Skip to main content

Contribution of Eicosanoids in the Heart

  • Chapter
  • 98 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

Over the past three decades, considerable progress has been made in the knowledge of synthesis and metabolism of eicosanoids, and their physiological and pathophysiological roles in various tissues and organs, including those of the cardiovascular and renal systems (1–5). This chapter will briefly review the present state of knowledge of the neurohumoral mechanisms regulating the production of eicosanoids and their physiological and pathophysiological role in the heart. Exhaustive coverage of the field is not intended, and only pertinent references have been cited. The reader is referred to other excellent reviews on eicosanoids in the cardiovascular system (1,2,6–10).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Vane JR. Pharmacology and endogenous role of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1978; 30: 243–331.

    Google Scholar 

  2. McGiff JC. Prostaglandins, prostacyclin and thromboxanes. Annu Rev Pharmacol Toxicol 1981; 21: 479–509.

    Article  PubMed  CAS  Google Scholar 

  3. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983; 220: 568–575.

    Article  PubMed  CAS  Google Scholar 

  4. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem 1986; 55: 69–102.

    Article  PubMed  CAS  Google Scholar 

  5. Capdevila J, Marnett LJ, Chacos N, Prough RA, Estabrook RW. Cytochrome P-450 dependent oxygenation of arachidonic acid to hydroxyeicosatetraenoic acids. Proc Natl Acad Sci USA 1982; 79: 767–770.

    Article  PubMed  CAS  Google Scholar 

  6. Serhan CN. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 1997; 53: 107–137.

    Article  PubMed  CAS  Google Scholar 

  7. Needleman P, Kaley G. Cardiac and coronary prostaglandin synthesis and function. N Engl J Med 1978; 298: 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  8. Nasjletti A, Malik KU. Interrelations between prostaglandins and vasoconstrictor hormones: contribution to blood pressure regulation. Fed Proc 1982; 41: 2394–2399.

    PubMed  CAS  Google Scholar 

  9. Karmazyn M, Dhalla NS. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 1983; 61: 1207–1225.

    Article  PubMed  CAS  Google Scholar 

  10. Karmazyn M. Synthesis and relevance of cardiac eicosanoids with particular emphasis on ischemia and reperfusion. Can J Physiol Pharmacol 1989; 67: 912–921.

    Article  PubMed  CAS  Google Scholar 

  11. Balsinde J, Diez E, Mollinedo F. Arachidonic acid release from diacylglycerol in human neutrophils: translocation of diacylglycerol-decylating enzyme activities from an intracellular pool to plasma membrane upon cell activation. J Biol Chem 1991;256:15, 638–15, 643.

    Google Scholar 

  12. Lapetina EG, Billah MM, Cuatrecasas P. Initial action of thrombin on platelets. J Biol Chem 1981; 256: 5037–5040.

    PubMed  CAS  Google Scholar 

  13. Brindley DN. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog Lipid Res 1984; 23: 115–133.

    Article  PubMed  CAS  Google Scholar 

  14. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts U. Series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 1990; 87: 9383–9387.

    Article  PubMed  CAS  Google Scholar 

  15. Morrow JD, Roberts LJ. Isoprostanes. Current knowledge and direction of future research. Biochem Pharmacol 1996; 51: 1–9.

    Article  PubMed  CAS  Google Scholar 

  16. Goetzl EJ, An S, Smith WL. Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J 1995; 9: 1051–1058.

    PubMed  CAS  Google Scholar 

  17. Crofford LJ. Cox-1 and Cox-2 tissue expression: implications and predictions. J Rheumatol 1997; 24 (Suppl 49): 15–19.

    Google Scholar 

  18. Kulmaez RJ, Lands WEM. Prostaglandin H synthase stoichiometry of heme cofactor. J Biol Chem 1984; 259: 6358–6363.

    Google Scholar 

  19. Capdevila JH, Falck JR, Estabrook RW. Cytochrome P-450 and the arachidonate cascade. FASEB J 1992; 6: 731–736.

    PubMed  CAS  Google Scholar 

  20. McGiff JC. Cytochrome P-450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol 1991; 31: 339–369.

    Article  PubMed  CAS  Google Scholar 

  21. Fitzpatrick FA, Murphy RC. Cytochrome P-450 metabolism of arachidonic acid: formation and biological actions of `epoxygenase’-derived eicosanoids. Pharmacol Rev 1988; 40: 229–241.

    PubMed  CAS  Google Scholar 

  22. Laniado-Schwartzman M, Davis KL, McGiff JC, Levere RD, Abraham NG. Purification and characterization of cytochrome P-450 dependent arachidonic acid epoxygenase from human liver. J Biol Chem 1988; 263: 2536–2542.

    PubMed  CAS  Google Scholar 

  23. Falck JR, Manna S, Jacobson HR, Estabrook RW, Chacos N, Capdevilla J. Absolute configuration of epoxyeicosatrienoic acids (EETs) formed during catalytic oxygenation of arachidonic acid by purified rat liver microsomal cytochrome P-450. J Am Chem Soc 1984; 106: 3334–3336.

    Google Scholar 

  24. Karara A, Dishman E, Jacobson H, Falck JR, Capdevila JH. Arachidonic acid epoxygenase. Stereo-chemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. FEBS Lett 1990; 268: 227–230.

    Article  PubMed  CAS  Google Scholar 

  25. De Decker EAM, Nugteren DH, Ten Hoor F. Prostacyclin is the major prostaglandin released from isolated perfused rabbit and rat heart. Nature 1977;268:163–168

    Google Scholar 

  26. Hsueh W, Needleman P. Sites of lipase activation and prostaglandin synthesis in isolated, perfused rabbit hearts and hydronephrotic kidneys. Prostaglandins 1978; 16: 661–681.

    Article  CAS  Google Scholar 

  27. Wennmalm A. Prostaglandin-mediated inhibition of noradrenaline release. VI. On the intra-cardiac source of prostaglandin released from isolated rabbit hearts. Acta Physiol Scand 1979; 105: 254–256.

    Article  PubMed  CAS  Google Scholar 

  28. Gerritsen ME, Cheli CD. Arachidonic acid and prostaglandin endoperoxide metabolism in isolated rabbit and coronary microvessels and isolated and cultivated coronary microvessel endothelial cells. J Clin Invest 1983; 72: 1658–1671.

    Article  PubMed  CAS  Google Scholar 

  29. Kan H, Ruan Y, Malik KU. Localization and characterization of the subtype(s) of muscarinic receptor involved in prostacyclin synthesis in rabbit heart. J Pharmacol Exp Ther 1996; 276: 934–941.

    PubMed  CAS  Google Scholar 

  30. Dusting GJ, Nolan RD. Stimulation of prostacyclin release from the epicardium of anesthetized dogs. Br J Pharmacol 1981; 74: 553–652.

    Article  PubMed  CAS  Google Scholar 

  31. Mebazza A, Martin LD, Robotham JL, Maeda K, Gabrielson EU, Wetzel RC. Right and left ventricular cultured endocardial endothelium produces prostacyclin and PGE2. J Mol Cell Cardiol 1993; 25: 245–248.

    Article  Google Scholar 

  32. Ahumada GG, Sobel BE, Needleman P. Synthesis of prostaglandins by cultured rat heart myocytes and cardiac mesenchymal cells. J Mol Cell Cardiol 1980; 12: 685–700.

    Article  PubMed  CAS  Google Scholar 

  33. Bolton HS, Chanderbhan R, Bryant RW, Bailey JM, Weglicki WB, Vahouny GV. Prostaglandin synthesis by adult heart myocytes. J Mol Cell Cardiol 1980; 12: 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  34. Cole OF, Fan TPD, Lewis GP. Release of eicosanoids from cultured rat aotric endothelial cells; studies with arachidonic acid and calcium ionophore A23187. Cell Biol Int Rep 1986; 10: 407–413.

    Article  PubMed  CAS  Google Scholar 

  35. Szczeklik A, Gryglewski RJ, Musial J, Grodzinska L, Serwonska M, Marcinkiewicz E. Thromboxane generation and platelet aggregation in survivals of myocardial infarction. Thromb Haemest 1978; 40: 66–74.

    CAS  Google Scholar 

  36. Kuzuya T, Hoshida S, Nishida M, Kim Y, Kamada T, Tada M. Increased production of arachidonate metabolites in an occlusion-reperfusion model of canine myocardial infarction. Cardiovasc Res 1987; 21: 551–558.

    Article  PubMed  CAS  Google Scholar 

  37. Breitbart E, Sofer Y, Shainberg A, Grossman S. Lipoxygenase activity in heart cells. FEBS Lett 1996; 395: 148–152.

    Article  PubMed  CAS  Google Scholar 

  38. Garlick PB, Mashiter GD, Di-Marzo V, Tippins JR, Morris HR, Maisey MN. Synthesis, release and action of leukotrienes in the isolated, unstimulated, buffer-perfused rat heart. J Mol Cell Cardiol 1989; 21: 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  39. Revtyak GE, Johnson AR, Campbell WB. Cultured bovine coronary arterial endothelial cells synthesize HETEs and prostacyclin. Am J Physiol 1988; 254: C8 - C19.

    Google Scholar 

  40. Rosolowsky M, Campbell WB. Synthesis of hydroxyeicosatetraenoic (HETEs) and epoxyeicosatrienoic acids (EETs) by cultured bovine coronary artery endothelial cells. Biochem Biophys Acta 1996; 1299: 267–277.

    Google Scholar 

  41. Harder DR, Campbell WB, Roman RJ Role of cytochrome P-450 enzymes and metabolites of arachidohnic acid in the control of vascular tone. J Vasc Res 1995; 32: 79–92.

    Article  PubMed  CAS  Google Scholar 

  42. Wu S, Chen W, Murphy E, Gabel S, Tomer KB, Foley J, et al. Molecular cloning, expression, and functional significance of a cytochrome P-450 highly expressed in rat heart myocytes. J Biol Chem 1997;272:12, 551–12, 559.

    Google Scholar 

  43. Hedqvist P. Basic mechanism of prostaglandin actions on autonomic neurotransmission. Annu Rev Pharmacol Toxicol 1977; 17: 259–279.

    Article  PubMed  CAS  Google Scholar 

  44. Junstad M, Wennmalm A. On the release of prostaglandin E2 from the rabbit heart following infusion of noradrenaline. Acta Physiol Scand 1973; 87: 573–574.

    Article  PubMed  CAS  Google Scholar 

  45. Shaffer JE, Malik KU. Enhancement of prostaglandin output during activation of beta-1 adrenoceptors in the isolated rabbit heart. J Pharmacol Exp Ther 1982; 223: 729–735.

    PubMed  CAS  Google Scholar 

  46. Junstad M, Wennmalm A Release of prostaglandin from the rabbit isolated heart following vagal nerve stimulation or acetylcholine infusion. Br J Pharmacol 1974; 52: 375–370.

    Article  PubMed  CAS  Google Scholar 

  47. Jaiswal N, Malik KU. Prostaglandin synthesis elicited by cholinergic stimuli is mediated by activation of M2 muscarinic receptors in rabbit heart. J Pharmacol Exp Ther 1988; 245: 59–66.

    PubMed  CAS  Google Scholar 

  48. Needleman P, Marshall GR, Sobel BE. Hormone interactions in the isolated rabbit heart, synthesis and coronary vasomotor effects of prostaglandins, angiotensin, and bradykinin Circ Res 1975; 37: 802–808.

    CAS  Google Scholar 

  49. Weis MT, Malik KU. Uptake and hormonally-induced hydrolysis of [3H]phosphatidylcholine in the isolated rabbit heart. J Pharmacol Exp Ther 1989; 248: 614–620.

    PubMed  CAS  Google Scholar 

  50. Prasad MR. Endothelin stimulates degradation of phospholipids in isolated rat hearts. Biochem Biophys Res Commun 1991; 174: 952–957.

    Article  PubMed  CAS  Google Scholar 

  51. Ruan Y, Kan H, Malik KU. Modulation by cyclic AMP of beta-adrenergic receptor stimulated prostacyclin synthesis in rabbit ventricular myocytes. J Pharmacol Exp Ther 1996; 278: 482–489.

    Google Scholar 

  52. Ruan Y, Kan H, Malik KU. Beta-adrenergic receptor stimulated prostacyclin synthesis in rabbit coronary endothelial cells is mediated by selective activation of phospholipase D: inhibition by adenosine 3’,5’-cyclic monophosphate. J Pharmacol Exp Ther 1997; 281: 1038–1046.

    PubMed  CAS  Google Scholar 

  53. Jaiswal N, Lambrecht G, Mutschler E, Malik KU. Contribution of Ma, and M20 muscarinic receptors to the action of cholinergic stimuli on prostaglandin synthesis and mechanical function in the isolated rabbit heart. J Pharmacol Exp Ther 1988; 247: 104–113.

    PubMed  CAS  Google Scholar 

  54. Kan H, Ruan Y, Malik KU. Localization and characterization of the subtype(s) of muscarinic receptor involved in prostacyclin synthesis in rabbit heart. J Pharmacol Exp Ther 1996; 276: 934–941.

    PubMed  CAS  Google Scholar 

  55. Jones SV, Heilman CJ, Brann MR. Functional responses of cloned muscarinic receptors expressed in CHO-Kl cells. Mol Pharmacol 1991; 40: 242–247.

    PubMed  CAS  Google Scholar 

  56. Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ. Mutagenesis of 132-adrenergic receptor: how structure elucidates function. Annu Rev Pharmacol Toxicol 1992; 32: 167–183.

    Article  PubMed  CAS  Google Scholar 

  57. Strader CD, Sigal IS, Dixon RAF. Structural basis of (3-adrenergic receptor function. FASEB J 1989; 3: 1825–1832.

    PubMed  CAS  Google Scholar 

  58. Weis MT, Malik KU. Beta-adrenergic receptor-stimulated prostaglandin synthesis in the isolated rabbit heart: relationhip to extra-and intracellular calcium. J Pharmacol Exp Ther 1985; 235: 178–185.

    PubMed  CAS  Google Scholar 

  59. Schwartz DD, Williams JL, Malik KU. Contribution of calcium to isoproterenol-stimulated lipolysis in the isolated perfused rabbit heart. Am J Physiol 1993; 265: E439 - E445.

    PubMed  CAS  Google Scholar 

  60. Malik KU, Weis MT, Jaiswal N. Mechanism of action of adrenergic and cholinergic stimuli on cardiac prostaglandin synthesis. In: Samuelsson B, Wong PY-K, Sun FF, eds. Advances in Prostaglandin, Thromboxane and Leukotriene Research. Raven, New York, vol. 19, 1989, pp. 327–330.

    Google Scholar 

  61. Kan H, Ruan Y, Malik KU. Signal transduction mechanism(s) involved in prostacyclin production elicited by acetylcholine in coronary endothelial cells of rabbit heart. J Pharmacol Exp Ther 1997; 282: 113–122.

    PubMed  CAS  Google Scholar 

  62. Kan H, Ruan Y, Malik KU. Involvement of mitogen-activated protein kinase and translocation of cytosolic phospholipase A2 to the nuclear envelope in acetylcholine-induced prostacyclin synthesis in rabbit coronary endothelial cells. Mol Pharmacol 1996; 50: 1139–1147.

    PubMed  CAS  Google Scholar 

  63. Lindmar R, Löffelholz K, Sandman J. On the mechanism of muscarinic hydrolysis by choline phospholipids in the heart. Biochem Pharmacol 1988; 37: 4689–4695.

    Article  PubMed  CAS  Google Scholar 

  64. Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA. Human ADP-ribosylation factor-activated phosphatidylcholine specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 1995;270:29, 640–29, 643.

    Google Scholar 

  65. Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 1997; 7: 191–201.

    Article  PubMed  CAS  Google Scholar 

  66. Exton JH. Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol Rev 1997; 77: 303–320.

    PubMed  CAS  Google Scholar 

  67. Hecker M, Dambacher T, Busse R. Role of endothelium-derived bradykinin in the control of vascular tone. J Cardiovasc Pharmacol 1992; 20 (Suppl 9): S55 - S61.

    Article  PubMed  CAS  Google Scholar 

  68. Gunther S, Cannon Pi. Modulation of angiotensin II coronary vasoconstriction by cardiac prostaglandin synthesis. Am J Physiol 1980; 238: H895 - H901.

    PubMed  CAS  Google Scholar 

  69. Yu H, Gallagher AM, Garfin PM, Printz MP. Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 1997; 30: 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  70. Ciabattoni C, Wennmalm A. Adenosine-induced coronary release of prostacyclin at normal and low pH in isolated heart of rabbit. Br J Pharmacol 1985; 85: 557–563.

    Article  PubMed  CAS  Google Scholar 

  71. Karwatowska-Prokopczuk E, Ciabattoni G, Wennmalm A. Effect of adenosine on the formation of prostacyclin in the rabbit isolated heart. Br J Pharmacol 1988; 94: 721–728.

    Article  PubMed  CAS  Google Scholar 

  72. Rogers TB, Lokuta AJ. Angiotensin II signal transduction pathways in the cardiovascular system. Trend Cardiovasc Med 1994; 4: 110–116.

    Article  CAS  Google Scholar 

  73. Clerk A, Sugden PH. Regulation of phospholipases C and D in rat ventricular myocytes: stimulation by endothelin-1, bradykinin and phenylephrine. J Mol Cell Cardiol 1997; 29: 1593–1604.

    Article  PubMed  CAS  Google Scholar 

  74. Fulton D, McGiff JC, Quilley J. Role of phospholipase C and phospholipase A2 in the nitric oxide-independent vasodilator effect of bradykinin in the rat perfused heart. J Pharmacol Exp Ther 1996; 278: 518–526.

    PubMed  CAS  Google Scholar 

  75. Malik KU, McGiff JC. Cardiovascular actions of prostaglandins. In: Kavim SMM, ed. Prostaglandins: Physiological, Pharmacological and Pathological Aspects. MTP, Lancaster, England, 1976, pp. 103–200.

    Google Scholar 

  76. Karmazyn M, Horrobin DF, Manku MS, Cunnane SC, Karamali RA, Ally AI, et al. Effects of prostacyclin on perfusion pressure, electrical activity, rate of force of contraction in isolated rat and rabbit hearts. Life Sci 1978; 22: 2079–2086.

    Article  CAS  Google Scholar 

  77. Armstrong JM, Chapple D, Dusting GJ, Hughes R, Moncada S, Vane JR. Cardiovascular actions of prostacyclin in chloralose anesthetized dogs. Br J Pharmacol 1977; 61: 136 P.

    Google Scholar 

  78. Chiba S, Malik KU. Mechanism of chronotropic effects of prostacyclin in the dog: Comparison with the actions of prostaglandin E2. J Pharmacol Exp Ther 1980; 213: 261–266.

    PubMed  CAS  Google Scholar 

  79. Svensen J, Hamberg M. Thromboxane A2 and prostaglandin H2: Potent stimulant of the swine coronary artery. Prostaglandins 1976; 12: 943–950.

    Article  Google Scholar 

  80. Giannessi D, Lazzerini G, Sicari R, DeCaterina R. Vasoactive eicosanoids in the rat heart: clues to a contributory role of cardiac thromboxane to post-ischaemic hyperemia. Pharmacol Res 1992; 26: 341–356.

    Article  PubMed  CAS  Google Scholar 

  81. Letts LG, Piper PJ. Actions of leukotriene C4 and D4 on guinea-pig isolated hearts. Br J Pharmacol 1982; 76: 169–176.

    Article  PubMed  CAS  Google Scholar 

  82. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996; 78: 415–423.

    Article  PubMed  CAS  Google Scholar 

  83. Weintraub NL, Fang X, Kaduce TL, Van Rollins M, Chatterjee P, Spector AA. Potentiation of endothelium-dependent relaxation by epoxy-eicosatrienoic acids. Circ Res 1997; 81: 258–267.

    Article  PubMed  CAS  Google Scholar 

  84. Wennmalm A Studies on the mechanisms controlling the secretion of neurotransmitters in the rabbit heart. Acta Physiol Scand 1971; 365 (Suppl): 1–32.

    Google Scholar 

  85. Khan MT, Malik KU. Modulation by prostaglandins of the release of [3H1-noradrenaline evoked by potassium and nerve stimulation in the isolated rat heart. Eur J Pharmacol 1982; 78: 213–218.

    Article  PubMed  CAS  Google Scholar 

  86. Westfall TC, Brasted M. Inhibition by prostaglandins of adrenergic transmission in the left ventricular myocardium of anesthetized dogs. J Cardiovasc Pharmacol 1985; 7: 659–664.

    Google Scholar 

  87. Lanier SM, Malik KU. Inhibition by prostaglandins of adrenergic transmission in the left ventricular myocardium of anesthetized dogs. J Cardiovasc Pharmacol 1985; 7: 653–659.

    Article  PubMed  CAS  Google Scholar 

  88. Chiba S, Malik KU. Prostaglandins do not modulate the positive chronotropic and inotropic effects of sympathetic nerve stimulation and injected norepinephrine in the isolated blood perfused canine atrium. Life Sci 1981; 28: 687–695.

    Article  PubMed  CAS  Google Scholar 

  89. Mantelli L, Amerini S, Ledda F. Different effects of prostaglandins on adrenergic neurotransmission in atrial and ventricular preparations. Br J Pharmacol 1990; 99: 717–720.

    Article  PubMed  CAS  Google Scholar 

  90. Courtney KR, Colwell WT, Jensen RA. Prostaglandins and pacemaker activity in isolated guinea-pig SA node. Prostaglandins 1978; 16: 451–459.

    Article  PubMed  CAS  Google Scholar 

  91. Miyazaki T, Pride HP, Zipes DP. Prostaglandins in the pericardial fluid modulate neural regulation of cardiac electrophysiological properties. Circ Res 1990; 66: 163–175.

    Article  PubMed  CAS  Google Scholar 

  92. Amerini S, Mantelli L, Rubino A, Ledda F. On the presence of inhibitory prejunctional thromboxane receptors on the adrenergic nerve terminals of mammalian heart. Pharmacol Res 1990; 22 (Suppl 1): 11–12.

    Article  PubMed  CAS  Google Scholar 

  93. Ruan Y, Hong K, Cano C, Malik KU. Modulation of (3-adrenergic receptor-stimulated lipolysis in the heart by prostaglandins. Am J Physiol 1996; 271: 34: E556 - E562.

    PubMed  CAS  Google Scholar 

  94. Lanier SM, Malik KU. Attenuation by prostaglandins of the facilitatory effect of angiotensin II at adrenergic prejunctional sites in the isolated Krebs-perfused rat heart. Circ Res 1982; 51: 594–601.

    Article  PubMed  CAS  Google Scholar 

  95. Lanier SM, Malik KU. Facilitation of adrenergic transmission in the canine heart by intracoronary infusion of angiotensin II: effect of prostaglandin synthesis inhibition. J Pharmacol Exp Ther 1983; 227: 676–682.

    PubMed  CAS  Google Scholar 

  96. Hadhazy P, Illes P, Knoll J. The effect of PGE1 on responses to cardiac vagus nerve stimulation and acetylcholine release. Eur J Pharmacol 1973; 23: 251–255.

    Article  PubMed  CAS  Google Scholar 

  97. Feigl EO. Neural control of coronary blood flow. J Vasc Res 1998; 35: 85–92.

    Article  PubMed  CAS  Google Scholar 

  98. Staszewska-Woolley J, Gray W. Cardiac nociceptive reflexes: Role of kinins, prostaglandins and capsaicin-sensitVive afferents. Pol J Pharmacol Pharm 1990; 42: 237–247.

    PubMed  CAS  Google Scholar 

  99. Staszewska-Barezak J, Dusting GJ, May DE, Nolan PN. Effect of prostacyclin on cardiovascular reflexes from the ventricular epicardium of the dog: comparison with the effects of prostaglandin E2. Prostaglandins 1981; 21: 905–915.

    Article  Google Scholar 

  100. Uchida Y, Murao S. Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J 1974; 15: 84–91.

    Article  PubMed  CAS  Google Scholar 

  101. Moretti RL, Abraham S, Ecker RR. Stimulation of cardiac prostaglandin production by blood plasma and its relationship to the regulation of coronary flow in isolated rabbit hearts. Circ Res 1978; 42: 317–323.

    Article  PubMed  CAS  Google Scholar 

  102. Moretti RL, Abraham S. Stimulation of microsomal prostaglandin synthesis by a blood plasma constituent which augments auto-regulation and maintenance of vascular tone in isolated rabbit hearts. Circ Res 1978; 42: 317–323.

    Article  PubMed  CAS  Google Scholar 

  103. Rubio R, Berne RM. Regulation of coronary blood flow. Prog Cardiovasc Dis 1975; 18: 105–122.

    Article  PubMed  CAS  Google Scholar 

  104. Kalsner S. Endogenous prostaglandin release contributes directly to coronary artery tone. Can J Physiol Pharmacol 1975; 53: 560–565.

    Article  PubMed  CAS  Google Scholar 

  105. Melo LG, Sonnenberg H. Requirement for prostaglandin synthesis in secretion of atrial natriuretic factor from isolated rat heart. Regul Pept 1995; 60: 79–87.

    Article  PubMed  CAS  Google Scholar 

  106. Azizi C, Barthelemy C, Masson F, Maistre G, Eurin J, Carayon A. Myocardial production of prostaglandins: its role in atrial natriuretic release 1. Eur J Endocrinol 1995; 133: 255–259.

    Article  PubMed  CAS  Google Scholar 

  107. Church DJ, Braconi S, Van der Bent V, Vallotton MP, Lang U. Protein kinase C-dependent prostaglandin production mediates angiotensin II-induced atrial-natriuretic peptide release. Biochem J 1994; 298: 451–456.

    PubMed  CAS  Google Scholar 

  108. Van der Bent V, Church DJ, Vallotton MB, Meda P, Kem DC, Capponi AM, Lang U. [Ca2+1i and protein kinase C in vasopressin-induced prostacyclin and ANP release in rat cardiomyocytes. Am J Physiol 1994; 266: H597 - H605.

    PubMed  Google Scholar 

  109. Church DJ, Van der Bent V, Vallotton MB, Lang U. Role of prostaglandin-mediated cyclic AMP formation in protein kinase C-dependent secretion of atrial natriuretic peptide in rat cardiomyocytes. Biochem J 1994; 303: 217–225.

    PubMed  CAS  Google Scholar 

  110. Gebremedhin D, Harder DR, Pratt PF, Campbell WB. Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P-450 metabolite. J Vasc Res 1998; 35: 274–284.

    Article  PubMed  CAS  Google Scholar 

  111. Yamada M, Terzic A, Kurachi Y. Regulation of potassium channels by G-protein subunits and arachidonic acid metabolites. Methods Enzymol 1994; 238: 344–422.

    Google Scholar 

  112. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Mild I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 1989; 337: 555–557.

    Article  PubMed  CAS  Google Scholar 

  113. Nakajima T, Sugimoto T, Kurachi Y. Platelet-activating factor activates cardiac GK via arachidonic acid metabolites. FEBS Lett 1991; 289: 239–243.

    Article  PubMed  CAS  Google Scholar 

  114. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Mild I, Ui M. Alpha-adrenergic activation of the muscarinic K+ channel is mediated by arachidonic acid metabolites. Pflügers Arch 1989; 414: 102–104.

    Article  PubMed  CAS  Google Scholar 

  115. Scherer RW, Lo CF, Breitwieser GE. Leukotriene C4 modulation of muscarinic K+ current activation in bullfrog atrial myocytes. J Gen Physiol 1993; 102: 125–141.

    Article  PubMed  CAS  Google Scholar 

  116. Scherer RW, Breitwieser GE. Arachidonic acid metabolites alter G protein-mediated signal transduction in heart. Effects on muscarinic K+ channels J Gen Physiol 1990; 96: 735–755.

    Article  CAS  Google Scholar 

  117. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature 1989; 337: 557–560.

    Article  PubMed  CAS  Google Scholar 

  118. Nakhostine N, Lamontagne D. Contribution of prostaglandins in hypoxia-induced vasodilation in isolated rabbit hearts. Relation to adenosine and KATP channels. Pflügers Arch 1994; 428: 526–532.

    Article  PubMed  CAS  Google Scholar 

  119. Bouchard JF, Dumont E, Lamontagne D. Evidence that prostaglandins I2, E2 and D2 may activate ATP-sensitive potassium channels in the isolated rat heart. Cardiovasc Res 1994; 28: 901–905.

    Article  PubMed  CAS  Google Scholar 

  120. Hide EJ, Ney P, Piper J, Thiemermann C, Vane JR. Reduction by prostaglandin E1 or porstaglandin Eo of myocardial infarct size in the rabbit by activation of ATP-sensitive potassium channels Br J Pharmacol 1995; 116: 2435–2440.

    PubMed  CAS  Google Scholar 

  121. Kang JX, Leaf A. Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proc Natl Acad Sci USA 1994; 91: 9886–9890.

    Article  PubMed  CAS  Google Scholar 

  122. Hoffman P, Richards D, Heinroth-Hoffman T, Mathias P, Wey H, Toraason M. Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovasc Res 1995; 30: 889–898.

    Google Scholar 

  123. Xiao YF, Huang L, Morgan JP. Cytochrome P-450:a novel system modulating Cat+ channels and contraction in mammalian heart cells. J. Physiol (London) 1998; 508: 777–792.

    Article  CAS  Google Scholar 

  124. Weiglicki WB, Owens K, Urshel CW, Seur JR, Sonnenblick EH. Hydrolysis of myocardial lipids during acidosis and ischemia. Recent Adv Stud Card Struct Metabo 1973; 3: 781–793.

    Google Scholar 

  125. Van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemia heart. Physiol Rev 1992; 72: 881–940.

    PubMed  Google Scholar 

  126. Prasad RM, Popescu LM, Moraru II, Liu X, Maity S, Engelman RM, Das DK. Role of phospholipase A2 and C in myocardial reperfusion injury. Am J Physiol 1991; 260: H877 - H883.

    PubMed  CAS  Google Scholar 

  127. Eskildsen-Helmond YEG, Van Heugten HAA, Lamers JM. Regulation and functional significance of phospholipase D in myocardium. Mol Cell Biochem 1996; 157: 34–48.

    Article  Google Scholar 

  128. Van der Vusse GH, Reneman RS, Van Bilsen M. Accumulation of arachidonic acid in ischemic/ reperfused cardiac tissue: possible causes and consequences. Prostaglandins, Leukotrienes Essential Fatty Acids 1997; 57: 85–93.

    Article  Google Scholar 

  129. Van Bilsen M, Van der Vusse GJ. Phospholipase A2-dependent signalling in the heart. Cardiovasc Res 1995; 30: 518–529.

    PubMed  Google Scholar 

  130. Hazen SL, Gross RW. ATP-dependent regulation of rabbit myocardial cytosolic calcium-dependent phospholipase A2. J Biol Chem 1991; 266: 4526–4534.

    Google Scholar 

  131. Hazen SL, Wolf MJ, Ford DA, Gross RW. Rapid and reversible association of phosphofructokinase with myocardial membranes during myocardial ischemia. FEBS Lett 1994; 339: 213–216.

    Article  PubMed  CAS  Google Scholar 

  132. Davies NJ, Schulz R, O11ey PN, Strydnadka KD, Panas DL, Lopaschuk GD. Lysoplasmenylethanolamine accumulation in ischemic/reperfused isolated fatty acid-perfused hearts. Circ Res 1992; 70: 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  133. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 1982; 50: 538–546.

    Article  PubMed  Google Scholar 

  134. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Roemen TH, Reneman RS. Lipid alterations in isolated, working rat heart during ischemia and reperfusion: its relation to myocardial damage. Circ Res 1989; 64: 304–314.

    Article  PubMed  Google Scholar 

  135. Engels W, Van Bilsen M, De Groot MJM, Lemmens PJ, Willemsen PH, Reneman RS, Van der Vusse GJ. Ischemia and reperfusion-induced formation of eicosanoids in isolated rat hearts. Am J Physiol 1990; 258: H1865 - H1871.

    PubMed  CAS  Google Scholar 

  136. Ogletree ML, Lefer AM. Influence of non-steroidal anti-inflammatory agents on myocardial ischemia. J Pharmacol Exp Ther 1976; 197: 582–593.

    PubMed  CAS  Google Scholar 

  137. Capurro NL, Man KC, Aamodt R, Goldstein RE, Epstein S. Aspirin-induced increase in collateral flow after acute coronary occlusion in dogs. Circulation 1979; 59: 744–747.

    Article  PubMed  CAS  Google Scholar 

  138. Karmazyn M. Contribution of prostaglandins to reperfusion-induced ventricular failure in isolated rat hearts. Am J Physiol 1986; 251: H133 - H140.

    PubMed  CAS  Google Scholar 

  139. Mobert J, Becker BF. Cyclooxygenase inhibition aggravates ischemia-reperfusion injury in the per-fused guinea-pig heart: involvement of isoprostanes. J Am Coll Cardiol 1998; 31: 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  140. Ruf W, MacNnamara JJ, Suehiro A, Suehiro G, Wickline SA. Platelet trapping in myocardial infarct in baboons: therapeutic effect of aspirin. Am J Cardiol 1980; 46: 405–412.

    Article  PubMed  CAS  Google Scholar 

  141. Chierchia S, Patrono C. Role of platelet and vascular eicosanoids in the pathophysiology of ischemic heart disease. Fed Proc 1987; 46: 81–88.

    PubMed  CAS  Google Scholar 

  142. Tada M, Kuzuya T, Inoue M, Kodana K, Mishima M, Yamada M, Inui M, Abe H. Elevation of thromboxane B 2 levels in patients with classical and variant angina pectoris. Circ Res 1981; 64: 1107–115.

    Article  CAS  Google Scholar 

  143. Otani H, Engelman RM, Rausou JA, Breyer RH, Das DK. Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium control of its production by a phospholipase inhibitor or free radical scavenger. J Mol Cell Cardiol 1986; 18: 953–961.

    Article  PubMed  CAS  Google Scholar 

  144. Teoh KH, Fremes SE, Weisel RD, Christakis GT, Teasdale SJ, Madonik MM, et al. Cardiac release of prostacyclin and thromboxane A2 during coronary revascularization. J Thorac Cardiovasc Surg 1987; 93: 120–126.

    PubMed  CAS  Google Scholar 

  145. Tada M, Kuzuya T, Hoshida S, Nishida M. Arachidonate metabolism in myocardial ischemia and reperfusion. J Mol Cell Cardiol 1988; 20: 135–143.

    Article  PubMed  CAS  Google Scholar 

  146. Dusting GJ, Moncada S, Vane JR. Prostaglandins, their intermediates and precursors: cardiovascular action and regulatory roles in normal and abnormal circulatory systems. Prog Cardiovasc Dis 1979; 21: 405–430.

    Article  PubMed  CAS  Google Scholar 

  147. Mullane KM, Fornabaio D. Thromboxane synthetase inhibitors reduce infarct size by a platelet dependent, aspirin-sensitive mechanism. Circ Res 1988; 62: 668–678.

    Article  PubMed  CAS  Google Scholar 

  148. Farber NE, Pieper GM, Gross GJ. Lack of involvement of thromboxane A2 in post-ischemic recovery of stunned canine myocardium. Circulation 1988; 78: 450–461.

    Article  PubMed  CAS  Google Scholar 

  149. Farber NE, Gross GJ. Prostaglandin redirection by thromboxane synthetase inhibition. Attenuation of myocardial stunning in canine heart. Circulation 1990; 81: 369–380.

    Article  PubMed  CAS  Google Scholar 

  150. Melin JA, Becker LC. Salvage of ischemic myocardium by prostacyclin during experimental myocardial infarction. J Am Coll Cardiol 1983; 2: 279–286.

    Article  PubMed  CAS  Google Scholar 

  151. Thiemermann C, Steinhagen-Thiessen E, Schrör K. Inhibition of oxygen-centered free radical formation by the stable prostacyclin-mimetic iloprost (ZK 36374) in acute myocardial ischemia. J Cardiovasc Pharmacol 1984; 6: 365–366.

    Article  PubMed  CAS  Google Scholar 

  152. Herbaczynsko-Cedro K, Gordon-Majszak W. Attenuation by prostacyclin of adrenaline-stimulated lipid peroxidation in the myocardium. Pharmacol Res Comm 1986; 81: 321–332.

    Article  Google Scholar 

  153. Parratt JR. Endogenous myocardial protective (anti-arrhythmic) substances. Cardiovasc Res 1993; 27: 693–702.

    Article  PubMed  CAS  Google Scholar 

  154. Rossoni G, Sala A, Buccellati C, Maclouf J, Falco GC, Berti F. Vasoconstriction to polymorphonuclear leukocytes in the isolated, perfused rabbit heart: inhibition by prostacyclin mimetics. J Cardiovasc Pharmacol 1996; 27: 680–685.

    Article  PubMed  CAS  Google Scholar 

  155. Garlick PB, Mashiter GD, Di Marzo V, Tippins JR, Morris HR, Maisey MN. Synthesis, release and action of leukotrienes in the isolated, unstimulated, buffer-perfused rat heart. J Mol Cell Cardiol 1989; 21: 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  156. Ito BR, Roth DM, Engler RL. Thromboxane A2 and peptidoleukotrienes contribute to the myocardial ischemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ Res 1990; 66: 596–607.

    Article  PubMed  CAS  Google Scholar 

  157. Mullane KM, Read N, Salmon JA, Moncada S. Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 1984; 228: 510–522.

    PubMed  CAS  Google Scholar 

  158. O’Neill PG, Charlat ML, Kim HS, Pocius J, Michael LH, Hartley CJ, et al. Lipoxygenase inhibitor nafazatrom fails to attenuate postischemic ventricular dysfunction. Cardiovasc Res 1987; 21: 755–760.

    Article  PubMed  Google Scholar 

  159. Moffat MP, Ward CA, Bend JR, Mock T, Farhangkhoee P, Karmazyn M. Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am J Physiol 1993; 264: H154 - H160.

    Google Scholar 

  160. Zijlstra WG, Brunsting JR, Ten Hoor P, Vergrosen AJ. Prostaglandin E1 and cardiac arrhythmia. Eur J Pharmacol 1972; 18: 392–395.

    Article  PubMed  CAS  Google Scholar 

  161. Au TL-S, Collins GA, Harrie CJ, Walker MJA. Actions of prostaglandins 12 and E2 on arrhythmias produced by coronary occlusion in the rat and dog. Prostanglandins 1979; 18: 707–720.

    Article  CAS  Google Scholar 

  162. Karmazyn M, Dhalla NS. Selective concentration-dependent dysrhythmogenic and antidysrhythmic action of prostaglandins E2, F2a and 12 (prostacyclin) on isolated rat hearts. Experientia 1980; 36: 996–998.

    Article  PubMed  CAS  Google Scholar 

  163. Li Y, Kang JX, Leaf A. Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins 1997; 54: 511–530.

    Article  PubMed  CAS  Google Scholar 

  164. Dix RK, Kelliher GJ, Furkiewicz N, Bryan-Smith J. Effect of sulfinpyrazone on ventricular arrhythmias. Prostaglandin synthesis and catecholamine release following coronary occlusion in the cat. J Cardiovasc Pharmacol 1982; 4: 1068–1076.

    Article  PubMed  CAS  Google Scholar 

  165. Karmazyn MA. Direct protective effect of sulphinpyrazone on ischaemic and reperfused rat hearts. Br J Pharmacol 1984; 93: 331–336.

    Google Scholar 

  166. Fagbemi SO. Effect of aspirin, indomethacin and sodium meclofenamate on coronary artery ligation arrhythmias in anesthetized rats. Eur J Pharmacol 1984; 97: 283–287.

    Article  PubMed  CAS  Google Scholar 

  167. Ellis EF, Oelz O, Roberts II, LJ. Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science 1976; 193: 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  168. Curtis MJ, Pugsley MK, Walker MJA. Endogenous chemical mediators of ventricular arrhythmias in heart disease. Cardiovasc Res 1993; 27: 703–719.

    Article  PubMed  CAS  Google Scholar 

  169. Mehta J, Nichols W, Mehta P, Conti CR. Thromboxane and prostacyclin in systemic and coronary vascular beds following endoperoxide analog infusion. Am J Cardiol 1982; 49: 1014.

    Article  Google Scholar 

  170. Coker SJ. Further evidence that thromboxane exacerbates arrhythmias: effects of UK 38485 during coronary artery occlusion and reperfusion in anesthetized greyhounds. J Mol Cell Cardiol 1984; 16: 633–641.

    Article  PubMed  CAS  Google Scholar 

  171. O’Connor KM, Freihling TD, Kowey PR. Effect of thromboxane inhibition on vulnerability to ventricular fibrillation in the acute and chronic feline infarction models. Am Heart J 1989; 117: 848–853.

    Article  PubMed  Google Scholar 

  172. Coker SJ, Parratt JR. Effects of nafazatrom on arrhythmias and prostanoid release during coronary artery occlusion and reperfusion in anesthetized greyhounds. J Mol Cell Cardiol 1984; 16: 43–52.

    Article  PubMed  CAS  Google Scholar 

  173. Berti F, Rossini G, Omini C, Daffonchio L, Tondo C, Cali G. Defibrotide protects rabbit myocardium from ischemia: relationship with the eicosanoid system. Pol J Pharmacol Pharm 1987; 39: 657–665.

    PubMed  CAS  Google Scholar 

  174. Wainwright CL, Parratt JR. Failure of cyclooxygenase inhibition to protect against arrhythmias induced by ischaemia and reperfusion: implications for the role of prostaglandins as endogenous myocardial protective substances. Cardiovasc Res 1991; 25: 93–101.

    Article  PubMed  CAS  Google Scholar 

  175. Vegh A, Szekeres L, Parratt JR. Protective effects of preconditioning of the ischaemic myocardium involve cyclooxygenase products. Cardiovasc Res 1990; 24: 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  176. Maulik M, Seth SD, Manchanda SC, Maulik SK. Lack of any additional benefit in combining aspirin with iloprost in a canine model of myocardial reperfusion injury. Prostaglandins 1997; 53: 291–303.

    PubMed  CAS  Google Scholar 

  177. Rajani V, Hussain Y, Bolla BS, de Guzman FQ, Montiague RR, Igic R, Rabito SF. Attenuation of epinephrine-induced dysrhythmias by bradykinin• role of nitric oxide and prostaglandins. Am J Cardiol 1997; 80: 153A - 157A.

    Article  PubMed  CAS  Google Scholar 

  178. Birincioglu M, Olmez E, Aksoy T, Acet A. Role of prostaglandin synthesis stimulation in the protective effect of captopril on ischaemia-reperfusion arrhythmias in rats in vivo. Pharmacol Res 1997; 36: 299–304.

    Article  PubMed  CAS  Google Scholar 

  179. Ezeamuzie IC, Assem ES K. Effects of leukotrienes C4 and D4 on guinea-pig heart and the participation of SRS-A in the manifestations of guinea-pig cardiac anaphylaxis. Agents Actions 1983; 13: 182–187.

    Article  PubMed  CAS  Google Scholar 

  180. Beatch GN, Courtice ID, Salari H. Comparative study of the antianhythmic properties of eicosanoid inhibitors, free radical scavangers and potassium channel blockers on reperfusion-induced arrhythmias in the rat. Proc Western Pharmacol Soc 1989; 32: 285–289.

    CAS  Google Scholar 

  181. Hahn RA, MacDonald BR, Simpson PJ, Potts BD, Parli CJ. Antagonism of leukotriene B4 receptors does not limit canine myocardial infarct size. J Pharmacol Exp Ther 1990; 253: 58–66.

    PubMed  CAS  Google Scholar 

  182. Ito T, Toki Y, Heida N, Okumura K, Hashimoto H, Ogawa K, Satake T. Protective effects of a thromboxane synthase inhibitor, a thromboxane antagonist, a lipoxygenase inhibitor, and a leukotriene C4, D4 antagonists on myocardial injury caused by acute myocardial infarction in the canine heart. Jpn Circ J 1989; 53: 1115–1121.

    Article  PubMed  CAS  Google Scholar 

  183. Gok S, Ulker S, Huseyinov A, Evinc A. Effects of lipoxygenase inhibitor on digoxin-induced cardiac arrhythmias in the isolated perfused guinea-pig heart. Gen Pharmacol 1997; 29: 789–792.

    Article  PubMed  CAS  Google Scholar 

  184. Cannon PJ. Prostaglandins in congestive heart failure and the effects fo nonsteroidal anti-inflammatory drugs. Am J Med 1986; 81: 123–132.

    Article  PubMed  CAS  Google Scholar 

  185. Awan NA, Evenson MK, Needham KE, Beattie JM, Amsterdam EA, Mason DT. Cardiocirculatory and myocardial energetic effects of prostaglandin E1 in severe left ventricular failure due to chronic coronary heart disease. Am Heart J 1981; 102: 703–709.

    Article  PubMed  CAS  Google Scholar 

  186. Farber NE, Gross GJ. Prostanglandin E1 attenuates post-ischemic contractile dysfunction after brief coronary occlusion and reperfusion. Am Heart J 1989; 118: 17–24.

    Article  PubMed  CAS  Google Scholar 

  187. Farber NE, Pieper GM, Thomas JP, Gross GJ. Beneficial effects of iloprost in the stunned canine myocardium. Circ Res 1988; 62: 204–215.

    Article  PubMed  CAS  Google Scholar 

  188. Hohlfeld T, Strobach H, Schrör K. Stimulation of prostacyclin synthesis by defibrotide: improved contractile recovery from myocardial `stunning’. J Cardiovasc Pharmacol 1991; 17: 108–115.

    Article  PubMed  CAS  Google Scholar 

  189. Pacher R, Stanek B, Hulsmann M, Bojic A, Berger R, Frey B, et al. Prostaglandin El infusion compared with prostacyclin infusion in patients with refractory heart failure: effects on hemodynamics and neurohumoral variables. J Heart Lung Transplant 1997; 16: 878–881.

    PubMed  CAS  Google Scholar 

  190. Hulsmann M, Stanek B, Frey B, Berger R, Rodler S, Siegel A, et al. Hemodynamic and neurohumoral effects of long-term prostaglandin Et infusions in outpatients with severe congestive heart failure. J Heart Lung Transplant 1997; 16: 556–562.

    PubMed  CAS  Google Scholar 

  191. Feenstra H, Grobbee DE, Mosterd A, Stricker BH-Ch. Adverse cardiovascular effects of NSAIDs in patients with congestive heart failure. Drug Safety 1997; 17: 166–180.

    Google Scholar 

  192. Lang CC, Chomsky DB, Butler J, Kapoor S, Wilson JR. Prostaglandin production contributes to exercise-induced vasodilation in heart failure. J Appl Physiol 1997; 83: 1933–1940.

    PubMed  CAS  Google Scholar 

  193. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2 alpha in pericardial fluid of patients with heart failure: a potential role in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998; 97: 1536–1539.

    Article  PubMed  CAS  Google Scholar 

  194. Guazzi M, Melzi G, Agostoni P. Comparison of changes in respiratory function and exercise oxygen uptake with losartan versus enalapril in congestive heart failure secondary to ischemia or idopathic dilated cardiomyopathy. Am J Cardiol 1997; 80: 1572–1576.

    Article  PubMed  CAS  Google Scholar 

  195. Pfeifer M, Muders F, Luchner A, Blumberg F, Riegger GA, Elsner D. Leukotriene receptor blockade in experimental heart failure. Res Exp Med 1997; 197: 177–187.

    Article  CAS  Google Scholar 

  196. Fleming I, Bauersachs J, Busse R. Paracrine functions of the coronary vascular endothelium. Mol Cell Biochem 1996; 157: 137–145.

    Article  PubMed  CAS  Google Scholar 

  197. Dembinska-Kiec A, Gryglewski T, Zmuda A, Gryglewski J. The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins 1972; 14: 1025–1034.

    Google Scholar 

  198. Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1990; 336: 897–900.

    Article  PubMed  CAS  Google Scholar 

  199. Cohen RA, Zitnay KM, Haudenschild CC, Cunningham LD. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res 1988; 63: 903–910.

    Article  PubMed  CAS  Google Scholar 

  200. Förstermann U, Mügge A, Alheid U, Haverich A, Frölich JC. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 1988; 62: 185–190.

    Article  PubMed  Google Scholar 

  201. Bonthu S, Heistad DD, Chappell DA, Lamping KG, Faraci FM. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vas Biol 1997; 17: 2333–2340.

    Article  CAS  Google Scholar 

  202. Sekiguchi N, Umeda F, Masakado M, Ono Y, Hashimoto T, Nawata H. Immunohistochemical study of prostacyclin-stimulating factor (PSF) in the diabetic and atherosclerotic human coronary artery. Diabetes 1997; 46: 1627–1632.

    Article  PubMed  CAS  Google Scholar 

  203. Aoyama T, Yui Y, Marishita H, Kawai C. Prostaglandin I2 half-life regulated by high density lipoprotein is decreased in acute myocardial infarction and unstable angina pectoris. Circulation 1990; 81: 1784–1791.

    Article  PubMed  CAS  Google Scholar 

  204. Kuehl FA, Humes JL, Torchiana ML, Ham EA, Egan RW. Oxygen centered radicals in the inflammatory process. In: Weissman G, ed. Advances in Inflammation Research, vol. 1, Raven, New York, 1979, pp. 419–430.

    Google Scholar 

  205. Steinberg D, Parthasarathy S, Carew TE, Khoo JW, Witzum JL. Beyond cholesterol: modification of low density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–924.

    Article  PubMed  CAS  Google Scholar 

  206. Kühn H, Belkner J, Zaiss S, Fahrenklemper T, Wohlfeil S. Involvement of 15-LOX in early stages of aterogenesis. J Exp Med 1994; 179: 1903–1911.

    Article  PubMed  Google Scholar 

  207. Kühn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids 1992; 5: 17–22.

    PubMed  Google Scholar 

  208. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcarrt MK. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest 1995; 96: 504–510.

    Article  PubMed  CAS  Google Scholar 

  209. Gniwotta C, Morrow JD, Roberts LJ II, Kühn H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1997; 17: 3236–3241.

    Article  PubMed  CAS  Google Scholar 

  210. Patrono C, Fitzgerald GA. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol 1997; 17: 2309–2315.

    Article  PubMed  CAS  Google Scholar 

  211. Katz AM. Scientific insights from clinical studies of converting enzyme inhibitors in the failing heart. Trends Cardiovasc Med 1995; 5: 37–44.

    Article  PubMed  CAS  Google Scholar 

  212. Susic D, Nunez E, Frolich ED. Reversal of hypertrophy: an active biological process. Curr Opin Cardiol 1995; 10: 466–472.

    Article  PubMed  CAS  Google Scholar 

  213. Schrör K, Weber AA. Roles of vasodilatory prostaglandins in mitogenesis of vascular smooth cells. Agents Actions 1997; 48 (Suppl): 63–91.

    Google Scholar 

  214. Lai J, Jin H, Yang R, Winer J, Li W, Yen R, et al. Prostaglandin Fla induces cardiac myocyte hypertrophy in vitro and cardiac growth in vivo. Am J Physiol 1996; 271: H2197 — H2208.

    PubMed  CAS  Google Scholar 

  215. Adams JW, Migita DS, Yu MK, Young R, Hellickson MS, Castro-Vargas FE, et al. Prostaglandin Fla stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J Biol Chem 1996; 271: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  216. Gelyng NG, Pomounetskii VD, Sanfirova VM. Prostaglandins, cyclic nucleotides and heart adaptation to acute and chronic pressure overload. Biull Eksp Biol Med. 1979; 88: 525–528.

    PubMed  CAS  Google Scholar 

  217. Hashimoto H, Ogawa K. Effects of sulfinpyrazone, aspirin and propranolol on the isoproterenolinduced myocardial mecrosis. Jpn Heart J 1981; 22: 643–652.

    Article  PubMed  CAS  Google Scholar 

  218. Kalkman EA, Van Suylen RJ, Van Dijk JP, Saxena PR, Schoemaker RG. Chronic aspirin treatment affects collagen deposition in non-infarcted myocardium during remodeling after coronary artery ligation in the rat. J Mol Cell Cardiol 1995; 27: 2483–2494.

    Article  PubMed  CAS  Google Scholar 

  219. Yu H, Gallagher AM, Garfin PM, Printz MP. Prostacyclin release by rat cardiac fibroblasts: inhibition of collagen expression. Hypertension 1997; 30: 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  220. Weber DR, Stroud ED, Prescott SM. Arachidonate metabolism in cultured fibroblasts derived from normal and infarcted canine heart. Circ Res 1989; 65: 671–683.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malik, K.U. (1999). Contribution of Eicosanoids in the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics