Skip to main content

Nucleotides

  • Chapter
Nutrition and Immunology

Abstract

There is no overriding biochemical reason why dietary nucleotides should be considered as essential nutrients. Pathways for their synthesis or salvage are (with one exception) present in every tissue and interorgan traffic should provide sufficient substrate for any tissue with increased requirements for DNA and RNA turnover. Indeed, dietary nucleotides have had a rather negative implication because of their role in the etiology of gout. Nevertheless, this model of metabolic complacency has been punctured by successive research publications which suggest that dietary nucleotide deficiency may impair liver, heart, intestine, and immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimble GK. Essential and conditionally-essential nutrients in clinical nutrition. Nutr Res Rev 1993; 6: 97–119.

    CAS  Google Scholar 

  2. Morris JG, Rogers QR Ammonia intoxication in the near-adult cat as a result of a dietary arginine deficiency. Science 1978; 199: 431–2.

    CAS  Google Scholar 

  3. Chan JCM, Asch MJ, Lin S, Hays DM. Hyperalimentation with amino acid and casein hydrolysate solutions: mechanism of acidosis. JAMA 1972; 220: 1700–5.

    CAS  Google Scholar 

  4. Carey GP, Kime Z, Rogers QR, et al. An arginine-deficient diet in humans does not evoke hyperammonemia or orotic aciduria. J Nutr 1987; 117: 1734–9.

    CAS  Google Scholar 

  5. Itoh H, Kishi T, Chibata I. Comparative effects of casein and amino acid mixture simulating casein on growth and food intake in rats. J Nutr 1973; 103: 1709–15.

    CAS  Google Scholar 

  6. Cosgrove M, Davies DP, Jenkins HR. Nucleotide supplementation and the growth of term small for gestational age infants. Arch Dis Childh 1996; 74: F122–5.

    CAS  Google Scholar 

  7. Janas L, Picciano M. The nucleotide profile of human milk. Pediatr Res 1982; 16: 659–62.

    CAS  Google Scholar 

  8. Golden MHN, Waterlow JC, Picou D. Metabolism in 15N nucleic acids in children. In: Waterlow JC, Stephen JML, eds. Nitrogen Metabolism in Man, pp. 269–273. Applied Science Publishers, London, 1981.

    Google Scholar 

  9. Brunser O, Espinoza J, Araya M, Cruchet S, Gil A. Effect of dietary nucleotide supplementation on diarrhoea) disease in infants. Acta Paediatr 1994; 83: 188–91.

    CAS  Google Scholar 

  10. Martinez-Augustin O, Boza JJ, Del Pino JI, Lucena J, Martinez-Valverde A, Gil A. Dietary nucleotides might influence the humoral immune response against cow’s milk proteins in preterm neonates. Biol Neonate 1997; 71: 215–23.

    CAS  Google Scholar 

  11. Pickering LK, Granoff DM. Erickson JR, et al. Modulation of the immune system by human milk and infant formula containing nucleotides. Pediatrics 1998; 101:242-9.

    Google Scholar 

  12. Westwood OMR. The Scientific Basis for Health Care. Times Mirror International Publishers, London, 1999.

    Google Scholar 

  13. Gil A, Pita M, Martinez A, Molina JA, Sanchez Medina F. Effect of dietary nucleotides on the plasma fatty acids in at-term neonates. Hum Nutr Clin Nutr 1986; 40: 185–95.

    CAS  Google Scholar 

  14. Quan R, Yang C, Rubinstein S, Lewiston NJ, Stevenson DK, Kerner JA Jr. The effect of nutritional additives on anti-infective factors in human milk Clin Pediatr (Phila) 1994; 33: 325–8.

    CAS  Google Scholar 

  15. Goodlad GAJ, Onyezili FN. Glucocorticoids and muscle RNA: the effect of daily administration of prednisolone to rats on the turnover of gastrocnemius ribosomal RNA. Biochem Med 1981; 25: 34–47.

    CAS  Google Scholar 

  16. Grimble GK, Millward DJ. The measurement of ribosomal ribonucleic acid synthesis in rat liver and skeletal muscle in vivo. Biochem Soc Trans 1977; 5: 913–16.

    CAS  Google Scholar 

  17. Hajek I, Buresóva M. The synthesis of RNA species in the skeletal muscle of the mouse. Physiol Bohemoslov 1973; 22: 623–31.

    CAS  Google Scholar 

  18. Ashford AJ, Pain VM. Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J Biol Chem 1986; 261: 4059–65.

    CAS  Google Scholar 

  19. Hammarqvist F, von der Decken A, Vinnars E, Wernerman J. Stress hormone and amino acid infusion in healthy volunteers: short-term effects on protein synthesis and amino acid metabolism in skeletal muscle. Metabolism 1994; 43: 1158–63.

    CAS  Google Scholar 

  20. Petersson B, Wernerman J, Waller S, von der Decken A, Vinnars E. Elective abdominal surgery depresses muscle protein synthesis and increases subjective fatigue: effects lasting more than 30 days. Br J Surg 1990; 77: 796–800.

    CAS  Google Scholar 

  21. Clifford AJ, Riumallo JA, Baliga BS, Munro HN, Brown PR. Liver nucleotide metabolism in relation to amino acid supply. Biochim Biophys Acta 1972; 277: 443–58.

    CAS  Google Scholar 

  22. Berthold HK, Crain PF, Gouni I, Reeds PJ, Klein PD. Evidence for incorporation of intact dietary pyrimidine (but not purine) nucleosides into hepatic RNA. Proc Nat Acad Sci USA 1995; 92: 10, 123–7.

    Google Scholar 

  23. Natsumeda Y, Prajda N, Donohue JP, Glover JL, Weber G. Enzymic capacities of purine de novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Res 1984; 44: 2475–9.

    CAS  Google Scholar 

  24. Salati LM, Gross CJ, Henderson LM, Savaiano DA. Absorption and metabolism of adenine, adenosine-5’-monophosphate, adenosine and hypoxanthine by the isolated vascularity perfused rat small intestine. J Nutr 1984; 114: 753–60.

    CAS  Google Scholar 

  25. Leleiko NS, Bronstein AD, Baliga BS, Munro HN. De novo purine nucleotide synthesis in the rat small and large intestine: effect of dietary protein and purines. J Pediatr Gastroenterol Nutr 1983; 2: 313–9.

    CAS  Google Scholar 

  26. Walsh MJ, Sanchez-Pozo A, Leleiko NS. A regulatory element is characterized by purine-mediated and cell-type-specific gene transcription. Mol Cell Biol 1990; 10:4356-64; erratum 1990; 10: 5600.

    Google Scholar 

  27. Tully ER, Sheehan TG. Purine metabolism in rat skeletal muscle. Adv Exp Med Biol 1979; 122B: 13–7.

    Google Scholar 

  28. Tullson PC, Terjung RL. Adenine nucleotide synthesis in exercising and endurance-trained skeletal muscle. Am J Physiol 1991; 261: C342–7.

    CAS  Google Scholar 

  29. Arabadjis PG, Tullson PC, Terjung RL. Purine nucleoside formation in rat skeletal muscle fiber types. Am J Physiol 1993; 264: C1246–51.

    CAS  Google Scholar 

  30. Tullson PC, Terjung RL. Adenine nucleotide metabolism in contracting skeletal muscle. Exerc Sport Sci Rev 1991; 19: 507–37.

    CAS  Google Scholar 

  31. Gerlach E, Nees S, Becker BF. The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 1985; 80: 459–74.

    CAS  Google Scholar 

  32. Finelli C, Guarnieri C, Muscari C, Ventura C, Caldarera CM. Incorporation of [14C]hypoxanthine into cardiac adenine nucleotides: effect of aging and post-ischemic reperfusion. Biochim Biophys Acta 1993; 1180: 262–6.

    CAS  Google Scholar 

  33. Smolenski RT, Simmonds HA, Garlick PB, Venn GE, Chambers DJ. Depressed adenosine and total purine catabolite production in the postischemic rat heart. Cardioscience 1993; 4: 235–40.

    CAS  Google Scholar 

  34. Watts RW. Some regulatory and integrative aspects of purine nucleotide biosynthesis and its control: an overview. Adv Enzyme Regul 1983; 21: 33–51.

    CAS  Google Scholar 

  35. Kunjara S, Sochor M, Bennett M, Greenbaum AL, McLean P. Pyrimidine nucleotide synthesis in the rat mammary gland: changes in the lactation cycle and the effects of diabetes. Biochem Med Metab Biol 1992; 48: 263–74.

    CAS  Google Scholar 

  36. Thorell L, Sjoberg LB, Hemel) O. Nucleotides in human milk: sources and metabolism by the newborn infant. Pediatr Res 1996; 40: 845–52.

    CAS  Google Scholar 

  37. Rotllan P, Miras Portugal MT. Purine nucleotide synthesis in adrenal chromaffin cells. J Neurochem 1985; 44: 1029–36.

    CAS  Google Scholar 

  38. Barankiewicz J, Cohen A. Purine nucleotide metabolism in phytohemagglutinin-induced human T lymphocytes. Arch Bichem Biophys 1987; 258: 167–75.

    CAS  Google Scholar 

  39. Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem 1995; 270: 29, 682–9.

    Google Scholar 

  40. Bofil M, Fairbanks LD, Ruckemann K, Lipman M, Simmonds HA. T-lymphocytes from AIDS patients are unable to synthesize ribonucleotides de novo in response to mitogenic stimulation. Impaired pyrimidine responses are already evident at early stages of HIV-1 infection. J Biol Chem 1995; 270: 29, 690–7.

    Google Scholar 

  41. Shenoy TS, Clifford M. Adenine nucleotide metabolism in relation to purine enzymes in liver, erythrocytes and cultured fibroblasts. Biochim Biophys Acta 1975; 411: 133–43.

    CAS  Google Scholar 

  42. Boza JJ, Jahoor F, Reeds PJ. Ribonucleic acid nucleotides in maternal and fetal tissues derive amont exclusively from synthesis de novo in pregnant mice. J Nutr 1996; 126: 1749–58.

    CAS  Google Scholar 

  43. Stet EH, De Abreu RA, Bokkerink JP, et al. Inhibition of IMP dehydrogenase by mycophenolic acid in Molt F4 human malignant lymphoblaste. Ann Clin Biochem 1994; 31: 174–80.

    CAS  Google Scholar 

  44. Johnson DL, Mullin RJ, Duch DS, Benkovic SJ. Direct demonstration of the active salvage of performed purines by murine tumors. Biochem Biophys Res Commun 1990; 170: 1164–9.

    CAS  Google Scholar 

  45. Natsumeda Y, Ikegami T, Olah E, Weber G. Significance of purine salvage in circumventing the action of antimetabolites in rat hepatoma cells. Cancer Res 1989; 49: 88–92.

    CAS  Google Scholar 

  46. Ahmed N, Weidemann MJ. Purine metabolism in promyelocytic HL60 and dimethylsulphoxide-differentiated HL60 cells. Leuk Res 1994; 18: 441–51.

    CAS  Google Scholar 

  47. Zaharevitz DW, Anderson LW, Malinowski NM, Hyman R, Strong JM, Cysyk RL. Contribution of de-novo and salvage synthesis to the uracil nucleotide pool in mouse tissues and tumors in vivo. Eur J Biochem 1992; 210: 293–6.

    CAS  Google Scholar 

  48. Cortes P, Dumler F, Levin NW. Glomerular uracil nucleotide synthesis. Am J Physiol 1988; 255:F635-46.

    Google Scholar 

  49. Zaharevitz DW, Napier EA, Anderson LW, Strong JM, Cysyk RL. Stimulation of uracil nucleotide synthesis in mouse liver, intestine and kidney by ammonium chloride infusion. Eur J Biochem 1988; 175: 193–8.

    CAS  Google Scholar 

  50. Grimble GK. RNA metabolism in skeletal muscle. PhD thesis. University of London, 1981.

    Google Scholar 

  51. Jacobs AE, Oosterhof A, Veerkamp JH. Purine and pyrimidine metabolism in human muscle and cultured muscle cells. Biochim Biophys Acta 1988; 970: 130–6.

    CAS  Google Scholar 

  52. Lortet S, Aussedat J, Rossi A. Synthesis of pyrimidine nucleotides in the heart: uridine and cytidine kinase activity. Arch Int Physiol Biochim 1987; 95: 289–98.

    CAS  Google Scholar 

  53. Olivares J, Rossi A. [Incorporation of orotic acid in myocardial uridine nucleotides: effect of isoproterenol and ribose] Incorporation de l’acide orotique dans les nucleotides uridyliques du tissu myocardique: effet de l’acide et du ribose. J Physiol (Paris) 1982; 78: 175–8.

    CAS  Google Scholar 

  54. Bardot V, Dutrillaux AM, Delattre JY, et al. Purine and pyrimidine metabolism in human gliomas: relation to chromosomal aberrations. Br J Cancer 1994; 70: 212–8.

    CAS  Google Scholar 

  55. Madani S, Baillon J, Fries J, et al. Pyrimidine pathways enzymes in human tumors of brain and associated tissues: potentialities for the therapeutic use of N-(phosphonacetyl-L-aspartate and 1-(3D-arabinofuranosylcytosine. Eur J Cancer Clin Oncol 1987; 23: 1485–90.

    CAS  Google Scholar 

  56. Simmonds HA, Fairbanks LD, Duley JA, Micheli V. Importance of the human erythrocyte in the diagnosis of inherited purine and pyrimidine disorders. Biomed Biochim Acta 1990; 49: S259–64.

    CAS  Google Scholar 

  57. Ray A, Mandel P, Dessaux G. Distribution des acides ribonucléiques dans le myocarde du rat. Cinétique de marquage par le 32P in vivo [Distribution of ribonucleic acids in the myocardium of the rat. Kinetics of labeling of 32P in vivo]. Arch Int Physiol Biochem 1973; 81: 249–72.

    CAS  Google Scholar 

  58. Watson PA, Haneda T, Morgan HE. Effect of higher aortic pressure on ribosome formation and cAMP content in rat heart. Am J Physiol 1989; 256: C1257–61.

    CAS  Google Scholar 

  59. Zimmer HG. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol Cel Biochem 1996; 160-161: 101–9.

    Google Scholar 

  60. Eliceiri GL. Turnover of ribosomal RNA in liver. Biochim Biophys Acta 1976; 447: 391–4.

    CAS  Google Scholar 

  61. Garlick PJ, Waterlow JC, Swick RW. Measurement of protein turnover in rat liver: analysis of the complex curve for decay of a mixture of proteins. Biochem J 1976; 156: 657–63.

    CAS  Google Scholar 

  62. Conde RD, Franze-Femandez MT. Increased transcription and decreased degradation control and recovery of liver ribosomes after a period of protein starvation. Biochem J 1980; 192: 935–40.

    CAS  Google Scholar 

  63. Nikolov EN, Dabeva MD, Nikolov TK. Turnover of ribosomes in regenerating rat liver. Int J Biochem 1983; 15: 1255–60.

    CAS  Google Scholar 

  64. Loeb JN, Yeung LL. Synthesis and degradation of ribosomal RNA in regenerating liver. J Exp Med 1975; 142: 575–87.

    CAS  Google Scholar 

  65. Piccoletti R, Aletti MG, Bernelli-Zazzera A. Inflammation associated events in liver nuclei during acute-phase reaction. Inflammation 1986; 10: 109–17.

    CAS  Google Scholar 

  66. Mayer D, Natsumeda Y, Ikegami T, et al. Expression of key enzymes of purine and pyrimidine metabolism in a hepatocyte-derived cell line at different phases of the growth cycle. J Cancer Res Clin Oncol 1990; 116: 251–8.

    CAS  Google Scholar 

  67. Morrison A, Porteous JW. Changes in the synthesis of ribosomal ribonucleic acid and of poly(A)-containing ribonucleic acid during the differentiation of intestinal epithelial cells in the rat and in the chick. Biochem J 1980; 188: 609–18.

    CAS  Google Scholar 

  68. Maheshwari Y, Rao M, Sykes DE, Tyner AL, Weiser MM. Changes in ribosomal protein and ribosomal RNA synthesis during rat intestinal differentiation. Cell Growth Differ 1993; 4: 745–52.

    CAS  Google Scholar 

  69. Altmann GG, Leblond CP. Changes in the size and structure of the nucleolus of columnar cells during their migration from crypt base to villus top in rat jejunum. J Cell Sci 1982; 56: 83–99.

    CAS  Google Scholar 

  70. Morais M, Dockery P, White FH. A quantitative study of silver-stained NORs in different segments of the normal human colorectal crypt. J Anat 1996; 188: 521–7.

    Google Scholar 

  71. Uddin M, Altmann GG, Leblond CP. Radioautographic visualization of differences in the pattern of [3H]uridine and [3H]orotic acid incorporation into the RNA of migrating columnar cells in the rat small intestine. J Cell Biol 1984; 98:1619-29.

    Google Scholar 

  72. McNurlan MA, Tomkins AM, Garlick PJ. The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J 1979; 178: 373–9.

    CAS  Google Scholar 

  73. Jain R, Malhotra V, Gondal R, Tatke M, Vij JC. Nucleolar organiser regions in different colonic epithelia. Trop Gastroenterol 1997; 18: 27–29.

    CAS  Google Scholar 

  74. Cooper HL. Studies on RNA metabolism during lymphocyte activation. Transplant Rev 1972; 11: 3–38.

    CAS  Google Scholar 

  75. Cooper HL. Degradation of 28S RNA late in ribosomal RNA maturation in nongrowing lymphocytes and its reversal after growth stimulation. J Cell Biol 1973; 59: 250–4.

    CAS  Google Scholar 

  76. Harms-Ringdahl M, Cooper HL. Sequential changes in ribosomal activity during the activation and cessation of growth in lymphocytes stimulated with concanavalin A. J Cell Physiol 1978; 97: 253–63.

    CAS  Google Scholar 

  77. Schobitz B, Wolf S, Christopherson RI, Brand K. Nucleotide and nucleic acid metabolism in rat thymocytes during cell cycle progression. Biochim Biophys Acta 1991; 1095: 95–102.

    CAS  Google Scholar 

  78. Cohen A, Barankiewicz J, Lederman HM, Gelfand EW. Purine metabolism in human T lymphocytes: role of the purine nucleoside cycle. Can J Biochem Cell Biol 1984; 62: 577–83.

    CAS  Google Scholar 

  79. Szondy Z, Newsholme EA. The effect of various concentrations of nucleobases, nucleosides or glutamine on the incorporation of [3H]thymidine into DNA in rat mesenteric-lymph-node lymphocytes stimulated by phytohaemagglutinin. Biochem J 1990; 270: 437–40.

    CAS  Google Scholar 

  80. Ogoshi S, Iwasa M, Tonegarua T, Tamiya T. Effect of nucleotide and nucleoside mixture on rats given total parenteral nutrition after 70% hepatectomy. J Parent Ent Nutr 1985; 9: 339–42.

    CAS  Google Scholar 

  81. Ogoshi S, Mizobuchi S, Iwasa M, Tamiya T. Effect of a nucleoside-nucleotide mixture on protein metabolism in rats after seventy percent hepatectomy. Nutrition 1989; 5: 173–8.

    CAS  Google Scholar 

  82. Ogoshi S, Iwasa M, Kitagawa S, et al. Effects of total parenteral nutrition with nucleoside and nucleotide mixture on D-galactosamine-induced liver injury in rats. J Parent Ent Nutr 1988; 12: 53–7.

    CAS  Google Scholar 

  83. Torres MI, Fernàndez MI, Gil A, Rios A. Effect of dietary nucleotides on degree of fibrosis and steatosis induced by oral intake of thioacetamide. Dig Dis Sci 1997; 42: 1322–8.

    CAS  Google Scholar 

  84. Tones MI, Fernàndez MI, Foutana L, Gil A, Rios A. Influence of dietary nucleotides on liver structural recovery and hepatocyte binucleoarity in cirrhosis induced by thioacetamide. Gut 1996; 38: 260–4.

    Google Scholar 

  85. Torres MI, Fernàndez MI, Gil A, Rios A. Dietary nucleotides have cytoprotective properties in rat liver damaged by thioacetamide. Life Sci 1998; 62: 13–22.

    CAS  Google Scholar 

  86. Wilson DW, Wilson HC. Studies in vitro of digestion and absorption of purine ribonucleotides by the intestine. J Biol Chem 1962; 237: 1643–7.

    CAS  Google Scholar 

  87. Sonoda T, Tatibana M. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochim Biophys Acta 1978; 521: 55–66.

    CAS  Google Scholar 

  88. Greife HA, Molnar S. 14C-tracerstudien zum nukleinsauren-stoffwechsel von jungratten, kuken und ferkeln. 1: Mitteilung. Untersuchungen zum purinestoffwechsel der jungratte. Z Tierphysiol Tierernahr Futtermittelkd 1983; 50: 79–91.

    CAS  Google Scholar 

  89. Leleiko NS, Martin BA, Walsh M, Kazlow P, Rabinowitz S, Sterling K. Tissue-specific gene expression results from a purine-and pyrimidine-free diet and 6-mercaptopurine in the rat small intestine and colon. Gastroenterology 1987; 93: 1014–20.

    CAS  Google Scholar 

  90. Leleiko NS, Walsh MJ, Abraham S. Gene expression in the intestine: the effect of dietary nucleotides. Adv Pediatr 1995; 42:145-69145-169.

    Google Scholar 

  91. Chalmers AH, Rotstein T, Mohan Rao M, Marshall VR, Coleman M. Studies on the mechanism of immunosuppression with adenine. Int J Immunopharmacol 1985; 7: 433–2.

    CAS  Google Scholar 

  92. Brule D, Sarwar G, Savoie L, Campbell J, van Zeggelaar M. Differences in uricogenic effects of dietary purine bases, nucleosides and nucleotides in rats. J Nutr 1988; 118: 780–6.

    CAS  Google Scholar 

  93. Engle SJ, Stockelman MG, Chen J, et al. Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc Natl Acad Sci USA 1996; 93: 5307–12.

    CAS  Google Scholar 

  94. Debnam ES, Denholm EE, Grimble GK. Acute and chronic exposure of rat intestinal mucosa to dextran promotes SGLT1-mediated glucose transport. Eur J Clin Invest 1998; 28: 651–8.

    CAS  Google Scholar 

  95. Ferraris RP, Diamond JM. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 1989; 51: 125–41.

    CAS  Google Scholar 

  96. Fernandez Lopez JA, Casado J, Argiles JM, Alemany M. In the rat, intestinal lymph carries a significant amount of ingested glucose into the bloodstream. Arch Int Physiol Biochim Biophys 1992; 100: 231–6.

    Google Scholar 

  97. Egan CJ, Rennie MJ. Relative importance of luminal and vascular amino acids for protein synthesis in rat jejunum. J Physiol 1986; 378: 49P (abstract).

    Google Scholar 

  98. Grimble GK. Dietary nucleotides and gut mucosal defence. Gut 1994; 35 (suppl): 546–51.

    Google Scholar 

  99. Uauy R, Stringel G, Thomas R, Quan R. Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. J Pediatr Gastroenterol Nutr 1990; 10: 497–503.

    CAS  Google Scholar 

  100. Iijima S, Tsujinaka T, Kido Y, et al. Intravenous administration of nucleosides and a nucleotide mixture diminishes intestinal mucosal atrophy induced by total parenteral nutrition. J Parent Ent Nutr 1993; 17: 265–70.

    CAS  Google Scholar 

  101. Tsujinaka T, Iijima S, Kido Y, et al. Role of nucleosides and nucleotide mixture in intestinal mucosal growth under total parenteral nutrition. Nutrition 1993; 9: 532–5.

    CAS  Google Scholar 

  102. Nunez MC, Ayudarte MV, Morales D, Suarez MD, Gil A. Effect of dietary nucleotides on intestinal repair in rats with experimental chronic diarrhea. J Parent Ent Nutr 1990; 14: 598–604.

    CAS  Google Scholar 

  103. Adjei AA, Yamamoto S. A dietary nucleoside-nucleotide mixture inhibits endotoxin-induced bacterial translocation in mice fed protein-free diet. J Nutr 1995; 125: 42–8.

    CAS  Google Scholar 

  104. Adjei AA, Ohshiro Y, Yamauchi K, et al. Intraperitoneal administration of nucleoside-nucleotide mixture inhibits endotoxin-induced bacterial translocation in protein-deficient mice. Tohoku J Exp Med 1994; 174: 1–10.

    CAS  Google Scholar 

  105. Uauy R, Quan R, Gil A. Role of nucleotides in intestinal development and repair: implications for infant nutrition. J Nutr 1994; 124: 1436S–41S.

    CAS  Google Scholar 

  106. Swanson DK, Pasaoglu I, Berkoff HA, Southard JA, Hegge JO. Improved heart preservation with UW preservation solution. J Heart Transplant 1988; 7: 456–67.

    CAS  Google Scholar 

  107. Kano S, Nakai T, Kohri H, Ichihara K. Effects of OG-VI, a nucleoside/nucleotide mixture, and its constituents on myocardial stunning in dogs. Coron Artery Dis 1995; 6: 811–8.

    CAS  Google Scholar 

  108. Okazaki Y, Kano S, Ogoshi S, Ichihara K. Effects of OG-VI, a nucleoside-nucleotide mixture, on ischemic myocardial metabolism in dogs. Coron Artery Dis 1997; 8: 39–43.

    CAS  Google Scholar 

  109. Yoshiyama M, Ishikawa M, Miura I, Takeuchi K, Takeda T. Time course of the recovery of adenosine triphosphate content with adenosine in post-ischemic hearts-a 31P magnetic resonance spectroscopy study. Jpn Circ J 1994; 58: 662–70.

    CAS  Google Scholar 

  110. Rosen F. Primary immunodeficiencies. In: Roitt I, Brostoff J, Male

    Google Scholar 

  111. D, eds, Immunology, 5th ed, pp. 285-292. Times Mirror International Publishers, London, 1997.

    Google Scholar 

  112. Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 1998; 161: 27–42.

    CAS  Google Scholar 

  113. Rudolph FB, Kulkarni AD, Schandle VB, van Buren CT. Involvement of dietary nucleotides in T lymphocyte function. Adv Exp Med Biol 1984; 165: 175–8.

    Google Scholar 

  114. Adjei AA, Ameho CK, Harrison EK, et al. Nucleoside-nucleotidefree diet suppresses cytokine production and contact sensitivity responses in rats with trinitrobenzene sulphonic acid-induced colitis. Am J Med Sci 1997; 314: 89–96.

    CAS  Google Scholar 

  115. Adjei AA, Morioka T, Ameho CK, et al. Nucleoside-nucleotide free diet protects rat colonic mucosa from damage induced by trinitrobenzene sulphonic acid. Gut 1996; 39: 428–33.

    CAS  Google Scholar 

  116. Navarro J, Ruiz-Bravo A, Jimenez-Valera M, Gil A. Modulation of antibody-forming cell and mitogen-driven lymphoproliferative responses by dietary nucleotides in mice. Immunol Lett 1996; 53: 141–5.

    CAS  Google Scholar 

  117. Yamauchi K, Adjei AA, Ameho CK, et al. A nucleoside-nucleotide mixture and its components increase lymphoproliferative and delayed hypersensitivity responses in mice. J Nutr 1996; 126: 1571–7.

    CAS  Google Scholar 

  118. Iijima S, Tsujinaka T, Kishibuchi M, et al. A total parenteral nutrition solution supplemented with a nucleoside and nucleotide mixture sustains intestinal integrity, but does not stimulate intestinal function after massive bowel resection in rats. J Nutr 1996; 126: 589–95.

    CAS  Google Scholar 

  119. Tsujinaka T, Kishibuchi M, Iijima S, Yano M, Monden M. Role of supplementation of a nucleic acid solution on the intestinal mucosa under total parenteral nutrition. Nutrition 1997; 13: 369–71.

    CAS  Google Scholar 

  120. Kishibuchi M, Tsujinaka T, Yano M, et al. Effects of nucleosides and a nucleotide mixture on gut mucosal barrier function on parenteral nutrition in rats. J Parent Ent Nutr 1997; 21: 104–11.

    CAS  Google Scholar 

  121. Engel JM, Menges T, Neuhauser C, Schaefer B, Hempelmann G Effects of various feeding regimens in multiple trauma patients on septic complications and immune parameters. Anasthesiol Intensivmed Notfallmed Schmerzther 1997; 32: 234–9.

    CAS  Google Scholar 

  122. Zaloga GP. Immune-enhancing enteral diets: where’s the beef? Crit Care Med 1998; 26: 1143–6.

    CAS  Google Scholar 

  123. Imoberdorf R. Immuno-nutrition: designer diets in cancer. Support Care Cancer 1997; 5: 381–6.

    CAS  Google Scholar 

  124. Sukumar P, Loo A, Magur E, Nandi J, Oler A, Levine RA. Dietary supplementation of nucleotides and arginine promotes healing of small bowel ulcers in experimental ulcerative ileitis. Dig Dis Sci 1997; 42: 1530–6.

    CAS  Google Scholar 

  125. Yamamoto S, Wang MF, Adjei AA, Ameho CK. Role of nucleosides and nucleotides in the immune system, gut reparation after injury, and brain function. Nutrition 1997; 13: 372–4.

    CAS  Google Scholar 

  126. Senkal M, Kernen M, Homann H, Eickoff U, Baier J, Zumtobel V. Modulation of postoperative immune response by enteral nutrition with a diet enriched with arginine, RNA, and omega-3 fatty acids in patients with upper gastrointestinal cancer. Eur J Surg 1995; 161: 115–22.

    CAS  Google Scholar 

  127. Fanslow WC, Kulkarni AD, van Buren CT, Rudolph FB. Effect of nucleotide restriction and supplementation on resistance to experimental murine candidiasis. J Parent Ent Nutr 1988; 12: 49–52.

    CAS  Google Scholar 

  128. Schilling J, Vranjes N, Fierz W, et al. Clinical outcome and immunology of postoperative arginine, omega-3 fatty acids, and nucleotide-enriched enteral feeding: a randomized prospective comparison with standard enteral and low calorie/low fat i.v. solutions. Nutrition 1996; 12: 423–9.

    CAS  Google Scholar 

  129. Saffle JR, Wiebke G, Jennings K, Morris SE, Barton RG. Randomized trial of immune-enhancing enteral nutrition in burn patients. J Trauma 1997; 42: 793–800.

    CAS  Google Scholar 

  130. Salo M. Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand 1992; 36: 201–20.

    CAS  Google Scholar 

  131. Kulkarni A, McVaugh W, Lawrence B, et al. Nutritional supplementation of nucleotides restores opioid CNS-mediated phenomena in mice. Life Sci 1997; 61: 1691–6.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grimble, G.K., Westwood, O.M.R. (2000). Nucleotides. In: Gershwin, M.E., German, J.B., Keen, C.L. (eds) Nutrition and Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-709-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-709-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-148-6

  • Online ISBN: 978-1-59259-709-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics