Skip to main content

Natriuretic Peptides and the Heart

  • Chapter
  • 92 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

In 1981 DeBold et al. (1) made a seminal observation that opened an entirely new field of investigation in cardiovascular research. They found that injection of atrial, but not ventricular, extracts into test animals resulted in a natriuretic diuresis and reduction in intravascular volume. This activity was originally termed atrial natriuretic factor, and later, atrial natriuretic peptide (ANP), following its isolation and characterization. ANP is a member of a family of peptides, each encoded by a different gene (Fig. 1). The sites of production of these peptides and, to some degree, their functional activity are typically unique for each member of the group. This chapter will focus on the molecular and cellular mechanisms that govern the production and activity of the natriuretic peptides (NP), with particular emphasis on the heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. Rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 1981; 28: 89–94.

    Article  PubMed  Google Scholar 

  2. Kojima M, Minamino N, Kangawa K, Matsuo H. Cloning and sequence analysis of cDNA encoding a precursor for rat brain natriuretic peptide. Biochem Biophys Res Commun 1989; 159: 1420–1426.

    Article  PubMed  CAS  Google Scholar 

  3. Tawaragi Y, Fuchimura K, Tanaka S, Minamino N, Kangawa K, Matsuo H. Gene and precursor structures of human C-type natriuretic peptide. Biochem Biophys Res Commun 1991; 175: 645–651.

    Article  PubMed  CAS  Google Scholar 

  4. Vesely DL, Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, Schocken DD. Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation 1994; 90: 1129–1140.

    Article  PubMed  CAS  Google Scholar 

  5. Gunning ME, Brady HR, Otuechere G, Brenner BM, Zeidel ML. Atrial natriuretic peptide(31–67) inhibits Na+ transport in rabbit inner medullary collecting duct cells. Role of prostaglandin E2. J Clin Invest 1992; 89: 1411–147.

    Article  PubMed  CAS  Google Scholar 

  6. Anand-Srivastava MB, Thibault G, Sola C, Fon E, Ballak M, Charbonneau C, et al. Atrial natriuretic factor in Purkinje fibers of rabbit heart. Hypertension 1989; 13: 789–798.

    Article  PubMed  CAS  Google Scholar 

  7. Wei YF, Rodi CP, Day ML, Wiegand RC, Needleman LD, Cole BR Needleman P. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest 1987; 79: 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  8. Gerbes AL, Dagnino L, Nguyen T, Nemer M. Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues. J Clin Endocrinol Metab 1994; 78: 1307–1311.

    Article  PubMed  CAS  Google Scholar 

  9. Sudoh T, Kangawa K, Minamino N, Matsuo H. New natriuretic peptide in porcine brain. Nature 1988; 332: 78–81.

    Article  PubMed  CAS  Google Scholar 

  10. Seidman CE, Wong DW, Jarcho JA, Bloch KD, Seidman JG. Cis-acting sequences that modulate atrial natriuretic factor gene expression. Proc Natl Acad Sci USA 1988; 85: 4104–4108.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenzweig A, Halazonetis TD, Seidman JG, Seidman CE. Proximal regulatory domains of rat atrial natriuretic factor gene. Circulation 1991; 84: 1256–1265.

    Article  PubMed  CAS  Google Scholar 

  12. Knowlton KU, Baracchini E, Ross RS, Harris AN, Henderson SA, Evans SM, Glembotski CC, Chien KR. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alphaadrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem 1991; 266: 7759–7768.

    PubMed  CAS  Google Scholar 

  13. LaPointe MC, Wu JP, Greenberg B, Gardner DG. Upstream sequences confer atrial-specific expression on the human atrial natriuretic factor gene. J Biol Chem 1988; 263: 9075–9078.

    PubMed  CAS  Google Scholar 

  14. Wu J, LaPointe MC, West BL, Gardner DG. Tissue-specific determinants of human atrial natriuretic factor gene expression in cardiac tissue. J Biol Chem 1989; 264: 6472–6479.

    PubMed  CAS  Google Scholar 

  15. Wu JP, Kovacic-Milivojevic B, Lapointe MC, Nakamura K, Gardner DG. Cis-active determinants of cardiac-specific expression in the human atrial natriuretic peptide gene. Mol Endocrinol 1991; 5: 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  16. McBride K, Robitaille L, Tremblay S, Argentin S, Nemer M. Fos/jun repression of cardiac-specific transcription in quiescent and growth-stimulated myocytes is targeted at a tissue-specific cis element. Mol Cell Biol 1993; 13: 600–612.

    PubMed  CAS  Google Scholar 

  17. Argentin S, Ardati A, Tremblay S, Lihrmann I, Robitaille L, Drouin J, Nemer M. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol 1994; 14: 777–790.

    PubMed  CAS  Google Scholar 

  18. Sprenkle AB, Murray SF, Glembotski CC. Involvement of multiple cis elements in basal-and alphaadrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Cire Res 1995; 77: 1060–1069.

    Article  CAS  Google Scholar 

  19. Durocher D, Chen CY, Ardati A, Schwartz RJ, Nemer M. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol 1996; 16: 4648–4655.

    PubMed  CAS  Google Scholar 

  20. Durocher, D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2–5 and GATA-4 are mutual cofactors. EMBO J 1997; 6: 5687–5696.

    Article  Google Scholar 

  21. Grepin C, Dagnino L, Robitaille L, Haberstroh L, Antakly T, Nemer M. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 1994; 14: 3115–3129.

    PubMed  CAS  Google Scholar 

  22. Field LJ. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 1988; 239: 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  23. Seidman CE, Schmidt EV, Seidman JG. cis-dominance of rat atrial natriuretic factor gene regulatory sequences in transgenic mice. Can J Physiol Pharmacol 1991; 69: 1486–1492.

    Article  PubMed  CAS  Google Scholar 

  24. Knowlton KU, Rockman HA, Itani M, Vovan A, Seidman CE, Chien KR. Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium. J Clin Invest 1995; 96: 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  25. Thuerauf DJ, Hanford DS, Glembotski CC. Regulation of rat brain natriuretic peptide transcription. A potential role for GATA-related transcription factors in myocardial cell gene expression. J Biol Chem 1994; 269: 17, 772–17, 775.

    Google Scholar 

  26. LaPointe MC, Wu G, Garami M, Yang X-P, Gardner DG. Tissue-specific expression of the human brain natriuretic peptide gene in cardiac myocytes. Hypertension 1996; 27: 715–722.

    Article  PubMed  CAS  Google Scholar 

  27. Thuerauf DJ, Glembotski CC. Differential effects of protein kinase C, Ras, and Raf-1 kinase on the induction of the cardiac B-type natriuretic peptide gene through a critical promoter-proximal M-CAT element. J Biol Chem 1997; 272: 7464–7472.

    Article  PubMed  CAS  Google Scholar 

  28. Grepin C, Robitaille L, Antakly T, Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol 1995; 15: 4095–4102.

    PubMed  CAS  Google Scholar 

  29. Gardner D, Wu J, Kovacic-Milivojevic B. Cellular and molecular aspects of the A-type natriuretic peptide. In: Samson WK, Levin ER, eds. Natriuretic Peptides in Health and Disease. Humana, Totowa, NJ, 1997, pp. 71–94.

    Chapter  Google Scholar 

  30. Dunnmon PM, Iwaki K, Henderson S, Sen A, Chien KR. Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells. J Mol Cell Cardiol 1990; 22: 901–910.

    Article  PubMed  CAS  Google Scholar 

  31. Shubeita HE, Martinson EA, Van Bilsen M, Chien KR, Brown JH. Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 1992; 89: 1305–1309.

    Article  PubMed  CAS  Google Scholar 

  32. LaMorte VJ, Thorburn J, Absher D, Spiegel A, Brown JH, Chien KR, Feramisco JR, Knowlton KU. Gqand ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem 1994; 269: 13, 490–13, 496.

    Google Scholar 

  33. Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR, Chien KR. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem 1993; 268: 2244–2249.

    PubMed  CAS  Google Scholar 

  34. Hunter JJ, Tanaka N, Rockman HA, Ross J, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995; 270: 23, 173–23, 178.

    Google Scholar 

  35. Abdellatif M, MacLellan WR, Schneider MD. p21 Ras as a governor of global gene expression. J Biol Chem 1994; 269: 15, 423–15, 426.

    Google Scholar 

  36. Kovacic-Milivojevic B, Zlock DW, Gardner DG. Ras inhibits Jun-activated human atrial natriuretic peptide gene transcription in cultured ventricular myocytes. Circ Res 1997; 80: 580–588.

    PubMed  CAS  Google Scholar 

  37. Ardati A, Nemer M. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells. EMBO J 1993; 12: 5131–5139.

    PubMed  CAS  Google Scholar 

  38. Schiebinger RJ, Li Y, Cragoe EJ Jr. Calcium dependency of frequency-stimulated atrial natriuretic peptide secretion. Hypertension 1994; 23: 710–716.

    Article  PubMed  CAS  Google Scholar 

  39. McDonough PM, Glembotski CC. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem 1992; 267: 11, 665–11, 668.

    Google Scholar 

  40. McDonough PM, Stella SL, Glembotski CC. Involvement of cytoplasmic calcium and protein kinases in the regulation of atrial natriuretic factor secretion by contraction rate and endothelin. J Biol Chem 1994; 269: 9466–9472.

    PubMed  CAS  Google Scholar 

  41. McDonough PM, Hanford DS, Sprenkle AB, Mellon NR, Glembotski CC. Collaborative roles for c-Jun N-terminal kinase, c-Jun, serum response factor, and Spl in calcium-regulated myocardial gene expression. J Biol Chem 1997; 272: 24, 046–24, 053.

    Google Scholar 

  42. Day ML, Schwartz D, Wiegand RC, Stockman PT, Brunnert HE, Tolunay SR, et al. Ventricular atriopeptin. Unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone. Hypertension 1987; 9: 485–491.

    Article  PubMed  CAS  Google Scholar 

  43. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 1992; 267: 10, 551–10, 560.

    Google Scholar 

  44. Gardner DG, Wirtz H, Dobbs LG. Stretch-dependent regulation of atrial peptide synthesis and secretion in cultured atrial cardiocytes. Am J Physiol 1992; 263: E239 - E244.

    PubMed  CAS  Google Scholar 

  45. Schiebinger RJ,. Greening KM. Interaction between stretch and hormonally stimulated atrial natriuretic peptide secretion. Am J Physiol 1992; 262: H78 - H83.

    PubMed  CAS  Google Scholar 

  46. Rodman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 1991; 88: 8277–8281.

    Article  Google Scholar 

  47. Liang F, Wu J, Garami M, Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 1997; 272: 28, 050–28, 056.

    Google Scholar 

  48. Sawada Y, Suda M, Yokoyama H, Kanda T, Sakamaki T, Tanaka S, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proproteinprocessing endoprotease furin. J Biol Chem 1997; 272: 20, 545–20, 554.

    Google Scholar 

  49. Hanford DS, Thuerauf DJ, Murray SF, Glembotski CC. Brain natriuretic peptide is induced by alpha 1-adrenergic agonists as a primary response gene in cultured rat cardiac myocytes. J Biol Chem 1994; 269: 26, 227–26, 233.

    Google Scholar 

  50. Hanford DS, Glembotski CC. Stabilization of the B-type natriuretic peptide mRNA in cardiac myocytes by alpha-adrenergic receptor activation: potential roles for protein kinase C and mitogen-activated protein kinase. Mol Endocrinol 1996; 10: 1719–1727.

    Article  PubMed  CAS  Google Scholar 

  51. Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 1995; 96: 1280–1287.

    Article  PubMed  CAS  Google Scholar 

  52. Dene H, Rapp JP. Quantification of messenger ribonucleic acid for atrial natriuretic factor in atria and ventricles of Dahl salt-sensitive and salt-resistant rats. Mol Endocrinol 1987; 1: 614–620.

    Article  PubMed  CAS  Google Scholar 

  53. Mendez R, Pfeffer JM, Ortola FV, Bloch KD, Anderson S, Seidman JG, Brenner BM. Atrial natriuretic peptide transcription, storage, and release in rats with myocardial infarction. Am J Physiol 1987; 253: H1449 - H1455.

    PubMed  CAS  Google Scholar 

  54. Saito Y, Nakao K, Arai H, Nishimura K. Okumura K. Obata K, et al. Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest 1989; 83: 298–305.

    Article  PubMed  CAS  Google Scholar 

  55. Chien KR, Knowlton KU, Zhu H. Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 1991; 5: 3037–3046.

    PubMed  CAS  Google Scholar 

  56. Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997; 272: 14, 860–14, 866.

    Google Scholar 

  57. Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 1995; 25: 227–234.

    Article  PubMed  CAS  Google Scholar 

  58. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. J Clin Invest 1991; 87: 1402–1412.

    Article  PubMed  CAS  Google Scholar 

  59. Yamamoto K, Burnett JC Jr, Jougasaki M, Nishimura RA, Bailey KR, Saito Y, Nakao K, Redfield MM. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension 1996; 28: 988–994.

    Article  PubMed  CAS  Google Scholar 

  60. Davis KM, Fish LC, Elahi D, Clark BA, Minaker KL. Atrial natriuretic peptide levels in the prediction of congestive heart failure risk in frail elderly. JAMA 1992; 267: 2625–2629.

    Article  PubMed  CAS  Google Scholar 

  61. Lerman A, Gibbons RJ, Rodeheffer RJ, Bailey KR, McKinley LI, Heublein DM. Burnett JC Jr. Circulating N-terminal atrial natriuretic peptide as a marker for symptomless left-ventricular dysfunction. Lancet 1993; 341: 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  62. Kovacic-Milivojevic B, Gardner DG. Divergent regulation of the human atrial natriuretic peptide gene by c-jun and c-fos. Mol Cell Biol 1992; 12: 292–301.

    PubMed  CAS  Google Scholar 

  63. Bishopric NH, Jayasena V, Webster KA. Positive regulation of the skeletal alpha-actin gene by Fos and Jun in cardiac myocytes. J Biol Chem 1992; 267: 25, 535–25, 540.

    Google Scholar 

  64. Kovacic-Milivojevic B, Gardner DG. Fra-1, a Fos gene family member that activates atrial natriuretic peptide gene transcription. Hypertension 1995; 25: 679–682.

    Article  PubMed  CAS  Google Scholar 

  65. Kovacic-Milivojevic B, Wong VSH, Gardner DG. Selective regulation of atrial natriuretic peptide gene by individual components of AP-1 complex. Endocrinology 1996; 137: 1108–1117.

    Article  PubMed  CAS  Google Scholar 

  66. Bogoyevitch MA, Glennon PE, Andersson MB, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 1994; 269: 1110–1119.

    PubMed  CAS  Google Scholar 

  67. Sadoshima J, Qiu Z, Morgan JP, Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90–1(D S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Cire Res 1995; 76: 1–15.

    Article  CAS  Google Scholar 

  68. Thorburn J, Frost JA, Thorburn A. Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol 1994; 126: 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  69. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 1993; 12: 1681–1692.

    PubMed  CAS  Google Scholar 

  70. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, et al. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 1995; 96: 438–446.

    Article  PubMed  CAS  Google Scholar 

  71. Sadoshima J, Izumo S. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 1996; 15: 775–787.

    PubMed  CAS  Google Scholar 

  72. Thorburn J, McMahon M, Thorburn A. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem 1994; 269: 30, 580–30, 586.

    Google Scholar 

  73. Bogoyevitch MA, Marshall CJ, Sugden PH. Hypertrophie agonists stimulate the activities of the protein kinases c-Raf and A-Raf in cultured ventricular myocytes. J Biol Chem 1995; 270: 26, 303–26, 310.

    Google Scholar 

  74. Gillespie-Brown J, Fuller SJ, Bogoyevitch MA, Cowley S, Sugden PH. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophie phenotype in rat ventricular cardiomyocytes. J Biol Chem 1995; 270: 28, 092–28, 096.

    Google Scholar 

  75. Post GR, Goldstein D, Thuerauf DJ, Glembotski CC, Brown JH. Dissociation of p44 and p42 mitogenactivated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 1996; 271: 8452–8457.

    Article  PubMed  CAS  Google Scholar 

  76. Thorburn J, Xu S, Thorburn A. MAP kinase-and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 1997; 16: 1888–1900.

    Article  PubMed  CAS  Google Scholar 

  77. Sah VP, Hoshijima M, Chien KR, Brown JH. Rho is required for Galphaq and alphal-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 1996; 271: 31, 185–31, 190.

    Google Scholar 

  78. Bogoyevitch MA, Ketterman AJ, Sugden PH. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem 1995; 270: 29, 710–29, 717.

    Google Scholar 

  79. Koller KJ, Goeddel DV. Molecular biology of the natriuretic peptides and their receptors. Circulation 1992; 86: 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  80. Levin ER. Natriuretic peptide C-receptor: more than a clearance receptor. Am J Physiol 1993; 264: E483 - E489.

    PubMed  CAS  Google Scholar 

  81. Wilcox JN, Augustine A, Goeddel DV, Lowe DG. Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol 1991; 11: 3454–3462.

    PubMed  CAS  Google Scholar 

  82. Nunez DJ, Dickson MC, Brown MJ. Natriuretic peptide receptor mRNAs in the rat and human heart. J Clin Invest 1992; 90: 1966–1971.

    Article  PubMed  CAS  Google Scholar 

  83. Anand-Srivastava MB, Cantin M. Atrial natriuretic factor receptors are negatively coupled to adenylate cyclase in cultured atrial and ventricular cardiocytes. Biochem Biophys Res Commun 1986; 138: 427–436.

    Article  PubMed  CAS  Google Scholar 

  84. Cramb G, Banks R, Rugg EL, Aiton JF. Actions of atrial natriuretic peptide (ANP) on cyclic nucleotide concentrations and phosphatidylinositol turnover in ventricular myocytes. Biochem Biophys Res Commun 1987; 148: 962–970.

    Article  PubMed  CAS  Google Scholar 

  85. Clemo HF, Baumgarten CM. Atrial natriuretic factor decreases cell volume of rabbit atrial and ventricular myocytes. Am J Physiol 1991; 260: C681 - C690.

    PubMed  CAS  Google Scholar 

  86. McCall D, Fried TA. Effect of atriopeptin II on Ca influx, contractile behavior and cyclic nucleotide content of cultured neonatal rat myocardial cells. J Mol Cell Cardiol 1990; 22: 201–212.

    Article  PubMed  CAS  Google Scholar 

  87. Meulemans AL, Sipido KR, Sys SU, Brutsaert DL. Atriopeptin III induces early relaxation of isolated mammalian papillary muscle. Cire Res 1988; 62: 1171–1174.

    Article  CAS  Google Scholar 

  88. Vesely DL, Douglass, MA. Dietz JR, Giordano AT, McCormick MT, Rodriguez-Paz G, Schocken DD. Negative feedback of atrial natriuretic peptides. J Clin Endocrinol Metab 1994; 78: 1128–1134.

    Article  PubMed  CAS  Google Scholar 

  89. Nachshon S, Zamir O, Matsuda Y, Zamir N. Effects of ANP receptor antagonists on ANP secretion from adult rat cultured atrial myocytes. Am J Physiol 1995; 268: E428 — E432.

    PubMed  CAS  Google Scholar 

  90. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 1990; 16: 301–307.

    Article  PubMed  CAS  Google Scholar 

  91. Barbee RW, Perry BD, Re RN, Murgo JP, Field U. Hemodynamics in transgenic mice with over-expression of atrial natriuretic factor. Circ Res 1994; 74: 747–751.

    Article  PubMed  CAS  Google Scholar 

  92. Ogawa Y, Itoh H, Tamura N, Suga S, Yoshimasa T, Uehira M, et al. Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest 1994; 93: 911–921.

    Article  Google Scholar 

  93. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 1995; 267: 679–681.

    Article  PubMed  CAS  Google Scholar 

  94. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 1995; 378: 65–68.

    Article  PubMed  CAS  Google Scholar 

  95. Kishimoto I, Dubois SK, Garbers DL. The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor: acute handling of sodium and water in response to volume expansion. Proc Natl Acad Sci USA 1996; 93: 6215–6219.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gardner, D.G., Kovacic-Milivojevic, B., Liang, F., Chen, S. (1999). Natriuretic Peptides and the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics