Skip to main content

Adrenocortical Hormones and the Heart

A Steroidogenic Endocrine Organ as Well as Target Organ?

  • Chapter
Hormones and the Heart in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

Mineralocorticoid steroids, of which aldosterone is the most abundant and important, are produced in the zona glomerulosa of the adrenal gland in response to low sodium, high potassium, angiotensin II (ANG II) and adrenocorticotrophic hormone (ACTH). They act on the circulation indirectly by increasing the reabsorption of sodium and water by the kidney. leading to the expansion of the extracellular vascular space, resulting in an increase in cardiac output. Chronic administration of mineralocorticoids results in autoregulation by vascular smooth muscle cells (VSMCs) increase in peripheral vascular resistance, and elevation of blood pressure (BP). The increase in cardiac afterload produced by the elevation in BP was thought to cause a pressure-dependent cardiac hypertrophy (1). Over the past two decades, it has become clear that mineralocorticoid action is far more global and diverse, and includes actions in nontransport epithelial tissues, notably specific organs of the brain and the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr DF. What makes the pressure go up? A hypothesis. Hypertension 1981;3:II-160-II-165.

    Google Scholar 

  2. Nerup J. Addison’ s disease. Clinical studies. A report of 108 cases. Acta Endocrinol 1974;76:127–141’

    Google Scholar 

  3. Jarvis JL, Jenkins D, Sosman MC. Roentgenologic observations in Addison’s disease. A review of 120 cases. Radiology 1954; 62: 16–29.

    PubMed  CAS  Google Scholar 

  4. Morgan HE, Baker KM. Cardiac hypertrophy: mechanical, neural and endocrine dependence. Circulation 1991; 83: 13–25.

    Article  PubMed  CAS  Google Scholar 

  5. Rossi GP, Sacchetto A, Pavan E, Palatini P, Graniero GR, Canali C, Pessina AC. Remodeling of the left ventricle in primary aldosteronism due to Conn’s adenoma. Circulation 1997; 95: 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  6. Denolle T, Chatellier G, Julien J, Battaglia C, Luo P, Plouin P-F. Left ventricular mass and geometry before and after etiologic treatment in renovascular hypertension, aldosterone-producing adenoma, and pheochromocytoma. Am J Hypertens 1993; 6: 907–913.

    PubMed  CAS  Google Scholar 

  7. Tanabe A, Naruse M, Naruse K, Hase M, Yoshimoto T, Tanaka M, Seki T, Demura H. Left ventricular hypertrophy is more prominent in patients with primary aldosteronism than in patients with other types of secondary hypertension. Hypertension Res 1997; 20: 85–90.

    Article  CAS  Google Scholar 

  8. Evans RM. Steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  9. Wehling M. Nongenomic actions of steroid hormones. TEM 1994; 5: 347–353.

    PubMed  CAS  Google Scholar 

  10. Pearce P, Funder JW. High affinity aldosterone binding sites (type I receptors) in rat heart. Clin Exp Pharmacol Physiol 1987; 14: 859–866.

    Article  PubMed  CAS  Google Scholar 

  11. Pearce PT, Funder JW. Steroid binding to cardiac type I receptors: in vivo studies. J Hypertension 1988; 6 (Suppl 4): S131 - S133.

    CAS  Google Scholar 

  12. Arriza JW, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–275.

    Article  PubMed  CAS  Google Scholar 

  13. Zennaro MC, Farman N, Bonvalet JP, Lombes M. Tissue-specific expression of alpha and beta messenger ribonucleic acid isoforms of the human mineralocorticoid receptor in normal and pathological states. J Clin Endocrinol Metab 1997; 82: 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  14. Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 1992; 71: 503–510.

    Article  PubMed  CAS  Google Scholar 

  15. Zennaro MC, Lemenuet D, Lombes M. Characterization of the human mineralocorticoid receptor gene 5’-regulatory region-evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanism. Mol Endocrinol 1996; 10: 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  16. Kwak S, Patel PD, Thompson RC, Akil H, Watson SJ. 5’-Heterogeneity of the mineralocorticoid receptor messenger ribonucleic acid: differential expression and regulation of splice variants within the rat hippocampus. Endocrinology 1993; 133: 2344–2350.

    Article  PubMed  CAS  Google Scholar 

  17. Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci USA 1983; 80: 6056–6060.

    Article  PubMed  CAS  Google Scholar 

  18. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242: 583–585.

    Article  PubMed  CAS  Google Scholar 

  19. Edwards CRW, Burt D, McIntyre MA, De Kloet ER, Stewart PM, Brett L, Sutanto WS, Monder C. Localisation of 1113-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet 1988;ii:986–989.

    Article  Google Scholar 

  20. Monder C. Forms and functions of 1113-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 1993; 45: 161–165.

    Article  PubMed  CAS  Google Scholar 

  21. Brem AS, Bina RB, King T, Morris DJ. Bidirectional activity of 113-hydroxysteroid dehydrogenase in vascular smooth muscle cells. Steroids 1995; 60: 406–410.

    Article  PubMed  CAS  Google Scholar 

  22. Smith RE, Krozowski ZS. The 11(3-hydroxysteroid dehydrogenase type I enzyme in the hearts of normotensive and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1996; 23: 642–647.

    Article  PubMed  CAS  Google Scholar 

  23. Teelucksingh S, Mackie ADR, Burt D, McIntyre MA, Brett L, Edwards CRW. Potentiation of hydrocortisone activity in skin by glycyrrhetinic acid. Lancet 1990; 1: 1060–1063.

    Article  Google Scholar 

  24. Seckl JR, Dow RC, Low SC, Edwards CRW, Fink G. 113-hydroxysteroid dehydrogenase inhibitor glycyrrhetinic acid affects corticosteroid feedback regulation of hypothalamic corticotrophin-releasing petides in rats. J Endocrinol 1993; 136: 471–477.

    Article  PubMed  CAS  Google Scholar 

  25. Mune T, White PC. Apparent mineralocorticoid excess: genotype is correlated with biochemical phenotype. Hypertension 1996; 27: 1193–1199.

    Article  PubMed  CAS  Google Scholar 

  26. Mune T, Rogerson FM, Nikkilä H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 113-hydroxysteroid dehydrogenase. Nature Genet 1995; 10: 394–399.

    Article  PubMed  CAS  Google Scholar 

  27. Slight S, Ganjam VK, Nonneman DJ, Weber KT. Glucocorticoid metabolism in the cardiac interstitium: 113-hydroxysteroid dehydrogenase activity in cardiac fibroblasts. J Lab Clin Med 1993; 122: 180–187.

    PubMed  CAS  Google Scholar 

  28. Slight SH, Ganjam VK, Gomez-Sanchez CE, Weber KT. High affinity NADtdependent 113-hydroxysteroid dehydrogenase in the human heart. J Mol Cell Cardiol 1996; 28: 781–787.

    Article  PubMed  CAS  Google Scholar 

  29. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet J-P. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 113-hydroxysteroid dehydrogenase in the human heart. Circ Res 1995; 92: 175–182.

    Article  CAS  Google Scholar 

  30. De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Frontiers Neuroendocrinol 1991; 12: 95–164.

    Google Scholar 

  31. Funder J, Myles K. Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology 1996; 137: 5264–5268.

    Article  PubMed  CAS  Google Scholar 

  32. Sate A, Funder JW. High glucose stimulates aldosterone-induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinology 1996; 137: 4145–4153.

    Article  Google Scholar 

  33. Young MJ, Funder JW. Mineralocorticoids, salt, hypertension: effects on the heart. Steroids 1996; 61: 233–235.

    Article  PubMed  CAS  Google Scholar 

  34. Langford HG, Snavely JR. Effect of DCA on development of renoprival hypertension. Am J Physiol 1959; 196: 449–450.

    PubMed  CAS  Google Scholar 

  35. Klein K, Henk W. Klinisch-experimentelle untersuchungen über den einfluss von aldosteron auf haemodynamik and gerinnung. Z Kreisl Forsch 1964; 52: 40–53.

    Google Scholar 

  36. Solomon N, Sayers G. Work performance of the isolated rat heart preparation: standarization and influence of corticosteroids. In: Currie AR, Symington T, Grant JK, eds. Human Adrenal Cortex. William and Wilkins, Baltimore, 1962, pp. 314–324.

    Google Scholar 

  37. Ballard K, Lefer A, Sayers G. Effect of aldosterone and plasma extracts on a rat heart-lung preparation. Am J Physiol 1960; 199: 221–225.

    PubMed  CAS  Google Scholar 

  38. Tanz RD. Studies on the inotropic action of aldosterone on isolated cardiac tissue preparations: including the effect of pH, ouabain and SC-8109. J Pharmacol Exp Ther 1962; 135: 71–78.

    PubMed  CAS  Google Scholar 

  39. Moreau D, Chardigny JM, Rochette L. Effects of aldosterone and spironolactone on the isolated per-fused rat heart. Pharmacol 1996; 53: 28–36.

    Article  CAS  Google Scholar 

  40. Wehling M, Eisen C, Christ M. Aldosterone-specific membrane receptors and rapid non-genomic actions of mineralocorticoids. Mol Cell Endocrinol 1992; 90: C5 - C9.

    Article  PubMed  CAS  Google Scholar 

  41. Christ M, Eisen C, Aktas J, Theisen K, Wehling M. Inositol-1,4,5-trisphosphate system is involved in rapid effects of aldosterone in human mononuclear leukocytes. J Clin Endocrinol Metab 1993; 77: 1452–1457.

    Article  PubMed  CAS  Google Scholar 

  42. Wehling, M, Käsmayr J, Theisen K. Fast effects of aldosterone on electrolytes in human lymphocytes are mediated by the sodium-proton-exchanger of the cell membrane. Biochem Biophys Res Commun 1989; 164: 961–967.

    Article  PubMed  CAS  Google Scholar 

  43. Wehling M, Christ M, Gerzer R. Aldosterone-specific membrane receptors and related rapid, nongenomic effects. Trends Pharmacol Sci 1993; 14: 1–4.

    Article  PubMed  CAS  Google Scholar 

  44. Wehling M, Ulsenheimer A, Schneider M, Neylon C, Christ M. Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem Biophys Res Commun 1994; 204: 475–481.

    Article  PubMed  CAS  Google Scholar 

  45. Wehling M, Neylon CB, Fullerton M, Bobik A, Funder JW. Nongenomic effects of aldosterone on intracellular Cat+ in vascular smooth muscle cells. Circ Res 1995; 76: 973–979.

    Article  PubMed  CAS  Google Scholar 

  46. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Card 1994; 26: 809–820.

    Article  CAS  Google Scholar 

  47. Fullerton MJ, Funder JW. Aldosterone and cardiac fibrosis: in vitro studies. Cardiovasc Res 1994; 128: 1863–1867.

    Article  Google Scholar 

  48. Köhler, E, Bertschin S, Woodtli T, Resink T, Erne P. Does aldosterone-induced cardiac fibrosis involve direct effects on cardiac fibroblasts? J Vascular Res 1996; 33: 315–326.

    Article  Google Scholar 

  49. Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium and myocardial fibrosis. J Lab Clin Med 1992; 120: 893–901.

    PubMed  CAS  Google Scholar 

  50. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 1994; 93: 2578–2583.

    Article  PubMed  CAS  Google Scholar 

  51. Gomez-Sanchez EP. Central hypertensive effects of aldosterone. Frontiers Neuroendocrinol 1997; 18: 440–462.

    Article  CAS  Google Scholar 

  52. Robert V, Silvestre JS, Charlemagne D, Sabri A, Trouve P, Wassef M, Delcayre C. Biological determinants of aldosterone-induced cardiac fibrosis in rats. Hypertension 1995; 26: 971–978.

    Article  PubMed  CAS  Google Scholar 

  53. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Cardiol 1993; 71: 12A - 16A.

    Article  PubMed  CAS  Google Scholar 

  54. Campbell SE, Janicki JS, Matsubara BB, Weber KT. Myocardial fibrosis in the rat with mineralocorticoid excess, prevention of scarring by amiloride. Am J Hypertens 1993; 6: 487–495.

    PubMed  CAS  Google Scholar 

  55. Campbell SE, Diaz-Ariaz AA, Weber KT. Fibrosis of the human heart and systemic organs in adrenal adenoma. Blood Pressure 1992; 1: 149–156.

    Article  PubMed  CAS  Google Scholar 

  56. Nichols JR, Clancy RL, Gonzales NC. Role of adrenals on development of pressure-induced myocardial hypertrophy. Am J Physiol 1983; 244: H234 - H238.

    PubMed  CAS  Google Scholar 

  57. Gomez-Sanchez EP. Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 1986; 118: 819–823.

    Article  PubMed  CAS  Google Scholar 

  58. Kageyama Y, Bravo EL. Hypertensive mechanisms associated with centrally administered aldosterone in dogs. Hypertension 1988; 11: 750–753.

    Article  PubMed  CAS  Google Scholar 

  59. Young M, Head G, Funder JW. Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol 1995; 269: E657 - E662.

    PubMed  CAS  Google Scholar 

  60. Gomez-Sanchez EP. Mineralocorticoid modulation of central control of blood pressure. Steroids 1995; 60: 69–72.

    Article  PubMed  CAS  Google Scholar 

  61. Gomez-Sanchez EP, Fort CM, Gomez-Sanchez CE. Intracerebroventricular infusions of RU28318 blocks aldosterone-salt hypertension. Am J Physiol 1990; 258: E482 - E484.

    PubMed  CAS  Google Scholar 

  62. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 1997; 35: 30–34.

    Article  PubMed  CAS  Google Scholar 

  63. Barr CS, Lang CC, Hanson J, Arnott M, Kennedy N, Struthers AD. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995; 76: 1259–1265.

    Article  PubMed  CAS  Google Scholar 

  64. Duval D, Funder JW, Devynck M, Meyer P. Arterial glucocorticoid receptors: the binding of tritiated dexamethasone in rabbit aorta. Cardiovasc Res 1977; 11: 529–535.

    Article  PubMed  CAS  Google Scholar 

  65. Funder JW, Duval D, Meyer P. Cardiac glucocorticoid receptors: the binding of tritiated dexamethasone in rat and dog heart. Endocrinology 1973; 93: 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  66. Tsuda K, Saikawa T, Yonemochi H, Maeda T, Shimoyama N, Hara M, Ito Y, Sakata T. Electrocardiographic abnormalities in patients with Cushing’s syndrome. Jpn Heart J 1995; 36: 333–339.

    Article  PubMed  CAS  Google Scholar 

  67. Sato A, Sheppard KE, Fullerton Mi, Funder JW. cAMP modulates glucocorticoid-induced protein accumulation and glucocorticoid receptor in cardiomyocytes. Am J Physiol 1996; 271: E827 - E833.

    PubMed  CAS  Google Scholar 

  68. Nichols NR, McNally M, Campbell JH, Funder JW. Overlapping but not identical protein synthetic domains in cardiovascular cells in response to glucocorticoid hormones. J Hypertension 1984; 2: 663–669.

    Article  CAS  Google Scholar 

  69. Kuroski TT, Czerwinski SM. Glucocorticoid modulation of cardiac mass and protein. Med Sci Sports Exerc 1990; 22: 312–315.

    Google Scholar 

  70. Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA. Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells. Role in regulation of inducible nitric oxide synthase. J Biol Chem 1995;270:28, 471–28, 478.

    Google Scholar 

  71. Takimoto K, Levitan ES. Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart. Circ Res 1994; 75: 1006–1013.

    Article  PubMed  CAS  Google Scholar 

  72. Takeda Y, Miyamori I, Yoneda T, Iki K, Hatakeyama H, Blair IA, Hsieh FY, Takeda R. Production of aldosterone in isolated rat blood vessels. Hypertension 1995; 25: 170–173.

    Article  PubMed  CAS  Google Scholar 

  73. Takeda Y, Miyamori I, Yoneda T, Iki K, Hatakeyama H, Blair IA, Hsieh FY, Takeda R. Synthesis of corticosterone in the vascular wall. Endocrinology 1994; 135: 2283–2286.

    Article  PubMed  CAS  Google Scholar 

  74. Hatakeyama H, Miyamori I, Fujita T, Takeda Y, Takeda R, Yamamoto H. Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 1994;269:24, 316–24, 320.

    Google Scholar 

  75. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Eddleman FC, Gomez-Sanchez EP. Corticosteroid synthesis in the central nervous system. Endocr Res 1996; 22: 463–470.

    PubMed  CAS  Google Scholar 

  76. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Foecking MF, Gomez-Sanchez EP. Aldosterone biosynthesis in the rat brain. Endocrinology 1997; 138: 3369–3373.

    Article  PubMed  CAS  Google Scholar 

  77. Silvestre J-S, Robert V, Heymes C, Aupetit-Faisant B, Moalic J-M, Swynghedauw B, Delcayre C. Myocardial production of aldosterrone and corticosterone in the rat. Physiological regulation. J Biol Chem 1998; 273: 4883–4891.

    Article  PubMed  CAS  Google Scholar 

  78. Ilett KF, Lockett MF. Renally active substance from heart muscle and from blood. J Physiol 1968; 196: 101–109.

    PubMed  CAS  Google Scholar 

  79. Lockett, MF, Retallack RW. Isolation of a substance very closely resembling the 18-monoacetate of d-aldosterone from the venous blood of activated muscle and from contracting muscle. J Physiol 1969; 204: 435–442.

    PubMed  CAS  Google Scholar 

  80. Lockett MF. Factors affecting the antidiuretic actions of the 18-monoacetate of (+)-aldosterone and of a substance secreted by heart muscle, in rats. J Pharm Pharmac 1973; 25: 690–699.

    Article  CAS  Google Scholar 

  81. Knox JR, Lockett MF. Similarity between a substance produced by the heart in vitro and the 18monoacetyl derivative of d-aldosterone. J Endocr 1969; 43: 315–316.

    Article  PubMed  CAS  Google Scholar 

  82. Escubet B, Coureau C, Blot-Chabaud M, Bonvalet J-P, Farman N. Corticosteroid receptor mRNA expression is unaffected by corticosteroids in the rat kidney, heart and colon. Am J Physiol 1996; 270: C1343 - C1353.

    Google Scholar 

  83. Lockett MF, Retallack RW. Release of a renally active substance by perfused rat hearts. J Physiol 1971; 212: 733–738.

    PubMed  CAS  Google Scholar 

  84. Arora RB, Siddiqui HH. Role of sodium-retaining hormones in cardiac control. Indian J Med Res 1970; 8: 275–277.

    CAS  Google Scholar 

  85. Arora RB, Gupta SK, Sharma RC, Siddiqui HH. Isolation and characterization of a sodium retaining substance from pig heart muscle and its role in myocardial infarction. Indian J Med Res 1971; 59: 483–493.

    PubMed  CAS  Google Scholar 

  86. Locket MF. Hormonal actions of the heart and of lungs on the isolated kidney. J Physiol 1967; 193: 661–679.

    Google Scholar 

  87. Locket MF, Retallack RW. Isolation of a renally active substance from arterial blood. J Physiol 1972; 225: 477–484.

    Google Scholar 

  88. Lockett MF, Retallack RW, Sayers L. Extent of the destruction, during passage through the lungs of a substance secreted by the heart. J Physiol 1972; 225: 477–484.

    PubMed  CAS  Google Scholar 

  89. Brilla CG, Guarda E, Zhou G, Myers PR, Weber KT. Angiotensin II-mediated aldosterone synthesis in aortic endothelial cells. Circulation 1992; 86 (Suppl 4): 1–90 (abstract).

    Google Scholar 

  90. Takeda Y, Miyamori I, Yoneda T, Hatakeyama H, Inaba S, Mabuchi H, Takeda R. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab 1996; 81: 2797–2800.

    Article  PubMed  CAS  Google Scholar 

  91. Zhou MY, Vila MC, Gomez-Sanchez EP, Gomez-Sanchez CE. Cloning of two alternatively spliced 21hydroxylase cDNAs from rat adrenal. J Steroid Biochem 1997; 62: 277–286.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomez-Sanchez, C.E. (1999). Adrenocortical Hormones and the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics