Skip to main content

The HIV Coreceptor Repertoire

All in the Family of Chemokine Receptors

  • Chapter
Book cover Chemokines in Disease

Part of the book series: Contemporary Immunology ((CONTIM))

  • 64 Accesses

Abstract

Within 1–3 years after the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immune deficiency syndrome (AIDS) (1,2), the CD4 molecule was identified as the primary HIV receptor (3). HIV was shown to enter target cells by an initial binding event between the envelope glycoprotein (Env) molecules on the viral membrane and CD4 molecules on the target cell surface, followed by direct, pH-independent membrane fusion. Yet as early as 1986, it became clear that the Env-CD4 interaction was not sufficient to promote the fusion reaction (46); several lines of evidence indicated that the target cell must contain an additional human-specific cofactor (711), presumably a “coreceptor.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallo, R. C., Sarngadharan, M. G., Popovic, M., Shaw, G. M., Hahn, B., Wong-Staal, F., Robert-Guroff, M., Salahuddin, S. Z., and Markham, P. D. (1986) HTLV-III and the etiology of AIDS. Prog. Allergy 37, 1–45.

    PubMed  CAS  Google Scholar 

  2. Montagnier, L. (1986) Lymphadenopathy associated virus: its role in the pathogenesis of AIDS and related diseases. Prog. Allergy 37, 46–64.

    PubMed  CAS  Google Scholar 

  3. Moore, J. P., Jameson, B. A., Weiss, R. A., and Sattentau, Q. J. (1993) The HIV-cell fusion reaction, in Viral Fusion Mechanisms (Bentz, J., ed.), CRC Press, Boca Raton, FL, pp. 233–289.

    Google Scholar 

  4. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R. (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348.

    Article  PubMed  CAS  Google Scholar 

  5. Ashorn, P. A., Berger, E. A., and Moss, B. (1990) Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J. Virol. 64, 2149–2156.

    PubMed  CAS  Google Scholar 

  6. Clapham, P. R., Blanc, D., and Weiss, R. A. (1991) Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181, 703–715.

    Article  PubMed  CAS  Google Scholar 

  7. Weiner, D. B., Huebner, K., Williams, W. V., and Greene, M. I. (1991) Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiology 59, 361–371.

    Article  PubMed  CAS  Google Scholar 

  8. Dragic, T., Charneau, P., Clavel, F., and Alizon, M. (1992) Complementation of murine cells for human immunodeficiency virus envelope/CD4-mediated fusion in human/murine heterokaryons. J. Virol. 66, 4794–4802.

    PubMed  CAS  Google Scholar 

  9. Broder, C. C., Dimitrov, D. S., Blumenthal, R., and Berger, E. A. (1993) The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s). Virology 193, 483–491.

    Article  PubMed  CAS  Google Scholar 

  10. Harrington, R. D. and Geballe, A. P. (1993) Cofactor requirement for human immunodeficiency virus type-1 entry into a CD4-expressing human cell line. J. Virol. 67, 5939–5947.

    PubMed  CAS  Google Scholar 

  11. Ramarli, D., Cambiaggi, C., Morghen, C. D. G., Tripputi, P., Ortolani, R., Bolzanelli, M., Tridente, G., and Accolla, R. S. (1993) Susceptibility of human-mouse T cell hybrids to HIV-productive infection. AIDS Res. Hum. Retroviruses 9,1269–1275.

    Article  PubMed  CAS  Google Scholar 

  12. Miedema, F., Meyaard, L., Koot, M., Klein, M. R., Roos, M. T. L., Groenink, M., Fouchier, R. A. M., Van’t Wout, A. B., Tersmette, M., Schellekens, P. T. A., and Schuitemaker, H. (1994) Changing virus-host interactions in the course of HIV-1 infection. Immunol. Rev. 140, 35–72.

    Google Scholar 

  13. Fenyo, E. M., Fiore, J., Karlsson, A., Albert, J., and Scarlatti, G. (1994) Biological phenotypes of HIV-1 in pathogenesis and transmission. Antibiot. Chemother. 46, 18–24.

    Google Scholar 

  14. Connor, R. I. and Ho, D. D. (1994) Transmission and pathogenesis of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 10, 321–323.

    Google Scholar 

  15. Goudsmit, J. (1995) The role of viral diversity in HIV pathogenesis. J. Acquir. Immun. Defic. Syndr. Hum. R. 10(Suppl. 1), S15–S19.

    Google Scholar 

  16. Broder, C. C. and Berger, E. A. (1995) Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Proc. Natl. Acad. Sci. USA 92, 9004–9008.

    Google Scholar 

  17. Alkhatib, G., Broder, C. C., and Berger, E. A. (1996) Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. J. Virol. 70, 5487–5494.

    PubMed  CAS  Google Scholar 

  18. Berger, E. A. (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11(Suppl. A), S3–S16.

    Google Scholar 

  19. Moore, J. P., Trkola, A., and Dragic, T. (1997) Co-receptors for HIV-1 entry. Curr. Opin. Immunol. 9, 551–562.

    Google Scholar 

  20. Doranz, B. J., Berson, J. F., Rucker, J., and Doms, R. W. (1997) Chemokine receptors as fusion cofactors for human immunodeficiency virus type 1 (HIV-1). Immunol. Res. 16, 15–28.

    Article  PubMed  CAS  Google Scholar 

  21. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.

    Article  PubMed  CAS  Google Scholar 

  22. Herzog, H., Hort, Y. J., Shine, J., and Selbie, L. A. (1993) Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol. 12, 465–471.

    Article  PubMed  CAS  Google Scholar 

  23. Federsppiel, B., Melhado, I. G., Duncan, A. M. V., Delaney, A., Schappert, K., Clark-Lewis, I., and Jirik, F. R. (1993) Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics 16, 707–712.

    Article  PubMed  CAS  Google Scholar 

  24. Jazin, E. E., Yoo, H., Blomqvist, A. G., Yee, F., Weng, G., Walker, M. W., Salon, J., Larhammar, D., and Wahlestedt, C. (1993) A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Regul. Pept. 47, 247–258.

    Google Scholar 

  25. Nomura, H., Nielsen, B. W., and Matsushima, K. (1993) Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int. Immunol. 5, 1239–1249.

    Google Scholar 

  26. Loetscher, M., Geiser, T., O’Reilly, T., Zwahlen, R., Baggiolini, M., and Moser, B. (1994) Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 269, 232–237.

    Google Scholar 

  27. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.

    Article  PubMed  CAS  Google Scholar 

  28. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J. L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835.

    Article  PubMed  CAS  Google Scholar 

  29. Levy, J. A., Mackewicz, C. E., and Barker, E. (1996) Controlling HIV pathogenesis: The role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today. 17, 217–224.

    Google Scholar 

  30. Cocchi, F., DeVico, A. L., Garzinodemo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-lα, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  31. Samson, M., Labbe, O., Mollereau, C., Vassart, G., and Parmentier, M. (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362–3367.

    Article  PubMed  CAS  Google Scholar 

  32. Combadiere, C., Ahuja, S. K., Tiffany, H. L., and Murphy, P. M. (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-la, MIP-1β, and RANTES. J. Leukocyte Biol. 60, 147–152.

    PubMed  CAS  Google Scholar 

  33. Raport, C. J., Gosling, J., Schweickart, V. L., Gray, P. W., and Charo, I. F. (1996) Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1Iβ, and MIP-lα. J. Biol. Chem. 271, 17161–17166.

    Article  PubMed  CAS  Google Scholar 

  34. Deng, H. K., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.

    Article  PubMed  CAS  Google Scholar 

  35. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y. X., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.

    Article  PubMed  CAS  Google Scholar 

  36. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: A RANTES, MIP-la, MIP-1Iβ receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272,1955–1958.

    Article  PubMed  CAS  Google Scholar 

  37. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., Larosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85,1135–1148.

    Article  PubMed  CAS  Google Scholar 

  38. Doranz, B. J., Rucker, J., Yi, Y. J., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  39. Liao, F., Alkhatib, G., Peden, K. W. C., Sharma, G., Berger, E. A., and Farber, J. M. (1997) STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic H1V-1. J. Exp. Med. 185, 2015–2023.

    Article  PubMed  CAS  Google Scholar 

  40. Alkhatib, G., Liao, F., Berger, E. A., Farber, J. M., and Peden, K. W. C. (1997) A new SIV co-receptor, STRL33. Nature 388, 238.

    Article  PubMed  CAS  Google Scholar 

  41. Deng, H., Unutmaz, D., Kewalramani, V. N., and Littman, D. R. (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.

    Article  PubMed  CAS  Google Scholar 

  42. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., Gerard, N., Gerard, C., and Sodroski, J. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186, 405–411.

    Google Scholar 

  43. Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Margulies, B., Collman, R. G., Doranz, B. J., Parmentier, M., and Doms, R. W. (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.

    PubMed  CAS  Google Scholar 

  44. Horuk, R., Hesselgesser, J., Zhou, Y., Faulds, D., Halks-Miller, M., Harvey, S., Taub, D., Samson, M., Parmentier, M., Rucker, J., Doranz, B. J., and Doms, R. W. (1998) The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J. Biol. Chem. 273, 386–391.

    Google Scholar 

  45. Bazan, H. A., Alkhatib, G., Tiffany, H. L., Bonner, T. I., Murphy, P. M., and Berger, E. A. (1998) HIV-1 coreceptor activity of CCR8, a receptor for the CC chemokine I-309 (submitted).

    Google Scholar 

  46. Reeves, J. D., McKnight, A., Potempa, S., Simmons, G., Gray, P. W., Power, C. A., Wells, T., Weiss, R. A., and Talbot, S. J. (1997) CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231, 130–134.

    Article  PubMed  CAS  Google Scholar 

  47. Combadiere, C., Salzwedel, K., Smith, E. D., Tiffany, H. L., Berger, E. A., and Murphy, P. M. (1998) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J. Biol. Chem. 273, 23,799–23,804.

    Google Scholar 

  48. Combadiere, C., Ahuja, S. K., and Murphy, P. M. (1995) Cloning, chromosomal localization, and RNA expression of a human beta chemokine receptor-like gene. DNA Cell Biol. 14, 673–680.

    Article  PubMed  CAS  Google Scholar 

  49. Raport, C. J., Schweickart, V. L., Eddy, R. L. Jr., Shows, T. B., and Gray, P. W. (1995) The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues. Gene 163, 295–299.

    Article  PubMed  CAS  Google Scholar 

  50. Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T. J., and Yoshie, O. (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530.

    Article  PubMed  CAS  Google Scholar 

  51. Delezay, O., Koch, N., Yahi, N., Hammache, D., Tourres, C., Tamalet, C., and Fantini, J. (1997) Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS 11, 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  52. Endres, M. J., Clapham, P. R., Marsh, M., Ahuja, M., Turner, J. D., McKnight, A., Thomas, J. F., Stoebenau-Haggarty, B., Choe, S., Vance, P. J., Wells, T. N. C., Power, C. A., Sutterwala, S. S., Doms, R. W., Landau, N. R., and Hoxie, J. A. (1996) CD4-independent infection by HIV-2 is mediated by Fusin/CXCR4. Cell 87, 745–756.

    Article  PubMed  CAS  Google Scholar 

  53. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A., and Mackay, C. R. (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 1925–1930.

    Article  PubMed  CAS  Google Scholar 

  54. Kitchen, S. G. and Zack, J. A. (1997) CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J. Virol. 71, 6928–6934.

    PubMed  CAS  Google Scholar 

  55. Zaitseva, M., Lee, S., Rabin, R. L., Tiffany, H. L., Farber, J. M., Peden, K. W. C., Murphy, P. M., and Golding, H. (1998) CXCR4 functions as a chemotactic receptor and HIV-1 co-receptor in human thymocytes. J. Immunol. 161, 3103–3113.

    PubMed  CAS  Google Scholar 

  56. Ayehunie, S., Garcia-Zepeda, E. A., Hoxie, J. A., Horuk, R., Kupper, T. S., Luster, A. D., and Ruprecht, R. M. (1997) Human immunodeficiency virus-1 entry into purified blood dendritic cells through CC and CXC chemokine coreceptors. Blood 90, 1379–1386.

    PubMed  CAS  Google Scholar 

  57. Granelli-Piperno, A., Moser, B., Pope, M., Chen, D., Wei, Y., Isdell, F., O’Doherty, U., Paxton, W., Koup, R., Mojsov, S., Bhardwaj, N., Clark-Lewis, I., Baggiolini, M., and Steinman, R. M. (1996) Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp. Med. 184, 2433–2438.

    Article  PubMed  CAS  Google Scholar 

  58. Dittmar, M. T., Simmons, G., Hibbitts, S., O’Hare, M., Louisirirotchanakul, S., Beddows, S., Weber, J., Clapham, P. R., and Weiss, R. A. (1997) Langerhans cell tropism of human immunodeficiency virus type 1 subtype A through F isolates derived from different transmission groups. J. Virol. 71, 8008–8013.

    PubMed  CAS  Google Scholar 

  59. Zaitseva, M., Blauvelt, A., Lee, S., Lapham, C. K., Klaus-Kovtun, V., Mostowski, H., Manischewitz, J., and Golding, H. (1997) Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nature Med. 3, 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  60. Lavi, E., Strizki, J. M., Ulrich, A. M., Zhang, W., Fu, L., Wang, Q., O’Connor, M., Hoxie, J. A., and Gonzalez-Scarano, F. (1997) CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am. J. Pathol. 151, 1035–1042.

    Google Scholar 

  61. Moriuchi, H., Moriuchi, M., Combadiere, C., Murphy, P. M., and Fauci, A. S. (1996) CD8+ T-cell-derived soluble factor(s), but not P-chemokines RANTES, MIP-lα, and MIP-1β, suppress HIV-1 replication in monocyte/macrophages. Proc. Natl. Acad. Sci. USA 93, 15341–15345.

    Google Scholar 

  62. McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., Marsh, M., Hoxie, J. A., and Clapham, P. R. (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696.

    PubMed  CAS  Google Scholar 

  63. Naif, H. M., Li, S., Alali, M., Sloane, A., Wu, L., Kelly, M., Lynch, G., Lloyd, A., and Cunningham, A. L. (1998) CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection. J. Virol. 72, 830–836.

    PubMed  CAS  Google Scholar 

  64. Carroll, R. G., Riley, J. L., Levine, B. L., Feng, Y., Kaushal, S., Ritchey, D. W., Bernstein, W., Weislow, O. S., Brown, C. R., Berger, E. A., June, C. H., and St.Louis, D. C. (1997) Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 276, 273–276.

    Article  PubMed  CAS  Google Scholar 

  65. Roederer, M., Raju, P. A., Mitra, D. K., and Herzenberg, L. A. (1997) HIV does not replicate in naive CD4 T cells stimulated with CD3/CD28. J. Clin. Invest. 99, 1555–1564.

    Article  PubMed  CAS  Google Scholar 

  66. Moriuchi, M., Moriuchi, H., Turner, W., and Fauci, A. S. (1997) Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J. Immunol. 159, 4322–4329.

    PubMed  CAS  Google Scholar 

  67. Wu, L., Paxton, W. A., Kassam, N., Ruffing, N., Rottman, J. B., Sullivan, N., Choe, H., Sodroski, J., Newman, W., Koup, R. A., and Mackay, C. R. (1997) CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  68. Rottman, J. B., Ganley, K. P., Williams, K., Wu, L., Mackay, C. R., and Ringler, D. J. (1997) Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am. J. Pathol. 151,1341–1351.

    PubMed  CAS  Google Scholar 

  69. Loetscher, P., Seitz, M., Baggiolini, M., and Moser, B. (1996) Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J. Exp. Med. 184, 569–577.

    Google Scholar 

  70. Moriuchi, H., Moriuchi, M., and Fauci, A. S. (1997) Cloning and analysis of the promoter region of CCR5, a coreceptor for HIV-1 entry. J. Immunol. 159, 5441–5449.

    PubMed  CAS  Google Scholar 

  71. Mummidi, S., Ahuja, S. S., McDaniel, B. L., and Ahuja, S. K. (1997) The human CC chemokine receptor 5 (CCR5) gene: multiple transcripts with 5’-end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J. Biol. Chem. 272, 30662–30671.

    Article  PubMed  CAS  Google Scholar 

  72. Guignard, F., Combadiere, C., Tiffany, H. L., and Murphy, P. M. (1998) Gene organization and promoter function for CC chemokine receptor 5 (CCR5). J. Immunol. 160, 985–992.

    PubMed  CAS  Google Scholar 

  73. Combadiere, C., Ahuja, S. K., and Murphy, P. M. (1995) Cloning and functional expression of a human eosinophil CC chemokine receptor. J. Biol. Chem. 270, 16,491–16,494.

    Google Scholar 

  74. Ponath, P. D., Qin, S., Post, T. W., Wang, J., Wu, L., Gerard, N. P., Newman, W., Gerard, C., and Mackay, C. R. (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183, 2437–2448.

    Article  Google Scholar 

  75. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C. R., Sodroski, J., and Gabuzda, D. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.

    Article  PubMed  CAS  Google Scholar 

  76. Uguccioni, M., Mackay, C. R., Ochensberger, B., Loetscher, P., Rhis, S., LaRosa, G. J., Rao, P., Ponath, P. D., Baggiolini, M., and Dahinden, C. A. (1997) High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 100, 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  77. Sallusto, F., Mackay, C. R., and Lanzavecchia, A. (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007.

    Article  PubMed  CAS  Google Scholar 

  78. Charo, I. F., Myers, S. J., Herman, A., Franci, C., Connolly, A. J., and Coughlin, S. R. (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl. Acad. Sci. USA 91, 2752–2756.

    Article  PubMed  CAS  Google Scholar 

  79. Qin, S., Larosa, G., Campbell, J. J., Smith-Heath, H., Kassam, N., Shi, X., Zeng, L., Butcher, E. C., and Mackay, C. R. (1996) Expression of monocyte chemoattractant protein-1 and interleukin-8 receptors on subsets of T cells: correlation with transendothelial chemotactic potential. Eur. J. Immunol. 26, 640–647.

    Google Scholar 

  80. Frade, J. M. R., Mellado, M., del Real, G., Gutierrez-Ramos, J. C., Lind, P., and Martinez-A., C. (1997) Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expres-sion in B cells. J. Immunol. 159, 5576–5584.

    PubMed  CAS  Google Scholar 

  81. Heiber, M., Marchese, A., Nguyen, T., Heng, H. H., George, S. R., and O’Dowd, B. F. (1997) A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3. Genomics 32, 462–465.

    Article  Google Scholar 

  82. Napolitano, M., Zingoni, A., Bernardini, G., Spinetti, G., Nista, A., Storlazzi, C. T., Rocchi, M., and Santoni, A. (1996) Molecular cloning of TERl, a chemokine receptor-like gene expressed by lymphoid tissues. J. Immunol. 157, 2759–2763.

    PubMed  CAS  Google Scholar 

  83. Zaballos, A., Varona, R., Gutierrez, J., Lind, P., and Marquez, G. (1996) Molecular cloning and RNA expression of two new human chemokine receptor-like genes. Biochem. Biophys. Res. Commun. 227, 846–853.

    Google Scholar 

  84. Samson, M., Stordeur, P., Labbe, O., Soularue, P., Vassart, G., and Parmentier, M. (1996) Molecular cloning and chromosomal mapping of a novel human gene, ChemR1, expressed in T lymphocytes and polymorphonuclear cells and encoding a putative chemokine receptor. Eur. J. Immunol. 26, 3021–3028.

    Google Scholar 

  85. Tiffany, H. L., Lautens, L. L., Gao, J.-L., Pease, J., Locati, M., Combadiere, C., Modi, W., Bonner, T. I., and Murphy, P. M. (1997) Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. J. Exp. Med. 186, 165–170.

    Article  Google Scholar 

  86. Roos, R. S., Loetscher, M., Legler, D. F., Clark-Lewis, I., Baggiolini, M., and Moser, B. (1997) Identification of CCR8, the receptor for the human CC chemokine I-309. J. Biol. Chem. 272, 17,251–17,254.

    Google Scholar 

  87. Paxton, W. A., Martin, S. R., Tse, D., Obrien, T. R., Skurnick, J., VanDevanter, N. L., Padian, N., Braun, J. F., Kotler, D. P., Wolinsky, S. M., and Koup, R. A. (1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures. Nature Med. 2, 412–417.

    Article  PubMed  CAS  Google Scholar 

  88. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., Macdonald, M. E., Stuhlmann, H., Koup, R. A., and Landau, N. R. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.

    Google Scholar 

  89. Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y. J., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M. (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.

    Google Scholar 

  90. Connor, R. I., Paxton, W. A., Sheridan, K. E., and Koup, R. A. (1996) Macrophages and CD4+ T lymphocytes from two multiply exposed, uninfected individuals resist infection with primary non-syncytium-inducing isolates of human immunodeficiency virus type 1. J. Virol. 70, 8758–8764.

    PubMed  CAS  Google Scholar 

  91. Rana, S., Besson, G., Cook, D. G., Rucker, J., Smyth, R. J., Yi, Y., Turner, J. D., Guo, H.-H., Du, J.-D., Peiper, S. C., Lavi, E., Samson, M., Libert, F., Liesnard, C., Vassart, G., Doms, R. W., Parmentier, M., and Collman, R. G. (1997) Role of CCR5 in infection of primary macropahges and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta CCR5 mutation. J. Virol. 71, 3219–3227.

    Google Scholar 

  92. Schmidtmayerova, H., Sherry, B., and Bukrinsky, M. (1996) Chemokines and HIV replication. Nature 382, 767.

    Article  PubMed  CAS  Google Scholar 

  93. Oravecz, T., Pall, M., Wang, J., Roderiquez, G., Ditto, M., and Norcross, M. A. (1997) Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J. Immunol. 159, 4587–4592.

    Google Scholar 

  94. Cheng-Mayer, C., Liu, R., Landau, N. R., and Stamatatos, L. (1997) Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor. J. Virol. 71, 1657–1661.

    PubMed  CAS  Google Scholar 

  95. Mori, K., Ringler, D. J., and Desrosiers, R. C. (1993) Restricted replication of simian immunodeficiency virus strain-239 in macrophages is determined by env but is not due to restricted entry. J. Virol. 67, 2807–2814.

    PubMed  CAS  Google Scholar 

  96. Chackerian, B., Long, E. M., Luciw, P. A., and Overbaugh, J. (1997) Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J. Virol. 71, 3932–3939.

    PubMed  CAS  Google Scholar 

  97. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, A., Gallo, R. C., and Lusso, P. (1996) The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med. 2, 1244–1247.

    Article  PubMed  CAS  Google Scholar 

  98. Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F., and Goldsmith, M. A. (1996) Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274, 1924–1926.

    Google Scholar 

  99. Farzan, M., Choe, H., Martin, K. A., Sun, Y., Sidelko, M., Mackay, C. R., Gerard, N. P., Sodroski, J., and Gerard, C. (1997) HIV-1 entry and macrophage inflammatory protein-1β-mediated signal-ing are independent functions of the chemokine receptor CCR5. J. Biol. Chem. 272, 6854–6857.

    Google Scholar 

  100. Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1997) HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 234, 340–348.

    Article  Google Scholar 

  101. Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., Venkatesan, S., Farber, J. M., and Fauci, A. S. (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389, 981–985.

    Google Scholar 

  102. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J., and Littman, D. R. (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798.

    Google Scholar 

  103. Bazan, H. A., Alkhatib, G., Broder, C. C., and Berger, E. A. (1998) Patterns of CCR5, CXCR4 and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates. J. Virol. 72, 4485–4491.

    PubMed  CAS  Google Scholar 

  104. Gartner, S., Markovits, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C., and Popovic, M. (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219.

    Article  PubMed  CAS  Google Scholar 

  105. Collman, R., Hassan, N. F., Walker, R., Godfrey, B., Cutilli, J., Hastings, J. C., Friedman, H., Douglas, S. D., and Nathanson, N. (1989) Infection of monocyte-derived macrophages with human immunodeficiency virus type 1 (HIV-1): monocyte-tropic and lymphocyte-tropic strains of HIV-1 show distinctive patterns of replication in a panel of cell types. J. Exp. Med. 170, 1149–1163.

    Google Scholar 

  106. Fouchier, R. A. M., Brouwer, M., Kootstra, N. A., Huisman, H. G., and Schuitemaker, H. (1994) HIV-1 macrophage tropism is determined at multiple levels of the viral replication cycle. J. Clin. Invest. 94,1806–1814.

    Google Scholar 

  107. Valentin, A., Albert, J., Fenyo, E. M., and Asjö, B. (1994) Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J. Virol. 68, 6684–6689.

    PubMed  CAS  Google Scholar 

  108. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W., Weiss, R. A., and Clapham, P. R. (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355–8360.

    PubMed  CAS  Google Scholar 

  109. Yi, Y., Rana, S., Turner, J. D., Gaddis, N., and Collman, R. G. (1998) CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J. Virol. 72, 772–777.

    PubMed  CAS  Google Scholar 

  110. Potash, M. J., Zeira, M., Huang, Z. B., Pearce, T. E., Eden, E., Gendelman, H. E., and Volsky, D. J. (1992) Virus-cell membrane fusion does not predict efficient infection of alveolar macrophages by human immunodeficiency virus type-1 (HIV-1). Virology 188, 864–868.

    Article  PubMed  CAS  Google Scholar 

  111. Huang, Z. B., Potash, M. J., Simm, M., Shahabuddin, M., Chao, W., Gendelman, H. E., Eden, E., and Volsky, D. J. (1993) Infection of macrophages with lymphotropic human immunode-ficiency virus type-1 can be arrested after viral DNA synthesis. J. Virol. 67, 6893–6896.

    PubMed  CAS  Google Scholar 

  112. Schmidtmayerova, H., Bolmont, C., Baghdiguian, S., Hirsch, I., and Chermann, J.-C. (1992) Distinctive pattern of infection and replication of HIV1 strains in blood-derived macrophages. Virology 190, 124–133.

    Article  PubMed  CAS  Google Scholar 

  113. Cameron, P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K., and Steinman, R. M. (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T- cells. Science 257, 383–386.

    Article  PubMed  CAS  Google Scholar 

  114. Blauvelt, A., Asada, H., Saville, M. W., Klaus-Kovtun, V., Altman, D. J., Yarchoan, R., and Katz, S. I. (1997) Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J. Clin. Invest. 100, 2043–2053.

    Google Scholar 

  115. Spira, A. I., Marx, P. A., Patterson, B. K., Mahoney, J., Koup, R. A., Wolinsky, S. M., and Ho, D. D. (1 996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 183, 215–225.

    Google Scholar 

  116. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., and Landau, N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628.

    Article  PubMed  CAS  Google Scholar 

  117. Scarlatti, G., Tresoldi, E., Bjorndal, A., Fredriksson, R., Colognesi, C., Deng, H. K., Malnati, M. S., Plebani, A., Siccardi, A. G., Littman, D. R., Fenyo, E. M., and Lusso, P. (1997) In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Med. 3, 1259–1265.

    Article  PubMed  CAS  Google Scholar 

  118. Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Dornfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, and O’Brien, S. J. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.

    Google Scholar 

  119. Zimmerman, P. A., Buckler-White, A., Alkhatib, G., Spalding, T., Kubofcik, J., Combadiere, C., Weissman, D., Cohen, O., Rubbert, A., Lam, G., Vaccarezza, M., Kennedy, P. E., Kumaraswami, V., Giorgi, J. V., Detels, R., Hunter, J., Chopek, M., Berger, E. A., Fauci, A. S., Nutman, T. B., and Murphy, P. M. (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol. Med. 3, 23–35.

    Google Scholar 

  120. Huang, Y. X., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L. Q., He, T., Kang, S., Ceradini, D., Jin, Z. Q., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D., and Koup, R. A. (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2, 1240–1243.

    Google Scholar 

  121. Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A., and Jeang, K. T. (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J. Biol. Chem. 272, 30,603–30,606.

    Google Scholar 

  122. Michael, N. L., Chang, G., Louie, L. G., Mascola, J. R., Dandero, D., Birx, D. L., and Sheppard, H. W. (1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat. Med. 3, 338–340.

    Google Scholar 

  123. Eugen-Olsen, J., Iversen, A. K., Garred, P., Koppelhus, U., Pedersen, C., Benfield, T. L., Sorensen, A. M., Katzenstein, T., Dickmeiss, E., Gerstoft, J., Skinhoj, P., Svejgaard, A., Nielsen, J. O., and Hofmann, B. (1997) Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS 11, 305–310.

    Article  PubMed  CAS  Google Scholar 

  124. Meyer, L., Magierowska, M., Hubert, J. B., Rouzioux, C., Deveau, C., Sanson, F., Debre, P., Delfraissy, J. F., Theodorou, I., and the SEROCO Study Group, (1997) Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. AIDS 11, F73—F78.

    Google Scholar 

  125. Katzenstein, T. L., Eugen-Olsen, J., Hofmann, B., Benfield, T., Pedersen, C., Iversen, A. K., Sorensen, A. M., Garred, P., Koppelhus, U., Svejgaard, A., and Gerstoft, J. (1997) HIV-infected individuals with the CCR Δ32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. J. Acquir. Immun. Defic. Syndr. Hum. Retrovirol. 16, 10–14.

    Google Scholar 

  126. de Roda Husman, A.-M., Koot, M., Cornelissen, M., Keet, I. P., Brouwer, M., Broersen, S. M., Bakker, M., Roos, M. T., Prins, M., de Wolf, F., Coutinho, R. A., Miedema, F., Goudsmit, J., and Schuitemaker, H. (1997) Association between CCR5 genotype and the clinical course of HIV-1 infection. Ann. Intern. Med. 127, 882–890.

    Google Scholar 

  127. Smith, M. W., Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Lomb, D. A., Goedert, J. J., O’Brien, T. R., Jacobson, L. P., Kaslow, R., Buchbinder, S., Vittinghof, E., Vlahov, D., Hoots, K., Hilgartner, M. W., Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study, and O’Brien, S. J. (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277, 959–964.

    Google Scholar 

  128. Michael, N. L., Louie, L. G., Rohrbaugh, A. L., Schultz, K. A., Dayhoff, D. E., Wang, C. E., and Sheppard, H. W. (1997) The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat. Med. 3, 1160–1162.

    Google Scholar 

  129. Smith, M. W., Carrington, M., Winkler, C., Lomb, D., Dean, M., Huttley, G., and O’Brien, S. J. (1997) CCR2 chemokine receptor and AIDS progression. Nature Med. 3, 1052–1053.

    PubMed  CAS  Google Scholar 

  130. Winkler, C., Modi, W., Smith, M. W., Nelson, G. W., Wu, X., Carrington, M., Dean, M., Honjo, T., Tashiro, K., Yabe, D., Buchbinder, S., Vittinghoff, E., Goedert, J. J., O’Brien, T. R., Jacobson, L. P., Detels, R., Donfield, S., Willoughby, A., Gomperts, E., Vlahov, D., Phair, J., ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), and O’Brien, S. J. (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science 279, 389–393.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berger, E.A., Farber, J.M. (1999). The HIV Coreceptor Repertoire. In: Hébert, C.A. (eds) Chemokines in Disease. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-706-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-706-2_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4762-1

  • Online ISBN: 978-1-59259-706-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics