Skip to main content

Neuroendocrine Regulation of Fluid Intake and Homeostasis

  • Chapter
Neuroendocrinology in Physiology and Medicine

Abstract

Body fluids provide the matrix in which the biochemical reactions that comprise cellular metabolism occur. The concentration of substrates in the cellular fluid is a major factor that determines the rate at which these reactions occur. Furthermore, all body tissues depend on the circulation of blood to provide the nutrients needed to support cellular metabolism and to carry away metabolites for excretion. Thus, the maintenance of concentrations of solutes, or osmolalities (osmotic homeostasis), and the regulation of volumes of the various body fluid compartments (volume homeostasis) are critical functions for normal physiology in all animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  • Andersson B. Regulation of water intake. Physiol Rev 1978; 58: 582–603.

    PubMed  CAS  Google Scholar 

  • Baylis PH, Thompson CJ. Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol 1988; 29: 549–76.

    Article  CAS  Google Scholar 

  • Booth DB, Ramsay DJ. Thirst—Physiological and Psychological Aspects. Berlin, Germany: Springer-Verlag, 1991.

    Google Scholar 

  • Denton D. The Hunger for Salt: An Anthropological, Physiological and Medical Analysis. Berlin, Germany: Springer-Verlag, 1982.

    Google Scholar 

  • Fanestil DD, Moore FD. Compartmentalization of body water. In: Navins RG, ed. Clinical Disorders of Fluid and Electrolyte Metabolism. New York: McGraw-Hill, 1994: 3–20.

    Google Scholar 

  • Fitzsimons JT. The Physiology of Thirst and Sodium Appetite. Cambridge, England: Cambridge University Press, 1979.

    Google Scholar 

  • Johnson AK, Buggy J. Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Amer J Physiol 1978; 234: R122–R125.

    PubMed  CAS  Google Scholar 

  • Oldfield BJ, Badoer E, Hards DK, McKinley MJ. Fos production in retrogradely labeled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neurosci 1994; 60: 255–262.

    Article  CAS  Google Scholar 

  • Ramsay DJ, Thrasher TN. Thirst and water balance. In: Stricker EM, ed. Handbook of Behavioral Neurobiology, vol. 10, Neurobiology of Food and Fluid Intake. New York: Plenum, 1990, 353–386.

    Google Scholar 

  • Schrier RW. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Int Med 1990; 113: 155–159.

    PubMed  CAS  Google Scholar 

  • Stricker EM. Thirst and sodium appetite after colloid treatment in rats. J Comparative Physiol Psychol 1981; 95: 1–25.

    Article  CAS  Google Scholar 

  • Stricker EM, Verbalis JG. Sodium appetite. In: Stricker EM, ed. Handbook of Behavioral Neurobiology, vol. 10, Neurobiology of Food and Fluid Intake. New York: Plenum, 1990, 387–419.

    Google Scholar 

  • Verbalis JG, Stricker EM. Water intake and body fluids. In: Bloom FE, Landis SC, Roberts JL, Squire LR, Zigmond MJ, eds. Fundamental Neuroscience. New York: Academic, 1999; 1111–1126.

    Google Scholar 

  • Verbalis JG. Body water and osmolality; Body sodium and extra-cellular fluid volume. In: Wilkinson B, Jamison R, eds. Nephrology. London, England: Chapman & Hall, 1997, 89–101.

    Google Scholar 

  • Verbalis JG, Blackburn RE, Olson BR, Stricker EM. Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Regulatory Peptides 1993; 45: 149–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verbalis, J.G., Stricker, E.M. (2000). Neuroendocrine Regulation of Fluid Intake and Homeostasis. In: Conn, P.M., Freeman, M.E. (eds) Neuroendocrinology in Physiology and Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-707-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-707-9_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-153-0

  • Online ISBN: 978-1-59259-707-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics