Skip to main content

Mutation Analysis of Receptors and Relationship of Receptor Usage to Disease

  • Chapter
Chemokines in Disease

Part of the book series: Contemporary Immunology ((CONTIM))

  • 65 Accesses

Abstract

Pioneering protein engineering work by Kobilka et al. utilized chimeric constructs between α- and β-adrenergic receptors, and mutant receptors with partial deletions to identify domains involved in G-protein coupling and specific ligand binding (1). Since then, this method has been employed extensively in structure-function studies of many different G-protein-coupled, seven transmembrane domain (7TMD) receptors (reviewed in ref. 2). Recent application of the technique to the analysis of the interleukin-8 chemokine receptors, IL-8RA and IL8-RB, has served to indicate that the receptor-ligand interaction can be highly complex, with multiple domains contributing to ligand binding and, independently, to signal transduction (3). On the other hand, study of the Duffy antigen receptor for chemokines (DARC) suggests that chemokine binding by this promiscuous molecule is primarily localized to the first extracellular (N-terminal) domain (4,5). Comparison of amino acid sequence and function between coreceptor homologs of different species can highlight conserved regions likely to be involved in ligand binding and signal transduction (5). A strategy of specifically modifying individual or small groups of charged residues has also been employed to assess structure and function of 7TMD receptors. Such site-directed mutagenesis of the type A IL-8 receptor has been used to demonstrate that certain residues in the N-terminal domain and third extracellular loop are critical for ligand binding (6,7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988) Chimeric a2-2- adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240, 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz, T. W. (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr. Op. Biotechnol.5, 434–444.

    Article  CAS  Google Scholar 

  3. Ahuja, S. K., Lee, J. C., and Murphy, P. M. (1996) CXC chemokines bind to a unique set of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct. J. Biol. Chem. 271, 225–232.

    Article  CAS  PubMed  Google Scholar 

  4. Lu, Z. H., Wang, Z. X., Horuk, R., Hesselgesser, J., Lou, Y. C., Hadley, T. J., and Peiper, S. C. (1995) The promiscuous chemokine binding profile of the Duffy antigen/receptor for chemokines is primarily localized to sequences in the amino-terminal domain. J. Biol. Chem. 270, 26,239–26,245.

    Google Scholar 

  5. Horuk, R., Martin, A., Hesselgesser, J., Hadley, T., Lu, Z. H., Wang, Z. X., and Peiper, S. C. (1996) The Duffy antigen receptor for chemokines: structural analysis and expression in the brain. J. Leukoc. Biol. 59, 29–38.

    CAS  PubMed  Google Scholar 

  6. Hebert, C. A., Vitangcol, R. V., and Baker, J. B. (1991) Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J. Biol. Chem. 266,18,989–18,994.

    CAS  Google Scholar 

  7. Hebert, C. A., Chuntharapai, A., Smith, M., Colby, T., Kim, J., and Horuk, R. (1993) Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. J. Biol. Chem. 268, 18,549–18,553.

    Google Scholar 

  8. Liao, F., Alkhatib, G., Peden, K. W., Sharma, G., Berger, E. A., and Farber, J. M. (1997) STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  9. Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., et al. (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.

    CAS  PubMed  Google Scholar 

  10. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., et al. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186, 405–411.

    Article  CAS  PubMed  Google Scholar 

  11. Choe, H., Farzan, M., Konkel, M., Martin, K., Sun, Y., Marcon, L., et al. (1998) The orphan seven-transmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J. Virol. 72, 6113–6118.

    CAS  PubMed  Google Scholar 

  12. Bjorndal, A., Deng, H., Jansson, M., Fiore, J. R., Colognesi, C., Karlsson, A., et al. (1997) Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol. 71, 7478–7487.

    CAS  PubMed  Google Scholar 

  13. Edinger, A. L., Amedee, A., Miller, K., Doranz, B. J., Endres, M., Sharron, M., et al. (1997) Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. Proc. Natl. Acad. Sci. USA 94, 4005–4010.

    Article  CAS  PubMed  Google Scholar 

  14. Asjo, B., Morfeldt Manson, L., Albert, J., Biberfeld, G., Karlsson, A., Lidman, K., et al. (1986) Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet 2, 660–662.

    CAS  PubMed  Google Scholar 

  15. Connor, R. I., Mohri, H., Cao, Y., and Ho, D. D. (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J. Virol. 67, 1772–1777.

    CAS  PubMed  Google Scholar 

  16. Roos, M. T., Lange, J. M., de Goede, R. E., Coutinho, R. A., Schellekens, P. T., et al. (1992) Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J. Infect. Dis. 165, 427–432.

    Article  CAS  PubMed  Google Scholar 

  17. Schuitemaker, H., Koot, M., Kootstra, N. A., Dercksen, M. W., de Goede, R. E., van Stoenwij, K., et al. (1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J. Virol. 66, 1354–1360.

    CAS  PubMed  Google Scholar 

  18. Zhu, T., Mo, H., Wang, N., Nam, D. S., Cao, Y., Koup, R. A., and Ho, D. D. (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261,1179–1181.

    Article  CAS  PubMed  Google Scholar 

  19. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., and Landau, N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185,621–628.

    Article  CAS  PubMed  Google Scholar 

  20. Scarlatti, G., Tresoldi, E., Bjorndal, A., Frederiksson, R., Colognesi, C., Deng, H. K., et al. (1997) In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Med. 3, 1259–1265.

    Article  CAS  PubMed  Google Scholar 

  21. Tersmette, M., de Goede, R. E., Al, B. J., Winkel, I. N., Gruters, R. A., Cuypers, H., et al. (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium- inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J. Virol. 62, 2026–2032.

    CAS  PubMed  Google Scholar 

  22. Tersmette, M., Gruters, R. A., de Wolf, F., de Goede, R. E., Lange, J. M., Schellekens, P. T., et al. (1989) Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J. Virol. 63, 2118–2125.

    CAS  PubMed  Google Scholar 

  23. Tersmette, M., Lange, J. M., de Goede, R. E., de Wolf, F., Eeftink Schattenkerk, J. K., Schellekens, P. T., et al. (1989) Association between biological properties of human immuno-deficiency virus variants and risk for AIDS and AIDS mortality. Lancet1, 983–985.

    Google Scholar 

  24. Spijkerman, I. J., Koot, M., Prins, M., Keet, I. P., van den Hoek, A. J., Miedema, F., and Coutinho, R. A. (1995) Lower prevalence and incidence of HIV-1 syncytium-inducing pheno-type among injecting drug users compared with homosexual men. AIDS 9, 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  25. Fiore, J. R., Bjorndal, A., Peipke, K. A., Di Stefano, M., Angarano, G., Pastore, G., et al. (1994) The biological phenotype of HIV-1 is usually retained during and after sexual transmission. Virology 204, 297–303.

    Article  CAS  PubMed  Google Scholar 

  26. Valentin, A., Albert, J., Fenyo, E. M., and Asjo, B. (1994) Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J. Virol. 68, 6684–6689.

    CAS  PubMed  Google Scholar 

  27. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., et al. (1996) Primary, syncytium inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355–8360.

    CAS  PubMed  Google Scholar 

  28. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., et al. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.

    Article  CAS  PubMed  Google Scholar 

  29. de Wolf, F., Hogervorst, E., Goudsmit, J., Fenyo, E. M., Rubsamen Waigmann, H., Holmes, H., et al. (1994) Syncytium-inducing and non-syncytium-inducing capacity of human immuno-deficiency virus type 1 subtypes other than B: phenotypic and genotypic characteristics. WHO Network for HIV Isolation and Characterization. AIDS Res. Hum. Retroviruses 10,1387–1400.

    Article  CAS  PubMed  Google Scholar 

  30. Boyd, M. T., Simpson, G. R., Cann, A. J., Johnson, M. A., and Weiss, R. A. (1993) A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J. Virol. 67, 3649–3652.

    Google Scholar 

  31. Fouchier, R. A., Groenink, M., Kootstra, N. A., Tersmette, M., Huisman, H. G., et al. (1992) Phenotype-associated sequence variation in the third variable domain of the human immuno-deficiency virus type 1 gp120 molecule. J. Virol. 66, 3183–3187.

    CAS  PubMed  Google Scholar 

  32. Groenink, M., Fouchier, R. A., Broersen, S., Baker, C. H., Koot, M., Miedema, F., et al. (1993) Relation ofphenotype evolution of HIV-1 to envelope V2 configuration. Science 260,1513–1516.

    Article  CAS  PubMed  Google Scholar 

  33. Sabri, F., Chiodi, F., and Fenyo, E.-M. (1996) Lack of correlation between V3 amino acid sequence and syncytium-inducing capacity of some HIV type 1 isolates. AIDS Res. Hum. Retroviruses 12, 855–858.

    Article  CAS  PubMed  Google Scholar 

  34. Jansson, M., Popovic, M., Karlsson, A., Cocchi, F., Rossi, P., et al. (1996) Sensitivity to inhibition by beta-chemokines correlates with biological phenotypes of primary HIV-1 iso-lates. Proc. Natl. Acad. Sci. USA. 93,15382–15387.

    Article  CAS  PubMed  Google Scholar 

  35. Broder, C. C. and Collman, R. G. (1997) Chemokine receptors and HIV. J. Leukoc. Biol. 62, 20–29.

    CAS  PubMed  Google Scholar 

  36. Chackerian, B., Long, E. M., Luciw, P. A., and Overbaugh, J. (1997) Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J. Virol. 71, 3932–3939.

    CAS  PubMed  Google Scholar 

  37. Granelli-Piperno, A., Moser, B., Pope, M., Chen, D., Wei, Y., Isdell, F., et al. (1996) Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp. Med. 184, 2433–2438.

    Article  CAS  PubMed  Google Scholar 

  38. Mori, K., Ringler, D. J., and Desrosiers, R. C. (1993) Restricted replication of simian immuno-deficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J. Virol. 67, 2807–2814.

    CAS  PubMed  Google Scholar 

  39. Stephens, E. B., McClure, H. M., and Narayan, 0. (1995) The proteins of lymphocyte- and macrophage-tropic strains of simian immunodeficiency virus are processed differently in macro-phages. Virology 206, 535–544.

    Article  CAS  PubMed  Google Scholar 

  40. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huanh, Y., Nagashima, K. A., et al. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.

    Article  CAS  PubMed  Google Scholar 

  41. Bieniasz, P. D., Friedell, R. A., Aramori, I., Ferguson, S. S. G., Caron, M. G., and Cullen, B. R. (1997) HIV-1—induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO J. 16, 2599–2609.

    Article  CAS  PubMed  Google Scholar 

  42. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.

    Article  CAS  PubMed  Google Scholar 

  43. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., et al. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/Fusin and blocks HIV-1 entry. Nature 382, 829–833.

    Article  CAS  PubMed  Google Scholar 

  44. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.-L., Arenzana-Seisdedos, R., et al. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell line-adapted HIV-1. Nature 382, 833–835.

    Article  CAS  PubMed  Google Scholar 

  45. Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguygen, N. Y., Dimitrov, D. S., et al. (1996) Evidence for cell-surface association between fusin and the CD4-gp120 complex in human cell lines. Science 274, 602–605.

    Article  CAS  PubMed  Google Scholar 

  46. Brelot, A., Heveker, N., Pleskoff, 0., Sol, N., and Alizon, M. (1997) Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. J. Virol. 71, 4744–4751.

    CAS  PubMed  Google Scholar 

  47. Lu, Z.-H., Berson, J. F., Chen, Y.-H., Turner, J. D., Zhang, T.-Y., Sharron, M., et al. (1997) Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc. Natl. Acad. Sci. USA 94, 6426–6431.

    Article  CAS  PubMed  Google Scholar 

  48. Pleskoff, 0., Sol, N., Labrosse, B., and Alizon, M. (1997) Human immunodeficiency virus strains differ in their ability to infect CD4+ cells expressing the rat homolog of CXCR-4 (fusin). J. Virol. 71, 3259–3262.

    Google Scholar 

  49. Tachibana, K., Nakajima, T., Sato, A., Igarashi, K., Shida, H., Iizssa, H., et al. (1997) CXCR4/fusin is not a species-specific barrier in murine cells for HIV-1 entry. J. Exp. Med. 185,1865–1870.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z., Zhou, P., Ho, D. D., Landau, N. R., and Marx, P. A. (1997) Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J. Virol. 71, 2705–2714.

    CAS  PubMed  Google Scholar 

  51. Willett, B. J., Picard, L., Hosie, M. J., Turner, J. D., Adema, K., et al. (1997) Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 71, 6407–6415.

    Google Scholar 

  52. Parolin, C., Borsetti, A., Choe, H., Farzan, M., Kolchinsky, P., Heesen, M., et al., (1998) Use of murine CXCR-4 as a second receptor by some T-cell-tropic human immunodeficiency viruses. J. Virol. 72, 1652–1656.

    CAS  PubMed  Google Scholar 

  53. Picard, L., Wilkinson, D. A., McKnight, A., Gray, P. W., Hoxie, J. A., Clapham, P. R., and Weiss, R. A. (1997) Role of the amino-terminal extracellular domain of CXCR4 in human immunodeficiency virus type 1 entry. Virology 231, 105–111.

    Article  CAS  PubMed  Google Scholar 

  54. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., et al. (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798.

    Article  CAS  PubMed  Google Scholar 

  55. McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., et al. (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696.

    CAS  PubMed  Google Scholar 

  56. Endres, M. J., Clapham, P. R., Marsh, M., Ahuja, M., Davis Turner, J., McKnight, A., et al. (1996) CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87, 745–756.

    Article  CAS  PubMed  Google Scholar 

  57. Doranz, B. J., Grovit-Ferbas, K., Sharron, M., Mao, S.-H., Bidwell Goetz, M., Daar, E. S., et al. (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395–1400.

    Article  CAS  PubMed  Google Scholar 

  58. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1 a and MIP-1β as the major HIV suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  59. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: A RANTES, MIP-1 a, MIP-1 β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.

    Article  CAS  PubMed  Google Scholar 

  60. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., et al. (1996) The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  61. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.

    Article  CAS  PubMed  Google Scholar 

  62. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., et al. (1996) A dualtropic primary HIV -1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85,1149–1158.

    Article  CAS  PubMed  Google Scholar 

  63. Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., et al. (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its coreceptor CCR-5. Nature 384, 184–187.

    Article  CAS  PubMed  Google Scholar 

  64. Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., et al. (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183.

    Article  CAS  PubMed  Google Scholar 

  65. Doranz, B. J., Lu, Z.-H., Rucker, J., Zhang, T.-Y., Sharron, M., Cen, Y.-H., et al. (1997) Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J. Virol. 71, 6305–6314.

    CAS  PubMed  Google Scholar 

  66. Kuhmann, S. E., Platt, E. J., Kozak, S. L., and Kabat, D. (1997) Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. J. Virol. 71, 8642–8656.

    CAS  PubMed  Google Scholar 

  67. Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F., and Goldsmith, M. A. (1996) Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274, 1924–1926.

    Article  CAS  PubMed  Google Scholar 

  68. Picard, L., Simmons, G., Power, C. A., Meyer, A., Weiss, R. A., and Clapham, P. R. (1997) Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. J. Virol. 71, 5003–5011.

    CAS  PubMed  Google Scholar 

  69. Rucker, J., Samson, M., Doranz, B. J., Libert, F., Berson, J. F., Yi, Y., et al. (1996) Regions in β-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 87, 437–446.

    Article  CAS  PubMed  Google Scholar 

  70. Alkhatib, G., Ahuja, S. S., Light, D., Mummidi, S., Berger, E. A., and Ahuja, S. K. (1997) CC chemokine receptor 5-mediated signaling and HIV-1 co-receptor activity share common structural determinants. J. Biol. Chem. 272, 19,771–19,776.

    Google Scholar 

  71. Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., et al. (1997) Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J. Exp. Med. 186, 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  72. Ansari-Lari, M. A., Liu, X.-M., Metzker, M. L., Rut, A. R., and Gibbs, R. A. (1997) The extent of genetic variation in the CCR5 gene. Nature Genet. 16, 221–222.

    Article  CAS  PubMed  Google Scholar 

  73. Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862.

    Article  CAS  PubMed  Google Scholar 

  74. Ross, T. M., Bieniasz, P. D., and Cullen, B. R. (1998) Multiple residues contribute to the inability of murine CCR-5 to function as a coreceptor for macrophage-tropic human immuno-deficiency virus type 1 isolates. J. Virol. 72, 1918–1924.

    CAS  PubMed  Google Scholar 

  75. Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., et al. (1997) Amino-terminal substitutions in the CCR5 co-receptor impair gp 120 binding and human immunodeficiency virus type-I entry. J. Virol. 72, 279–285.

    Google Scholar 

  76. Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., et al. (1997) A tyrosine-rich region in the N-terminus of CCR5 is important for HIV-1 entry and mediates an association between gp120 and CCR5. J. Virol. 72, 1160–1164.

    Google Scholar 

  77. Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A., and Sodroski, J. (1998) A conserved HIV gp 120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949–1953.

    Article  CAS  PubMed  Google Scholar 

  78. Doms, R. W. and Peiper, S. C. (1997) Unwelcome guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology 235, 179–190.

    Article  CAS  PubMed  Google Scholar 

  79. Marcon, L., Choe, H., Martin, K. A., Farzan, M., Ponath, P. D., Wu, L., et al. (1997) Utilization of C-C chemokine receptor 5 by the envelope glycoproteins of a pathogenic simian immuno-deficiency virus, SIVmac239. J. Virol. 71, 2522–2527.

    CAS  PubMed  Google Scholar 

  80. Martin, K. A., Wyatt, R., Farzan, M., Choe, H., Marcon, L., Desjardins, E., et al. (1997) CD4-independent binding of SIV gp120 to rhesus CCR5. Science 278, 1470–1473.

    Article  CAS  PubMed  Google Scholar 

  81. Gosling, J., Monteclaro, F. S., Atchison, R. E., Arai, H., Tsou, C.-L., Goldsmith, M. S., et al. (1997) Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proc. Natl. Acad. Sci. USA 94, 5061–5066.

    Article  CAS  PubMed  Google Scholar 

  82. Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., et al. (1997) HIV-1 entry and macrophage inflammatory protein-1 β-mediated signaling are independent functions of the chemokine receptor CCR5. J. Biol. Chem. 272, 6854–6857.

    Article  CAS  PubMed  Google Scholar 

  83. Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., et al. (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389, 981–985.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aarons, E.J., Koup, R.A. (1999). Mutation Analysis of Receptors and Relationship of Receptor Usage to Disease. In: Hébert, C.A. (eds) Chemokines in Disease. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-706-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-706-2_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4762-1

  • Online ISBN: 978-1-59259-706-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics