Scholar 

  54. Becker DJ. The endocrine response to protein calorie malnutrition. Annu Rev Nutr 1983; 3: 187–212.

    Article  CAS  Google Scholar 

  55. Wing EG, Magee DM, Barczynski LK. Acute starvation in mice reduces number of T cells and suppresses the development of T-cell mediated immunity. Immunology 1988; 63: 677–82.

    CAS  Google Scholar 

  56. Golden M, Golden B, Harland P, Jackson A. Zinc and immune competence in protein-energy malnutrition. Lancet 1978; 1: 1226–8.

    Article  CAS  Google Scholar 

  57. Prohaska J, Failla M. Copper and immunity. In: Klurfeld D, ed, Human Nutrition: A Comprehensive Treatise, Vol. 8, pp. 309–22. Plenum, New York, 1993.

    Google Scholar 

  58. King L, Fraker P. Flow cytometric analysis of the phenotypic distribution of splenic lymphocytes in zinc-deficient adult mice. J Nutr 1991; 121: 1433–8.

    CAS  Google Scholar 

  59. Failla M, Hopkins R. Is low copper status immunosuppressive? Nutr Rev 1998; 56: 559–64.

    Google Scholar 

  60. Kelley D, Daud P, Taylor P. Effects of low copper diets on human immune response. Am J Clin Nutr 1995; 62: 412–6.

    CAS  Google Scholar 

  61. Hopkins R, Failla M. Copper deficiency reduced interleukin 2 production and IL-2 naRNA in human T lymphocytes. J Nutr 1997; 127: 257–62.

    CAS  Google Scholar 

  62. Koch J, Neal EA, Schlott MJ, Garcia-Shelton YL, Chan MF, Weaver KE, Cello JP. Zinc levels and infections in hospitalized patients with AIDS. Nutrition 1996; 12: 515–8.

    Article  CAS  Google Scholar 

  63. Koch J, Neal EA, Schlott MJ, Garcia-Shelton YL, Chen MF, Weaver KE, Cello JP. Serum zinc and protein levels: lack of a correlation in hospitalized patients with AIDS. Nutrition 1996; 12: 511–4.

    Article  CAS  Google Scholar 

  64. Lambl BB, Federman M, Pleskow D, Wanke CA. Malabsorption and wasting in AIDS patients with microsporidia and pathogen-negative diarrhea. AIDS 1996; 10: 739–44.

    Article  CAS  Google Scholar 

  65. Baum MK, Shor-Posner G, Lu Y, Rosner B, Sauberlich HE, Fletcher MA, et al. Micronutrients and HIV-1 disease progression. AIDS 1995; 9: 1051–6.

    Article  CAS  Google Scholar 

  66. Stabel J, Spears J. Role of selenium in immune responsiveness and disease resistance. In: Klurfeld D, ed, Human Nutrition-A Comprehensive Treatise, Vol. 8, pp. 333–56. Plenum, New York, 1993.

    Google Scholar 

  67. Spallholz E. Selenium: what role in immunity and immune cytotoxicity? In: Selenium in Biology and Medicine. Spallholz J, Morton L, Gunther H, eds, pp. 103–17. AVI Publishing, Westport, CT, 1981.

    Google Scholar 

  68. Beck M. Increased virulence of Coxsackievirus B3 in mice due to vitamin E or selenium deficiency. J Nutr 1997; 127: 9665–705.

    Google Scholar 

  69. Roy M, Kiremidjian-Schumacher L, Wishe H, Cohen M, Stotzky G. Selenium and immune cell function II effect on lymphocyte mediated cytotoxicity. Proc Soc Exp Biol Med 1990; 193: 143–8.

    CAS  Google Scholar 

  70. Stroker W, James S. The immunological basis of inflammatory bowel disease. J Clin Immunol 1986; 6: 415–26.

    Article  Google Scholar 

  71. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 1996; 93: 7861–4.

    Article  CAS  Google Scholar 

  72. Hayes CE, Cantorna MT, DeLuca HF. Vitamin D and multiple sclerosis. Proc Soc Exp Biol Med 1997; 216:21–7.

    Google Scholar 

  73. Fernandes G. Dietary restriction: effects on immunological function and aging. In: Klurfeld D, ed, Human Nutrition—A Comprehensive Treatise, Vol. 8, pp. 91–120. Plenum, New York, 1993.

    Google Scholar 

  74. Beach R, Gershwin M, Hurley L. Nutritional factors and autoimmunity I. Immunopathology of zinc deprivation in New Zealand mice. Immunology 1981; 126: 1999–2006.

    CAS  Google Scholar 

  75. Good RA, Lorenz E. Nutritional indications for cancer prevention-calorie restriction. In: Cunningham-Rundles S, ed, Nutrient Modulation of the Immune Response, pp. 481–90. Marcel Dekker, New York, 1993.

    Google Scholar 

  76. Tian L, Cai Q, Bowen R, Wei H. Effects of caloric restriction on age-related oxidative modifications of macromolecules and lymphocyte proliferation in rats. Free Radical Biol Med 1995; 19: 859–65.

    Article  CAS  Google Scholar 

  77. Spaulding CC, Walford RL, Effros RB. The accumulation of nonreplicative, non-functional, senescent T cells with age is avoided in calorically restricted mice by an enhancement of T cell apoptosis. Mech Ageing Dev 1997; 93: 25–33.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fraker, P. (2000). Impact of Nutritional Status on Immune Integrity. In: Gershwin, M.E., German, J.B., Keen, C.L. (eds) Nutrition and Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-709-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-709-3_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-148-6

  • Online ISBN: 978-1-59259-709-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics