Skip to main content

Insulin and the Heart

  • Chapter
  • 94 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

This chapter outlines the aspects of heart function and metabolism that are modulated by insulin, and explores the biochemical mechanisms that account for the actions of the hormone. The actions of insulin on the heart must be viewed in the context of the constant and dynamic function of the organ, and also with respect to the complex set of endocrine, paracrine, and neural signals to which myocardial cells are exposed in vivo. The focus is on the metabolic responses, because these have been particularly well documented. The actions of insulin on heart metabolism have been established on the basis of studies in vitro with isolated cells or perfused tissue, as well as on clinical and experimental in vivo studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro LM. Diabetes-induced heart-muscle disease and left ventricular dysfunction. Pract Cardiol 1985; 11: 79–91.

    Google Scholar 

  2. Friedman JJ. Vascular sensitivity and reactivity to norepinephrine in diabetes mellitus. Am J Physiol 1989; 256: 1134–1138.

    Google Scholar 

  3. Hulper B, Wilms B. Investigations of autonomic diabetic neuropathy of the cardiovascular system. In: Gries FA, Freund F, Rabe F, and Berger H, eds. Aspects of Autonomic Neuropathy in Diabetes. Georg Thieme Verlag, Stuttgart, 1980, pp. 77–80.

    Google Scholar 

  4. Regan TJ, Lyons MM, Ahmed SS. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977; 60: 885–889.

    Google Scholar 

  5. Regan TJ, Ettinger PO, Khan MI, Jesran MU, Lyons MM, Oldewurtel HA, Weber M. Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ Res 1974; 35: 222–237.

    CAS  Google Scholar 

  6. Dhalla NS, Pierce GN, Inns IR, Beamish RE. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1985; 1: 263–281.

    PubMed  CAS  Google Scholar 

  7. Clark AH. Interrelation of the surviving heart and pancreas of the dog in sugar metabolism. J Exp Med 1916; 24: 621–650.

    PubMed  CAS  Google Scholar 

  8. Visscher MB, Muller EA. Influence of insulin upon the mammalian heart. J Physiol 1927; 62: 341–348.

    PubMed  CAS  Google Scholar 

  9. Lucchesi BR, Medina M. Positive inotropic action of insulin in the canine heart. Eur J Pharmacol 1972; 18: 107–115.

    PubMed  CAS  Google Scholar 

  10. Christensen NJ. Acute effects of insulin on cardiovascular function and noradrenaline uptake and release. Diabetologia 1983; 25: 377–381.

    PubMed  CAS  Google Scholar 

  11. Sheldon MB. Braimbridge MV, Clement AJ. Effects of glucose and insulin on failing myocardium in an isolated heart preparation. Br Heart J 1969; 31: 393–398.

    PubMed  CAS  Google Scholar 

  12. Downing SE, Lee JC. Myocardial and coronary vascular responses to insulin in the diabetic lamb. Am J Physiol 1979; 237: H514 - H519.

    PubMed  CAS  Google Scholar 

  13. Lee JC, Downing SE. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Physiol 1976; 230: 1360–1365.

    PubMed  CAS  Google Scholar 

  14. Brands MW, Lee WF, Keen HL, Alonso-Galicia M, Zappe DH, Hall JE. Cardiac output and renal function during insulin hypertension in Sprague-Dawley rats. Am J Physiol 1996; 271: R276 - R281.

    PubMed  CAS  Google Scholar 

  15. Baron AD. Hemodynamic actions of insulin. Am J Physiol 1994; 267: El87-E202.

    PubMed  CAS  Google Scholar 

  16. Dillmann WH. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980; 29: 579–582.

    PubMed  CAS  Google Scholar 

  17. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. Effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 1981; 49: 1243–1250.

    PubMed  CAS  Google Scholar 

  18. Akella AB, Ding XL, Cheng R, Gulati J. Diminished Cat+ sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rats. Circ Res 1995; 76: 600–606.

    PubMed  CAS  Google Scholar 

  19. Pierce GN, Dhalla NS. Mitochondrial abnormalities in diabetic cardiomyopathy. Can J Cardiol 1985; 1: 48–54.

    PubMed  CAS  Google Scholar 

  20. Pierce GN, Dhalla NS. Sarcolemmal Na+-K+ ATPase activity in diabetic rat heart. Am J Physiol 1983; 245: 241–247.

    Google Scholar 

  21. Shimoni Y, Ewart HS, Severson D. Type I and II models of diabetes produce different modifications of K+ currents in rat heart: role of insulin. J Physiol 1998; 507: 485–496.

    PubMed  CAS  Google Scholar 

  22. Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Cat+ pump activity during diabetes mellitus. Am J Physiol 1987; 252: 540–544.

    Google Scholar 

  23. Lopaschuk GD, Tahiliani A, Vadlamudi RVSV, Katz S, McNeill JH. Cardiac sarcoplasmic reticulum function in insulin or carnitine-treated diabetic rats. Am J Physiol 1983; 245: 969–976.

    Google Scholar 

  24. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 1983; 244: 528–535.

    Google Scholar 

  25. Bouchard RA, Bose D. Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol 1991; 260: 341–354.

    Google Scholar 

  26. Ren J, Davidoff AJ. Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 1997; 272: 148–158

    Google Scholar 

  27. Davidoff AJ, Ren J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am J Physiol 1997; 272: 159–167.

    Google Scholar 

  28. Zierler KL. Electrical events in transduction of insulin action and insulin action on electrical events. Prog Endocr Res Ther 1988; 4: 91–103.

    Google Scholar 

  29. Briggs AP, Koechig I, Doisy EA, Weber CJ. Some changes in the composition of blood due to injection of insulin. J Biol Chem 1924; 58: 721–730.

    CAS  Google Scholar 

  30. Agius L, Peak M, Beresford G, Al-Habori M, Thomas TH. Role of ion content and cell volume in insulin action. Biochem Soc Trans 1994; 22: 516–522.

    CAS  Google Scholar 

  31. Bedford JJ, Leader JP. Response of tissues of the rat to anisosmolality in vivo. Am J Physiol 1993; 264: R1164 - R1179.

    PubMed  CAS  Google Scholar 

  32. Moore RD. Stimulation of Na+: H+ exchange by insulin. Biophys J 1981; 33: 203–210.

    PubMed  Google Scholar 

  33. Clausen T, Kohn PG. Effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol 1977; 265: 19–42.

    PubMed  CAS  Google Scholar 

  34. McGeoch JEM, Guidotti G. Insulin-stimulated cation channel in skeletal muscle-inhibition by calcium causes oscillation. J Biol Chem 1992; 267: 832–841.

    PubMed  CAS  Google Scholar 

  35. Weil-Maslansky E, Gutman Y, Sasson S. Insulin activates furosemide-sensitive K+ and Cl-uptake system in BC3H1 cells. Am J Physiol 1994; 267: C932–0939.

    PubMed  CAS  Google Scholar 

  36. Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogenactivated protein kinases. Science 1997; 278: 1288–1291.

    PubMed  CAS  Google Scholar 

  37. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994; 94: 1171–1179.

    Google Scholar 

  38. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity and cardiovascular morbidity. Circulation 1997; 96: 4104–4113.

    PubMed  CAS  Google Scholar 

  39. Kelly RA, Balligand J-L, Smith TW. Nitric oxide and cardiac function. Circ Res 1996; 79: 363–380.

    PubMed  CAS  Google Scholar 

  40. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75: 473–486.

    PubMed  CAS  Google Scholar 

  41. Buchanan TA, Meehan WP, Jeng YY, Yang D, Chan TM, Nadler JL, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995; 96: 354–360.

    PubMed  CAS  Google Scholar 

  42. Howard G, O’Leary DH, Zaccaro D, Haffner S, Rewers M, Hamman R, et al. Insulin sensitivity and atherosclerosis. Circulation 1996; 93: 1809–1817.

    PubMed  CAS  Google Scholar 

  43. Williams A Mitochondria. In: Noble AJ, ed. Cardiac Metabolism. John Wiley, New York 1983, p. 151.

    Google Scholar 

  44. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413–459.

    PubMed  CAS  Google Scholar 

  45. Cahill GF. Physiology of insulin in man. Diabetes 1971; 20: 785–799.

    PubMed  CAS  Google Scholar 

  46. Kimball SR, Vary TC, Jefferson LS. Regulation of protein synthesis by insulin. Annu Rev Physiol 1994; 56: 321–348.

    PubMed  CAS  Google Scholar 

  47. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316: 379–385.

    PubMed  CAS  Google Scholar 

  48. Randle PJ, Hales CN, Garland PB, Newsholme EA. Glucose fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; I: 785–789.

    Google Scholar 

  49. Dashti N, Wofbauer G. Secretion of lipids, apolipoproteins and lipoproteins by human hepatoma cell line, HepG2: effects of oleic acid and insulin. J Lipid Res 1987; 28: 423–426.

    PubMed  CAS  Google Scholar 

  50. Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest 1995; 95: 158–166.

    PubMed  CAS  Google Scholar 

  51. Bjorensztajn J, Otway S, Robinson DS. Effect of fasting on the clearing factor lipase (lipoprotein lipase) activity of defatted preparations of rat heart muscle. J Lipid Res 1970; 11: 102–110.

    Google Scholar 

  52. Deshaies Y, Geloen A, Paulin A, Bukowieki U. Restoration of lipoprotein lipase activity in insulin-deficient rats by insulin infusion is tissue-specific. Can J Physiol Pharmacol 1991; 69: 746–751.

    PubMed  CAS  Google Scholar 

  53. O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev 1996; 76: 1109–1161.

    PubMed  Google Scholar 

  54. Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 1996; 236: 747–771.

    PubMed  CAS  Google Scholar 

  55. Proud CG, Denton RM. Molecular mechanisms for the control of translation by insulin. Biochem J 1997; 328: 329–341.

    PubMed  CAS  Google Scholar 

  56. Knowlton FP, Starling EH. Experiments on the consumption of sugar in the normal and the diabetic heart. J Physiol 1912; 45: 146–163.

    PubMed  CAS  Google Scholar 

  57. Manchester J, Kong X, Nerbonne J, Lowry OH, Lawrence JC. Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am J Physiol 1994; 266: E326 - E333.

    PubMed  CAS  Google Scholar 

  58. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV. Control of glucose utilization in working perfused rat heart. J Biol Chem 1994; 269: 25, 502–25, 514.

    Google Scholar 

  59. Shipp JC, Opie LH, Challoner DR. Fatty acid and glucose metabolism in the perfused heart. Nature 1961; 189: 1018–1019.

    CAS  Google Scholar 

  60. Newsholme EA, Randle PJ, Manchester KL. Inhibition of the phosphofructokinase reaction in per-fused rat heart by respiration of ketone bodies, fatty acids and pyruvate. Nature 1962; 193: 270–271.

    PubMed  CAS  Google Scholar 

  61. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994; 1213: 263–276.

    PubMed  CAS  Google Scholar 

  62. Kraegen EW, Sowden JA, Halstead MB, Clark PW, Rodnick KJ, Chisholm DJ, James DE. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4. Biochem J 1993; 295: 287–293.

    PubMed  CAS  Google Scholar 

  63. James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 1989; 338: 83–87.

    PubMed  CAS  Google Scholar 

  64. Camps M, Castello A, Munoz P, Monfar M, Testar X, Palacin M, Zorzano A. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Biochem J 1992; 282: 765–772.

    PubMed  CAS  Google Scholar 

  65. Hayashi T, Wojtaszewski JF, Goodyear U. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 1997; 273: E1039 - E1051.

    PubMed  CAS  Google Scholar 

  66. Kolter T, Uphues I, Wichelhaus A, Reinauer H, Eckel J. Contraction-induced translocation of the glucose transporter GLUT4 in isolated ventricular cardiomyocytes. Biochem Biophys Res Commun 1992; 189: 1207–1214.

    PubMed  CAS  Google Scholar 

  67. Rattigan S, Appleby GJ, Clark MG. Insulin-like action of catecholamines and Cat+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1991; 1094: 217–223.

    PubMed  CAS  Google Scholar 

  68. Cushman SW, Wardzala U. Potential mechanism of insulin action on glucose transport in isolated rat adipose cells: apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 1980; 255: 4758–4762.

    PubMed  CAS  Google Scholar 

  69. Suzuki K, Kono T. Evidence that insulin causes the translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 1980; 77: 2542–2545.

    PubMed  CAS  Google Scholar 

  70. Watanabe T, Smith MM, Robinson FW, Kono T. Insulin action on glucose transport in cardiac muscle. J Biol Chem 1984; 259: 13, 117–13, 122.

    Google Scholar 

  71. Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT-4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA 1991; 88: 7815–7819.

    PubMed  CAS  Google Scholar 

  72. Rodnick KJ, Slot JW, Studelska DR, Hanpeter DE, Robinson LJ, Geuze HJ, James DE. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J Biol Chem 1992; 267: 6278–6285.

    PubMed  CAS  Google Scholar 

  73. Burdett E, Beeler T, Klip A. Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Arch Biochem Biophys 1987; 253: 279–286.

    PubMed  CAS  Google Scholar 

  74. Holman GD, Kasuga M. From receptor to transporter: insulin signaling to glucose transport. Diabetologia 1997; 40: 991–1003.

    PubMed  CAS  Google Scholar 

  75. Timmers K.I, Clark AE, Omatsu-Kanabe M, Whiteheart SW, Bennett MK, Holman GD, Cushman SW. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged NSF. Biochem J 1996; 320: 429–436.

    PubMed  CAS  Google Scholar 

  76. Martin LB, Shewan A, Millar CA, Gould GW, James DE. Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3–L1 adipocytes. J Biol Chem 1998; 273: 1444–1452.

    PubMed  CAS  Google Scholar 

  77. Cain CC, Trimble WS, Lienhard GE. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem 1992; 267: 11, 681–11, 684.

    Google Scholar 

  78. Hara K, Yonezawa K, Sakaue H, Ando A, Kotani K, Kitamura T, et al. Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not Ras activation in CHO cells. Proc Natl Acad Sci USA 1994; 91: 7415–7419.

    PubMed  CAS  Google Scholar 

  79. Garvey TW, Huecksteadt TP, Birnbaum MJ. Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 1989; 245: 60–63.

    PubMed  CAS  Google Scholar 

  80. Berger JC, Diswas C, Vicario P, Strout HV, Saperstein R, Pilch PF. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 1989; 340: 70–72.

    PubMed  CAS  Google Scholar 

  81. Nuutila P, Knuuti J, Ruotsalainen U, Koivisto VA, Eronen E, Teras M, et al. Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. Am J Physiol 1993; 264: E756 - E762.

    PubMed  CAS  Google Scholar 

  82. Maki M, Nuutila P, Laine H, Voipio-Pulkki L-M, Haaparanta M, Solin O, Knuuti JM. Myocardial glucose uptake in patients with NIDDM and stable coronary artery disease. Diabetes 1997; 46: 1491–1496.

    PubMed  CAS  Google Scholar 

  83. Taegtmeyer H. Energy metabolism in the heart: from basic concepts to clinical applications. Curr Probl Cardiol 1994; 19: 57–116.

    Google Scholar 

  84. Pogson CI, Randle Pi. Control of rat heart phosphofructokinase by citrate and other regulators. Biochem J 1966; 100: 683–693.

    PubMed  CAS  Google Scholar 

  85. Hue L, Depre C, Lefebvre V, Rider MH, Veitch K. Regulation of glucose metabolism in cardiac muscle. Biochem Soc Trans 1995; 23: 311–314.

    PubMed  CAS  Google Scholar 

  86. Hue L, Blackmore PF, Shikama H, Robinson-Steiner A, Exton JH. Regulation of fructose-2,6bisphosphate content in rat hepatocytes, perfused hearts and perfused hind limbs. J Biol Chem 1982; 257: 4308–4314.

    PubMed  CAS  Google Scholar 

  87. Rider MH, Hue L. Activation of rat heart phosphofructokinase-2 by insulin in vivo. FEBS Lett 1984; 176: 484–488.

    PubMed  CAS  Google Scholar 

  88. Lawson JWR, Uyeda K. Effects of insulin and work on fructose 2,6-bisphosphate content and phosphofructokinase activity in perfused rat hearts. J Biol Chem 1987; 262: 3165–3173.

    PubMed  CAS  Google Scholar 

  89. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17, 269–17, 275.

    Google Scholar 

  90. Vogt C, Yki-Jarvinen H, Iozzo P, Pipek R, Pendergrass M, Koval J, et al. Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo. J Clin Endocrinol Metab 1998; 83: 230–234.

    PubMed  CAS  Google Scholar 

  91. Printz RL, Koch S, Potter LR, O’Doherty RM, Tiesinga JJ, Moritz S, Evanauer DK. Hexokinase II mRNA and gene structure, regulation by insulin and evolution. J Biol Chem 1993; 268: 5209–5219.

    PubMed  CAS  Google Scholar 

  92. Sochor M, Gonzalez A-M, McLean P. Regulation of alternative pathways of glucose metabolism in rat heart by alloxan diabetes: changes in pentose phosphate pathway. Biochem Biophys Res Commun 1984; 118: 110–116.

    PubMed  CAS  Google Scholar 

  93. Linn TC, Pettit FH, Reed LJ. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 1969; 62: 234–241.

    PubMed  CAS  Google Scholar 

  94. Garland PB, Randle PJ. Control of pyruvate dehydrogenase in perfused rat heart by intracellular concentrations of acetyl CoA. Biochem J 1964; 91: 6C - 7C.

    PubMed  CAS  Google Scholar 

  95. Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidised nicotinamide adenine dinucleotide. Biochem J 1976; 154: 327–348.

    PubMed  CAS  Google Scholar 

  96. Cooper RH, Randle PJ, Denton RM. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem J 1974; 143: 625–641.

    PubMed  CAS  Google Scholar 

  97. Hughes WA, Brownsey RW, Denton RM. Studies on the incorporation of 32P phosphate into pyruvate dehydrogenase in intact rat fat cells. Biochem J 1980; 192: 469–481.

    PubMed  CAS  Google Scholar 

  98. McCormack JG, Denton RM. Role of intramitochondrial Cat+in the regulation of oxidative phosphorylation in mammalian tissues. Biochem Soc Trans 1993; 21: 793–799.

    PubMed  CAS  Google Scholar 

  99. Hughes WA, Denton RM. Incorporation of 32Pi into pyruvate dehydrogenase phosphate in mitochondria from control and insulin-treated adipose tissue. Nature 1976; 264: 471–473.

    PubMed  CAS  Google Scholar 

  100. Severson DL, Denton RM, Pask HT, Randle PJ. Calcium and magnesium ions as effectors of adipose tissue pyruvate dehydrogenase phosphate phosphatase. Biochem J 1974; 140: 225–237.

    PubMed  CAS  Google Scholar 

  101. McCormack GJ, England Pi. Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused heart. Biochem J 1983; 214: 581–585.

    PubMed  CAS  Google Scholar 

  102. McCormack GJ, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 1990; 70: 391–425.

    PubMed  CAS  Google Scholar 

  103. Kerbey AL, Richardson LJ, Randle P.I. Roles of intrinsic kinase and of kinase/activator protein in the enhanced phosphorylation of pyruvate dehydrogenase complex in starvation. FEBS Lett 1984; 176: 115–119.

    PubMed  CAS  Google Scholar 

  104. Priestman DA, Mistry SC, Halsall A, Randle PJ. Role of protein synthesis and of fatty acid metabolism in the longer-term regulation of pyruvate dehydrogenase kinase. Biochem J 1994; 300: 659–664.

    PubMed  CAS  Google Scholar 

  105. Jones BS, Yeaman SJ. Long-term regulation of pyruvate dehydrogenase complex. Evidence that kinase activator protein (KAP) is free pyruvate dehydrogenase kinase. Biochem J 1991; 275: 780–783.

    Google Scholar 

  106. Wu P, Sato J, Zhao Y, Jaskiewicz J, Popov KM, Harris RA. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 1998; 329: 197–201.

    PubMed  CAS  Google Scholar 

  107. Cruickshank EWH, Kosterlitz HW. Utilization of fat by the aglycaemic mammalian heart. J Physiol 1941; 99: 208–223.

    PubMed  CAS  Google Scholar 

  108. Henning SL, Wambolt RB, Schonekess BO, Lopaschuk GD, Allard MF. Contribution of glycogen to aerobic myocardial glucose metabolism. Circulation 1996; 93: 1549–1555.

    PubMed  CAS  Google Scholar 

  109. Goodwin GW, Arteaga JR, Taegtmeyer H. Glycogen turnover in the isolated working rat heart. J Biol Chem 1995; 270: 9234–9240.

    PubMed  CAS  Google Scholar 

  110. Goodwin G, Ahmad F, Taegtmeyer H. Preferential oxidation of glycogen in isolated working rat heart. J Clin Invest 1996; 97: 1409–1416.

    PubMed  CAS  Google Scholar 

  111. Laughlin MR, Taylor JF, Chesnick AS, Balaban RS. Non-glucose substrates increase glycogen synthesis in vivo in dog heart. Am J Physiol 1994; 267: H217 - H223.

    CAS  Google Scholar 

  112. Russell RR, Cline GW, Guthrie PH, Goodwin GW, Shulman GI, Taegtmeyer H. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. J Clin Invest 1997; 100: 2892–2899.

    PubMed  CAS  Google Scholar 

  113. De Tata V, Bergamini C, Gori Z, Locci-Cubeddu T, Bergamini E. Transmural gradient of glycogen metabolism in the normal rat left ventricle. Pflugers Arch ges Physiol 1983; 396: 60–65.

    Google Scholar 

  114. Villar-Palasi C, Guinovart JJ. Role of glucose 6-phosphate in the control of glycogen synthase. FASEB J 1997; 11: 544–558.

    PubMed  CAS  Google Scholar 

  115. Miller TB. Dual role for insulin in the regulation of cardiac glycogen synthase. J Biol Chem 1978; 253: 5389–5394.

    PubMed  CAS  Google Scholar 

  116. Nuttall FQ, Gannon MC, Corbett VA, Wheeler MP. Insulin stimulation of glycogen synthase D phosphatase (protein phosphatase). J Biol Chem 1976; 251: 6724–6729.

    CAS  Google Scholar 

  117. Cross DAE, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, Cohen P. Inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor I in the reat skeletal muscle cell line L6 is blocked by wortmannin but not by rapamycin. Evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 1994; 303: 21–26.

    PubMed  CAS  Google Scholar 

  118. Robinson LJ, Razzack Z. F, Lawrence JC. Jr James DE. Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3–L1 adipocytes. J Biol Chem 1993; 268: 26, 422–26, 427.

    Google Scholar 

  119. Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    PubMed  CAS  Google Scholar 

  120. Laughlin MR, Petit WA, Shulman RG, Barrett EJ. Measurement of myocardial glycogen synthesis in diabetic and fasted rats. Am J Physiol 1990; 258: E184 - E190.

    PubMed  CAS  Google Scholar 

  121. Thorburn AW, Gumbiner B, Bulacan F, Brechtel G, Henry RR. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus. J Clin Invest 1991; 87: 489–495.

    PubMed  CAS  Google Scholar 

  122. Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974; 141: 761–774.

    PubMed  CAS  Google Scholar 

  123. Olivecrona T, Hultin M, Bergo M, Olivecrona G. Lipoprotein lipase: regulation and role in lipoprotein metabolism. Proc Nutr Soc 1997; 56: 723–729.

    PubMed  CAS  Google Scholar 

  124. O’Brien KD, Ferguson M, Gordon D, Deeb SS, Chait A. Lipoprotein lipase is produced by cardiac myocytes rather than interstitial cells in human myocardium. Arterioscler Thromb 1994; 14: 1445–1451.

    PubMed  Google Scholar 

  125. Braun JEA, Severson DL. Lipoprotein lipase release from cardiac myocytes is increased by decavanadate but not insulin. Am J Physiol 1992; 262: 663–670.

    Google Scholar 

  126. Tavangar K, Murata Y, Pedersen ME, Goers JF, Hoffman AR, Kraemer FB. Regulation of lipoprotein lipase in the diabetic rat. J Clin Invest 1992; 90: 1672–1678.

    PubMed  CAS  Google Scholar 

  127. Liu L, Severson DL. Myocardial lipoprotein lipase activity: regulation by diabetes and fructose-induced hypertriglyceridemia. Can J Physiol Pharmacol 1995; 73: 369–377.

    PubMed  CAS  Google Scholar 

  128. Taskinen M-R. Lipoprotein lipase in diabetes. Diabetes Metab Rev 1987; 3: 551–570.

    PubMed  CAS  Google Scholar 

  129. O’Looney P, Irwin D, Briscoe P, Vahouny GV. Lipoprotein composition as a component in the lipoprotein clearance defect in experimental diabetes. J Biol Chem 1985; 260: 428–432.

    PubMed  Google Scholar 

  130. Braun JEA, Severson DL. Diabetes reduces the heparin-and phospholipase C-releasable lipoprotein lipase from cardiomyocytes. Am J Physiol 1991; 260: E477 - E485.

    PubMed  CAS  Google Scholar 

  131. Carroll R, Liu L, Severson DL. Post-transcriptional mechanisms are responsible for the reduction in lipoprotein lipase activity in cardiomyocytes from diabetic rat hearts. Biochem J 1995; 310: 67–72.

    PubMed  CAS  Google Scholar 

  132. Inadera H, Tashiro J, Okubo Y, Ishikawa K, Shirai K, Saito Y, Yoshida S. Response of lipoprotein lipase to calorie intake in streptozotocin-induced diabetic rats. Scand J Clin Invest 1992; 52: 797–802.

    PubMed  CAS  Google Scholar 

  133. Stam H, Schoonderwoerd K, Breeman W, Hulsman W. Effects of hormones, fasting and diabetes on triglyceride lipase activity in rat heart and liver. Horm Metab Res 1984; 16: 293–297.

    PubMed  CAS  Google Scholar 

  134. Nomura T, Hagino H, Gotoh M, Iguchi A, Sakamoto N. Effects of streptozotocin diabetes on tissue specific lipase activities in the rat. Lipids 1984; 19: 594–599.

    PubMed  CAS  Google Scholar 

  135. Rodrigues B, Severson DL. Acute diabetes does not reduce heparin-releasable lipoprotein lipase activity in perfused hearts from Wistar-Kyoto rats. Can J Physiol Pharmacol 1993; 71: 657–661.

    PubMed  CAS  Google Scholar 

  136. Rodrigues B, Cam MC, Jian K, Lim F, Sambandam N, Shepherd G. Differential effects of streptozotocin-induced diabetes on cardiac lipoprotein lipase activity. Diabetes 1997; 46: 1346–1353.

    PubMed  CAS  Google Scholar 

  137. Ewart HS, Carroll R, Severson DL. Lipoprotein lipase activity in rat cardiomyocytes is stimulated by insulin and dexamethasone. Biochem J 1997; 327: 439–442.

    PubMed  CAS  Google Scholar 

  138. Denton RM, Randle PJ. Hormonal control of lipid concentration in rat heart and gastrocnemius. Nature 1965; 208: 488.

    PubMed  CAS  Google Scholar 

  139. Olson RE, Hoeschen RJ. Utilization of endogenous lipid by the isolated perfused rat heart. Biochem J 1967; 108: 796–801.

    Google Scholar 

  140. Murthy VK, Bauman MD, Shipp JC. Regulation of triacylglycerol lipolysis in the perfused hearts of normal and diabetic rats. Diabetes 1983; 32: 718–722.

    PubMed  CAS  Google Scholar 

  141. Saddik M, Lopaschuk GD. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Can J Physiol Pharmacol 1994; 72: 1110–1119.

    PubMed  CAS  Google Scholar 

  142. Kenno KA, Severson DL. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am J Physiol 1985; 249: 1024–1030.

    Google Scholar 

  143. Kreisberg RA. Effect of epinephrine on myocardial triglyceride and free fatty acid utilization. Am J Physiol 1966; 210: 385–389.

    PubMed  CAS  Google Scholar 

  144. Brownsey RW, Brunt RV. Effect of adrenaline-induced endogenous lipolysis upon the mechanical and metabolic performance of ischaemically-perfused rat hearts. Clin Sci Mol Med 1977; 53: 513–521.

    PubMed  CAS  Google Scholar 

  145. Crass MF, Shipp JC, Pieper GM. Effects of catecholamines on myocardial endogenous substrates and contractility. Am J Physiol 1975; 228: 618–627.

    PubMed  CAS  Google Scholar 

  146. Wijkander J, Landstrom TR, Manganiello V, Belfrage P, Degerman E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology 1998; 139: 219–227.

    PubMed  CAS  Google Scholar 

  147. Severson DL. Regulation of lipid metabolism in adipose tissue and heart. Can J Physiol Pharmacol 1979; 57: 923–937.

    PubMed  CAS  Google Scholar 

  148. Crass MF. Exogenous substrate effects on endogenous lipid metabolism in the working rat heart. Biochim Biophys Acta 1972; 280: 71–81.

    PubMed  CAS  Google Scholar 

  149. Denton RM, Randle PJ. Concentrations of glycerides and phospholipids in rat heart and gastrocnemius muscles. Effects of alloxan-diabetes and perfusion. Biochem J 1967; 104: 416–422.

    PubMed  CAS  Google Scholar 

  150. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 1977; 60: 265–270.

    PubMed  CAS  Google Scholar 

  151. Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. J Biol Chem 1994; 269: 26, 443–26, 448.

    Google Scholar 

  152. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity of carnitine, and malonylCoA sensitivity of carnitine palmitoyltransferase I in animal aand human tissues. Demonstration of the presence of malonyl-CoA in nonhepatic tissues of the rat. Biochem J 1983; 214: 21–28.

    PubMed  CAS  Google Scholar 

  153. Cook GA, Gamble MS. Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. J Biol Chem 1987; 262: 2050–2055.

    PubMed  CAS  Google Scholar 

  154. Hudson EK, Liu M-H, Buja LM, McMillin JB Insulin-associated changes in carnitine palmitoyltransferase in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol 1995; 27: 599–613.

    PubMed  CAS  Google Scholar 

  155. Brownsey RW, Denton RM. Acetyl CoA carboxylase. In: Boyer P, Krebs EG, eds. The Enzymes: Control by Phosphorylation, Part B, vol. 18. Academic, New York, 1987, pp. 123–146.

    Google Scholar 

  156. Thampy KG. Formation of malonyl-CoA in rat heart. J Biol Chem 1989; 264: 17, 631–17, 634.

    Google Scholar 

  157. Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem 1990; 265: 1502–1509.

    PubMed  CAS  Google Scholar 

  158. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 1993; 268: 25, 836–25, 845.

    Google Scholar 

  159. Winz R, Hess D, Aebersold R, Brownsey RW. Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J Biol Chem 1994; 269: 14, 438–14, 445.

    Google Scholar 

  160. Ha J, Lee J-K, Kim K-S, Witters LA, Kim K-H. Cloning of human acetyl-CoA carboxylase-(3 and its unique features. Proc Natl Acad Sci USA 1996; 93: 11, 466–11, 470.

    Google Scholar 

  161. Abu-Elheiga L, Almarza-Ortega DB, Baldini A, Wahl SJ. Human acetyl-CoA carboxylase 2-molecular cloning, characterization, chromosomal mapping and evidence for two isoforms. J Biol Chem 1997; 272: 10, 669–10, 677.

    Google Scholar 

  162. Shipp JC, Matos 0E, Knizely H, Crevasse LE. CO2 formed from endogenous and exogenous substrates in perfused rat heart. Am J Physiol 1964; 207: 1231–1236.

    PubMed  CAS  Google Scholar 

  163. Kim YS, Kolattukudy PE. Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart and mammary gland. Arch Biochem Biophys 1978; 190: 234–246.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brownsey, R.W., Rodrigues, B., Verma, S., McNeill, J.H. (1999). Insulin and the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics